Geometric Analysis Problem Set 3

Due Monday, February 22

Problem (3.1) This problem refers to the online course notes. Start by reading from the bottom of page 15 to the end of Section 2.

Using the notation a_i and a^{*i} introduced before (2.21) show that, for each i, $a^{*i}a_i$ is an even derivation of $\Lambda^*(V^*)$ that vanishes on $\Lambda^0(V^*)$. Then use Lemma 2.6b and equations (2.21) to prove the formulas in parts (a), (b) and (c) of Example 2.8.

Problem (3.2) Prove that, for the Sobolev spaces of functions on a 4-manifold, multiplication induces a bounded linear map $L^{3,2} \times L^{2,2} \to L^{2,2}$ (this is one instance of the Multiplication Theorem). Use only the definition of the Sobolev norm and the Sobolev Embedding Theorem.

Problem (3.3) Prove the Interpolation Inequality by the method used in class to prove the Poincaré Inequality.

Due Wednesday, February 24

Problem (3.4) Suppose that f is a $W^{1,2}$ weak solution of

$$\Delta f = \left(\sqrt{1+|df|^2}\right) f$$

on a compact Riemannian 3-manifold. Prove that f is smooth using the bootstrap procedure listed below. For the various steps, apply the Sobolev Embedding Theorem, the Elliptic Regularity Theorem (first in $W^{k,p}$ form, then $C^{k,\alpha}$ form), Holder's inequality, and perhaps the multiplication and interpolation theorems.

- (a) Show that f lies in L^6 , that $g = \sqrt{1 + |df|^2}$ lies in L^2 , and that $gf \in L^{3/2}$.
- (b) Show that $f \in L^{2,3/2}$, $g \in L^3$, and $gf \in L^{5/2}$.
- (c) Show that $gf \in C^{\alpha}$ for some $\alpha > 0$.
- (d) Show that $f \in C^{\infty}$.