Geometric Analysis Problem Set 2

Due Monday, February 8

Problem (2.1) Re-prove the second Bianchi identify as stated in Proposition 0.6 this time using a useful frame (take X, Y, Z to be basis vectors in the frame and choose ξ with $\left.(\nabla \xi)_{p}=0\right)$.

Problem (2.2) Prove the formula $\left.\nabla^{*}=-\sum_{i j} g^{i j} e_{i}\right\lrcorner \nabla_{e_{j}}$ by first showing that for any $\xi \in \Gamma(E)$ and $\eta \in \Gamma\left(T^{*} M \otimes E\right)$ the $(n-1)$-form $\left.\omega=\sum\left\langle\eta, e^{i} \otimes \xi\right\rangle e_{i}\right\lrcorner d v_{g}$ is well-defined (i.e. is independent of the frame), then computing $d \omega$ in a useful frame, and integrating.

Problem (2.3) Let ∇ be a connection on a (real) bundle E that is compatible with the metric \langle,$\rangle on E$. Show that $\left\langle\phi, \nabla^{*} \nabla \phi\right\rangle=|\nabla \phi|^{2}+\frac{1}{2} d^{*} d|\phi|^{2}$ for all $\phi \in \Gamma(E)$, and consequently

$$
\int_{M}\left\langle\phi, \nabla^{*} \nabla \psi\right\rangle=\int_{M}\langle\nabla \phi, \nabla \psi\rangle
$$

for all smooth compactly suported sections $\phi, \psi \in \Gamma(E)$.

Problem (2.4) Complete the proof of Proposition 3.6 (in the lecture notes) by proving that any second order LDO $D: \Gamma(E) \rightarrow \Gamma(F)$ any second order LDO can be written

$$
D=\sigma_{D} \circ \nabla^{2}+B \circ \nabla+C
$$

where $B: T^{*} M \otimes E \rightarrow F$ and $C: E \rightarrow F$ are bundle maps. Then state and sketch the proof of the corresponding formula for $k^{\text {th }}$ order operators.

Problem (2.5) Let $D: \Gamma(E) \rightarrow \Gamma(F)$ and $\tilde{D}: \Gamma(F) \rightarrow \Gamma(G)$ be linear differential operators with symbols σ_{D} and $\sigma_{\tilde{D}}$ and orders k and \tilde{k}.
(a) Let M_{f} denote multiplication by $f \in C^{\infty}(M)$. Show that $\left[D, M_{f}\right]$ is an LDO of order $k-1$.
(b) Show that $\sigma_{D \circ \tilde{D}}=\sigma_{D} \circ \sigma_{\tilde{D}}$.
(c) Show that $\sigma_{D^{*}}=(-1)^{k}\left(\sigma_{D}\right)^{*}$.

