Geometric Analysis Problem Set 4

Due Wednesday March 17

Problem (4.1) Let X be the unit circle. Explicitly describe the eigenspaces of

$$
\left(\begin{array}{cc}
0 & d^{*} \\
d & 0
\end{array}\right) \quad \text { acting on } \quad \Omega_{X}^{0} \oplus \Omega_{X}^{1} .
$$

For the following problems, recall that, by the spectral theorem, each $\phi \in L^{2}(V)$ has an L^{2}-orthogonal "Fourier series" expansion

$$
\begin{equation*}
\phi=\sum a_{\lambda} \phi_{\lambda} \tag{0.1}
\end{equation*}
$$

where the ϕ_{λ} are eigenvectors of $D^{*} D$. The L^{2} norm of ϕ is then

$$
\begin{equation*}
\|\phi\|^{2}=\sum\left|a_{\lambda}\right|^{2}<\infty . \tag{0.2}
\end{equation*}
$$

Problem (4.2) Use the expansion (0.1) to prove the following version of the Poincare inequality: if $\phi \in L^{2}$ is L^{2}-perpendicular to the space of all eigenspaces with eigenvalues $\lambda \leq \Lambda$ then

$$
\|\phi\|_{1,2} \leq C\|D \phi\|_{0,2} \quad \text { where } \quad C^{2}=1 / \Lambda
$$

Problem (4.3) Fix $k \geq 0$. Define a norm on $\phi \in \Gamma(V)$ by expanding ϕ as in (0.1) and setting

$$
\|\phi\|^{2}=\sum_{\lambda}(1+\lambda)^{k}\left|a_{\lambda}\right|^{2} .
$$

(a) Prove that this norm is equivalent to the $L^{k, 2}$ norm.
(b) Define Sobolev spaces of functions $W^{s, 2}(M)$ for real numbers $s>0$.

Problem (4.4) Read the last page of Section 4 of the "Geometry Primer" and answer these questions:

Let $D_{t}: \Gamma(V) \rightarrow \Gamma(W), t \in[0,1]$, be a path of first order simple elliptic operators.
(a) Show that the non-zero spectrum of $D_{t}^{*} D_{t}$ is the same as that of $D_{t} D_{t}^{*}$.
(b) Assuming that the eigenvalues depend continuously on t (they do), use part (a) to show that the index is independent of t.

Problem (4.5) Suppose that $\gamma: S^{1} \rightarrow M$ is an $W^{1,2}$ weak solution of the geodesic equation $\nabla_{T} T=0$. (Here ∇ is the Levi-Civita connection of (M, g) and $T=\dot{\gamma}=\frac{d}{d t} \gamma(t)$ is the tangent vector to the loop γ.)
(a) Write the geodesic equation in local coordinates $\left\{x^{i}\right\}$ on M.
(b) Is the equation linear? Elliptic?
(c) Use the Sobolev inequalities to show that each point $t_{0} \in S^{1}$ has a neighborhood whose image under γ lies in a single coordinate chart of M.
(d) Use bootstrapping to prove that γ is C^{∞}.

