Geometric Analysis Problem Set 1

Due Monday, January 25

Problem (1.1) Use a partition of unity to prove that the set

$$
\operatorname{Metric}(M)=\{\text { all Riemannian metrics on the manifold } M\}
$$

is a non-empty convex cone (without vertex) in the vector space $\Gamma\left(\operatorname{Sym}^{2}\left(T^{*} M\right)\right.$).

Problem (1.2) Let ∇ and ∇^{\prime} be connections compatible with a metric \langle,$\rangle on a vector bundle$ E. Show that:
(a) For any $f \in C^{\infty}(M), \nabla^{\prime \prime}=f \nabla+(1-f) \nabla^{\prime}$ is also a connection compatible with the metric.
(b) $\nabla-\nabla^{\prime}=A$ is an $\operatorname{End}(E)$-valued 1-form (i.e., an element of $\Gamma\left(T^{*} M \otimes \operatorname{End}(E)\right)$ that is skew-hermitian when E is complex and skew-symmetric when E is real.
(c) Conversely, with ∇ and A as in (b), show that $\nabla^{\prime}=\nabla+A$ is a connection compatible with the metric.

Note that (b) and (c) show that

$$
\mathcal{A}=\{\text { all compatible connections on } E\}
$$

is an infinite-dimensional affine space modeled on $\Gamma\left(T^{*} M \otimes \operatorname{SEnd}(E)\right)$ where $\left.\operatorname{SkewEnd}(E)\right)$ is the bundle of skew-hermitian endomorphisms of E.

Hint: For (b), use the fact that any $C^{\infty}(M)$-linear map $\Phi: \Gamma(E) \rightarrow \Gamma(F)$ arises in this way from a bundle map $\phi: E \rightarrow F$ by composition: $\Phi(f \xi)=f \Phi(\xi) \quad \forall f \in C^{\infty}(M)$.

Problem (1.3) Let ∇ be the Levi-Civita connection of a Riemannian manifold (M, g). In a local coordinate system $\left\{x^{i}\right\}$, we write the metric as

$$
\sum g_{i j} d x^{i} \otimes d x^{j}
$$

and define the Christoffel symbols by

$$
\nabla_{\frac{\partial}{\partial x^{i}}} \frac{\partial}{\partial x^{j}}=\sum \Gamma_{i j}^{k} \frac{\partial}{\partial x^{k}} .
$$

(a) Show that $\nabla_{i}=\partial_{i}+\Gamma_{i j}^{k}$, i.e. for vector fields $X=\sum X^{i} \frac{\partial}{\partial x^{i}}$ and $Y=\sum Y^{j} \frac{\partial}{\partial x^{j}}$

$$
\nabla_{X} Y=\sum X^{i}\left(\frac{\partial}{\partial x^{i}}+\Gamma_{i j}^{k} Y^{j}\right) \frac{\partial}{\partial x^{k}}
$$

(b) Show that the torsion-free condition implies that $\Gamma_{i j}^{k}=\Gamma_{j i}^{k}$.

The components of the Riemannian curvature tensor R are defined by

$$
\sum R_{j k \ell}^{i} \frac{\partial}{\partial x^{i}}=R\left(\frac{\partial}{\partial x^{k}}, \frac{\partial}{\partial x^{\ell}}\right) \frac{\partial}{\partial x^{j}}
$$

(c) Derive the classical expression $R_{j k l}^{i}=\sum\left(\partial_{k} \Gamma_{\ell j}^{i}-\partial_{\ell} \Gamma_{k j}^{i}\right)+\left(\Gamma_{\ell j}^{m} \Gamma_{k m}^{i}-\Gamma_{k j}^{m} \Gamma_{\ell m}^{i}\right)$

Problem (1.4) Let ∇ and ∇^{\prime} be two connections on a vector bundle $E \rightarrow M$. Write $\nabla^{\prime}=\nabla+A$ where A is an $\operatorname{End}(E)$-valued 1 -form. Show that the curvatures of ∇ and ∇^{\prime} are related by

$$
F^{\nabla^{\prime}}=F^{\nabla}+d^{\nabla} A+[A, A]
$$

where

$$
d^{\nabla}: \Gamma\left(T^{*} M\right) \otimes \operatorname{End}(E) \rightarrow \Gamma\left(\Lambda^{2} T^{*} M \otimes \operatorname{End}(E)\right)
$$

is the covariant exterior derivative defined by $d^{\nabla} A(X, Y)=\left(\nabla_{X} A\right)(Y)-\left(\nabla_{Y} A\right)(X)$, and $[A, A]$ is the $\operatorname{End}(\mathrm{E})$-valued 2-form given by $[A, A](X, Y)=A(X) A(Y)-A(Y) A(X)$.

Problem (1.5) Prove the second Bianchi identity: the curvature tensor satisfies

$$
\left(\nabla_{X} F\right)(Y, Z)+\left(\nabla_{Y} F\right)(Z, X)+\left(\nabla_{Z} F\right)(X, Y)=0 .
$$

