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BUBBLE TREE CONVERGENCE FOR
HARMONIC MAPS

THOMAS H. PARKER

Abstract
Let Σ be a compact Riemann surface. Any sequence fn : Σ —> M of
harmonic maps with bounded energy has a "bubble tree limit" consisting
of a harmonic map /o : Σ -> M and a tree of bubbles fk : S2 -> M.
We give a precise construction of this bubble tree and show that the limit
preserves energy and homotopy class, and that the images of the fn converge
pointwise. We then give explicit counterexamples showing that bubble tree
convergence fails (i) for harmonic maps fn when the conformal structure of
Σ varies with n, and (ii) when the conformal structure is fixed and {/n} is
a Palais-Smale sequence for the harmonic map energy.

Consider a sequence of harmonic maps fn : Σ —> M from a compact
Riemann surface (Σ, h) to a compact Riemannian manifold (M,g) with
bounded energy

(0.1) E(fn) = \JΣ\dfn\2 < Eo.

Such a sequence has a well-known "Sacks-Uhlenbeck" limit consisting
of a harmonic map /o : Σ —> M and some "bubbles" — harmonic maps
S2 -> M obtained by a renormalization process. In fact, by following
the procedure introduced in [12], one can modify the Sacks-Uhlenbeck
renormalization and iterate, obtaining bubbles on bubbles. The set of
all bubble maps then forms a "bubble tree" ([12]). One would like to
know in precisely what sense the sequence {fn} converges to this bubble
tree. The major issue is the appearance of "necks" joining one bubble
to the next.
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Our main result (Theorem 2.2) is a precise Bubble Tree Convergence
Theorem for harmonic maps. It asserts that a subsequence of the fn in
(0.1) decomposes (in the sense explained in §1) into sequences fnj that
converge in L1'2 Π C° to the maps in the bubble tree. This includes two
strong convergence statements. The first is that there is no energy loss
in the limit, a fact previously shown by Jost [10]. The second is that
the image of the limit is connected, that is, in the limit there are no
necks. As a consequence, the limit preserves homology and homotopy
(Corollary 2.3), and the images /n(Σ) converge pointwise to the image
of the bubble tree map.

The bubble tree is constructed in §1 using the procedure of [12].
The construction is elementary and requires only the basic facts about
harmonic maps stated in Proposition 1.1. It is also quite general: it
applies to other conformally invariant semilinear equations for which
the corresponding basic facts hold, such as pseudo-holomorphic maps
and Yang-Mills fields.

The general analysis of §1 reduces the proof of Theorem 2.2 to show-
ing that the energy and length of the necks vanish as n —» oo. We give
two proofs of these facts. In §2 we simplify and extend Jost's proof
using techniques from harmonic map theory. The proof is §3 is very
different: we view the necks as paths in loop space and prove the re-
quired estimates using O.D.E. methods. Prom this viewpoint one sees
how the necks are "trying to become longer and longer geodesies" —
a phenomenon ruled out by the hypotheses of Theorem 2.2, but which
appears explicitly in the examples of the subsequent sections. At the
end of §3 we use this approach to give a new proof of the Removable
Singularities Theorem for harmonic maps.

In the final two sections we study two closely related situations where
explicit counterexamples show that no bubble tree convergence theorem
is possible. These examples illustrate just how subtle and delicate are
the issues of energy loss and pointwise convergence on the necks.

To prove existence results for harmonic maps one would like a bubble
tree convergence theorem that applies to sequences of maps that are not
harmonic, but are becoming harmonic in some sense. In this context it
is perhaps most natural to consider Palais-Smale sequences for the L1'2

gradient of the energy (0.1). Yet in §4 we construct examples which
dash all hope for a bubble tree convergence theorem for Palais-Smale
sequences. The first is a Palais-Smale sequence of maps S2 —> S2 that
approaches a degree-1 harmonic map and a degree -1 harmonic bubble
map, but which loses energy in the limit. The second, more elaborate
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example, is a Palais-Smale sequence that does not converge pointwise
or in L1'2 on any open set.

In the final section we consider sequences of harmonic maps from
a Riemann surface (Σ,/ιn) where the metric hn is allowed to vary. If
the corresponding complex structure j n stays in a compact region in
the moduli space of Σ, then the Bubble Tree Convergence Theorem
2.2 still applies (after reparameterizing the f n ) . But if {jn} eventually
leaves each compact region, then bubble tree convergence can fail. We
illustrate this by constructing a specific sequence of harmonic maps
fn : (T2, hn) —>> S2 x S1 which fails to converge pointwise or in L1'2 on
any open set. Nevertheless, a renormalization scheme (different from
the one of §1) produces a limit consisting of bubbles joined by necks.
Again, there is energy loss and the necks fail to converge.

There are other approaches to existence in which one has better
control on convergence than for Palais-Smale sequences. Sacks and Uh-
lenbeck [16] find p-harmonic maps for p > 2, then take a sequence with
p —> 2. Prom their results one easily sees that the bubble tree con-
struction of §1 holds for such sequences. Similarly, for the heat flow
for harmonic maps Struwe [15] has a partial bubble tree convergence
theorem, and Jost [10] describes an approach using the Perron method.
These approaches are interesting and useful. It is clear that in each necks
necessarily arise, and the issues of energy loss and C° convergence on
the necks should be settled in these cases.

The problems raised in this paper have stimulated much recent work,
and further progress on the above 'neck issues' has been made by Ding-
Tian [5], Qing-Tian [13], and Chen-Tian [3].

1. The bubble tree construction

Fix a compact Riemann surface (Σ, h) and a compact Riemannian
manifold (M, g). In the first three sections we will consider a sequence
of harmonic maps

fn : Σ -> M

with bounded energy as in (0.1). In this section we describe the "bub-
ble tree limit" introduced in [12]. This is an inductive procedure that
generalizes the Sacks-Uhlenbeck renormaliation procedure by identify-
ing bubbles on bubbles. The construction described here is a slightly
reordered version of the one in [12]. The reordering clarifies the role of
the "scale size" and, more importantly, the role of the necks connecting
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the bubbles. These necks are the central focus of this paper.
The basic building blocks for the bubble tree construction are the

following four analytic facts about harmonic maps proved in [16].

Proposition 1.1 There are positive constants C\ and eo, depend-
ing only on (Σ,Λ) and (M,g) such that

(a) (Sup Estimate) If f : E -> M is harmonic and D(2r) is a

geodesic disk of radius 2r with energy E(2r) = \ Sp^r) \df\2 — eo> then

(1.1) sup|d/|2 < Cir~2E(2r).
D(r)

(b) (Uniform Convergence) If {fn} is a sequence of harmonic maps
from a disk D(2r) with E(2r) < eo for all n, then there is a subsequence
that converges in Cι.

(c) (Energy Gap) Any non-trivial harmonic map f : S2 —¥ M has
energy E(f) > e0.

(d) (Removable Singularities) Any smooth finite-energy harmonic
map from a punctured disk D — {0} to M extends to a smooth harmonic
map on D.

Combining these facts with a simple covering argument gives the
following fundamental convergence result of Sacks and Uhlenbeck. To
clarify the exposition the proofs of the technical Lemmas 1.2-1.6 have
been relegated to the appendix.

L e m m a 1.2 Let {hn} be a sequence of metrics on Σ converging
in C2 to h, and {fn} a sequence of hn-harmonic maps Σ —> M with
E{fn) < EQ. Then there is a subsequence of {fn}, a finite set of "bubble
points" {#i, ...,#&} G Σ, and an h-harmonic map foo : Σ —>• M such
that:

(a) fn -* foo in Cι uniformly on compact sets in Σ—{#i,..., Xk],
(b) the energy densities e(fn) = ^\dfn\

2 dvhn converge as mea-
sures to e(/oo) plus a sum of point measures with mass rrii > eo *

k

(1.2) e(/n) -> e(/oo) + Σ mi δ(xi).

The construction involves six steps. The first step depends on a

"renormalization constant" CR which we are free to make smaller if

needed; for now we require only that

(1.3) CR < €o/2.
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We will focus attention on one bubble point x^ writing X{ and mi as
simply x and m. To simplify notation we adopt the convention of imme-
diately renaming subsequences, so a subsequence of {fn} is still denoted
{/n} Numbered constants, such as C\ above, depend only on the ge-
ometry of Σ and M and on the fixed energy bound EQ.

Fix a disk D(x, 4po) that contains no other bubble points and choose
a sequence en —> 0 by letting en < min{po5 l/

n} be the largest number
with

(1.4)
- 16n2"

Step 1 (Pullback). Pullback by the exponential map, identifying
fn with exp* fn and D(x, 2en) with the disk Dn = £>(0,2en) in TXΣ. The
pullback measure e(fn) on Dn determines a center of mass cn = (c^, c^)
with coordinates

(15)
( L 5 )

Cn ~ fDn e(/»)

and a scale size λ n by

(1.6)

λn = smallest λ such that / e(/n) > C R ,
JD(cn,en)-D(cniλ)

where CR is the renormalization constant (1.3).

Lemma 1.3 After passing to a subsequence we have \cn\ < en/2n2,
λn < en/n2, and there is a constant Cs such that fn(dDn) lies in the

ίnM.

Step 2 (Renormalization). Renormalize the fn by

1. centerizing using the translation Tn(z) = z + Cn,

2. rescaling by An(z) = λnz,

3. compactifying by letting S = Sx be the unit 2-sphere in the fiber at
x of the bundle TxΣφIR; this comes with a stereographic projection
σ : S -> TXΣ that takes the north pole p+ = (0,0,1) G S to the
origin, the south pole p~ to infinity, and the equator to the unit
circle.
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Then consider the composition Rn = Tn o Λn o σ on the domain Sn —
R~ιD(0,2en) in S and define the renormalized maps as the pullbacks

(1-7) Sn = Λ^/n : Sn -> M.

Lemma 1.3 and the definitions of cn and λn imply that the domains Sn

exhaust S — {p~} as n -> oo, and the conformal invariance of the energy
means that E(fn) < EQ for all n.

Lemma 1.4 The fn are harmonic with respect to metrics that con-
verge uniformly in C2 to the standard metric gs on compact sets in
Sx — {p}. The measures e(fn) have center of mass on the z-axis and
satisfy

(1.8) lim / e ( / n ) = m and lim I e(fn) = CR
n->°° JSn n~*°° JSn

where S~ is the part of Sn in the southern hemisphere.

We next find a convergent subsequence of {fn} Choose a sequence
Kk of compact sets that exhaust S — {p~} For k — 1,2 ... successively
apply Proposition 1.2 to the sequence {fn} on K^, and then take the
diagonal subsequence. This yields a subsequence of {/n} that converges
in C1 on S — {yi, yup~} to a smooth harmonic map /QQ : S —>• M,
with

/
(1.9) e(/n) -> e(Λo)

where πij > eo By Lemma 1.4 and (1.9) the center of mass of the
measure e(/oo) + Σ rrij δ(yj) lies on the z-axis of S. We can also assume
(see appendix) that the boundaries of the domains Bn = σ~1£>(0,n)
satisfy

(1.10) fn(dBn) C B(/oo(p-), CA/n).

Step 3 (Iteration). The above renormalization procedure asso-
ciates to each bubble point x a sequence of harmonic maps Sx -> M
which converge to a harmonic map /oo : Sx —> M in C 1 on Sx —

{yu-">yi{x)iP~}-

Lemma 1.5 (a) Each secondary bubble point yj lies in the northern
hemisphere of S.

(b) If E(foo) < eo, then f^ is a map to a single point and either
(i) there are I > 2 secondary bubble points, or (ii) I = 1 and τ(x) = CR.
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FIGURE 1

We can now repeat the renormalization around each yj and iterate,
obtaining bubbles on bubbles. Lemma 1.5b and the inequality CR <
eo/2 < rrij show that each iteration reduces the energy by at least CR.
Hence the process terminates after at most EQ/CR iterations. The result
is a finite tree of bubbles. Before describing this tree, we go back and
modify the above procedure to keep careful track of what is happening
near the south pole.

Step 4 (Extended Maps). Inside the domain D(0,2en) of fn we
identify three nested domains: the disks Dn = D(cn,en), the smaller
disks D'n = D(cn,nλn) and the annuli An between them (Figure 1).
Doing this at each bubble point, then restricting and extending, yields
three sets of maps, as follows (Figure 1).

Base Maps. Restricting fn gives a map

(1.11) ίn : Σ - U e x P * i D(cn,i,en,ϊ)

which, near each bubble point x, is defined outside the loop dD'n. By
Lemma 1.3 the image of this loop lies in the ball B(foo(x)1 Cs/n). Ex-
tend fn over Dn by coning off the image:

(1-12) f(r,θ) = -f(en,θ),
en

where (r, θ) are polar coordinates around x in Σ, and the multiplication
on the right is done in geodesic coordinates on B(foo(x), Cs/n). Doing
this at each bubble point yields the base maps



602 THOMAS H. PARKER

Bubble Maps. Restricting fn to the inside disk D(cn, nλn) C TXΣ
and renormalizing give maps Rnfn ' σ~ιD(0,n) -> M; this agrees with
fn on its domain. Using (1.10) we can again extend this to Sx by coning
over the south pole. This procedure yields

(1.13) ΈfniX : Sx-+ M.

Neck Maps. Finally, restricting fn to the intermediate annular
region in TXΣ gives neck maps

(1.14) fn\An : An = D(cn, en) - D{cn, nλn) -> M.

The base maps converge to /oo The maps fn of step 2, however,
are now decomposed into the bubble maps, which converge nicely on
8χ to /QQ, and the neck maps, which are pushed into the south pole as
n —>• oo and account for the term r(x)δ(p~) in (1.9). Specifically, after
passing to a subsequence we have:

Lemma 1.6 (a) Jn -» /oo in L1'2 Π C° on Σ,

(b) Rfn -¥ /QQ m L1'2 Π C° on compact sets in Sx — {yi, , y/};

and

(c) τ(x) = limsup^ E(φn\An) and

(1.15)

-> E{foo) 4- 5 ] [rfe) +

Step 5 (Renormalized Neck Maps). The domain of the neck
maps (1.14) is a "no-man's land" between the base and the bubbles. On
Σ, this domain shrinks into x as n -> oo, while on S the renomalized
domain R~ιAn shrinks into the pole p~. Thus the neck map is a piece
of the original map fn that is not part of the base map nor the bubble
map. It must be treated separately.

It is natural to renormalize the neck maps to make them maps from
a cylinder. For this we write fn(

r^) in polar coordinates centered on
cn and consider

(1.16)
φn : [0,Tn] x S1 -»• M by φn{t,θ) = fn^ne-\θ).
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Note that the image of φn is the union of the loops 7 ^ = φn(t, •) C M
for 1 < t < Tn; each has an energy

(1.17) Pn(t) = f
Jo

2π
,\2 dθ.

Lemma 1.7 The neck maps (1.16) are harmonic with respect to
metrics of the form dt2 + ηndθ2 with Tn -> 00 and ηn —> 1 in C2 as
n —>> 00, and satisfy

(1.18) supe{φn) < CιCR.

Moreover, for 0 < t < Tn,

(1.19) length2 7n,t < 2πPn(ί) < 2πCiCβ ?

and at the ends

length2 7n,o < 2πPn(0) < ^ and

length2

 7 n , i < 2πPn(l) < %£.

Now redefine CR to insure that the number C\CR is small, say
2-KC\CR < min{ 1/100, \&M] where SM is the injectivity radius of M.
Then (1.19) and (1.7) show that the image of each neck map is a thin
tube in M whose boundary curves are squeezed as n -» 00; in fact from
Lemma 1.3 and (1.10)

(1.20)

7n,o C B (/(*), ^j , 7n,τn C B

Remark. The inner and outer radii of the neck domain An are
somewhat arbitrary. But for any choice the ends are still squeezed as
in (1.20). In fact, φn uniformly squeezes each finite region [0,L] into
neighborhoods of f{x), and finite regions [Tn—L, Tn] into neighborhoods

θf/oo(P")

Step 6 (The Bubble Tower). The result of steps 1-5 is a finite
tree of bubbles whose vertices are harmonic maps and the edges are
bubble points. The tree is constructed from the sequence {/n} as follows:
The {fn} converge to /oo : Σ -) M on Σ - {x\, , ^ } . The base
vertex of the tree is the map /oo, which we relabel /Q. For each X{
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the renormalization process gives a sequence {φn,Xi} of neck maps and
a sequence {Rfn} of bubble maps converging to a harmonic map fa :
S2. —> M. The pairs (xi,φn,xi) label edges eminating from the base
vertex. The edge (xi,φn,xi) terminates in the vertex fa which, in turn,
is the source of new edges {xij}, and so on.

Intrinsically, the xij are points in SΣ = 5(TΣθR). Compactifiying
the vertical tangent space of SΣ -» Σ gives an 52-bundle 5 2 Σ over 5Σ;
this is where the third level of bubble points lie. Iterating yields a tower
of S2 fibrations > SkΣ -> > SΣ -> Σ .

Definition. A bubble domain at level A; is a fiber S = S2 of
SkΣ —> Sk~ιΣ. A bubble tower is a finite union T of bubble domains
which form a tower, i.e., such that the projection of T Π SkΣ lies in

τnsk"ιΈ.
Given a sequence of harmonic maps, the iterated renormalization

procedure singles out a bubble domain tower T = Σ U (J 5/ and se-
quences of (extended) base maps /n?o = fn : Σ —> M and bubble maps
fn,i = Rfn,iι..Λk - Si -ϊ M. Together these form a sequence of bubble
tower maps {fn,i} T -> M. By Lemma 1.6 these converge in L1 '2 Π C°
to a limit {//} :T -> M.

An example of a bubble tree is shown in Figure 2. The bubble tower
is at the left, the image is in the center, and the corresponding bubble
tree diagram is at the right. The connecting tubes in the center picture
are the images of the neck maps φn,xi\ these are part of the image of
the original maps / n , but are not part of the image of the bubble tower
maps. Note that some bubbles may be maps to a single point; we call
these ghost bubbles. This example includes instances of the two types of
ghost bubbles described in Lemma 1.5.

Each vertex // of the tree has a homology class [//] and an energy
E(fi). Since the neck maps carry no homology (their images are thin
tubes) we have [/n] = [fn] + ΣXi\Rfn]

 a t e a c h l e v e l o f t h e bubble
tree. Iterating this and (1.15) shows that the bubble tree limit preserves
energy and homology in the sense that

(1.21) E(fn) -> E(foo) + Σ [E(fk,x) + r(x)],

and if each fn represents the same homology class a then

(1-22) a = [fn] =

(both sums are over all bubble points x at all levels in the tree).
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FIGURE 2

Thus far, the bubble tree construction is very general. The en-
tire procedure requires only a conformally invariant equation with the
properties of Proposition 1.1. Indeed, it was originally developed for
pseudo-holomorphic maps ([12]); it also applies without change to con-
stant mean curvature maps and the α-harmonic maps of [16], and with
minor changes to Yang-Mills fields ([6]). For alternative renormaliza-
tion schemes in various contexts see [1], [10], and [17]. In the next two
sections we use properties special to harmonic maps to prove one last
fact crucial about the bubble tree limit.

2. The bubble tree convergence theorem

The bubble tree construction of §1 associates to each bubble point
x a sequence of neck maps φn : [0, Tn] x S1 ->> M whose images are thin
tubes in M. Using these, we can associate to x two numerical quantities:

energy loss r(x) = limsupn E(φn^x)

neck length v(x) = limsupn sup P j 9 G [ 0 > T n ] x 5 i dist(φn(p),φn(q)).

In this section we will prove that both these numbers vanish.

L e m m a 2.1 At each bubble point x we have τ(x) = 0 and v(x) = 0.

Lemma 2.1 completes our analysis of the bubble tree, and, with the
results of §1, immediately gives our main convergence theorem.

Theorem 2.2 (Bubble Tree Convergence for Harmonic
Maps). Let {fn} : Σ -» M be a sequence of harmonic maps from a
fixed Riemann surface (Σ,Λ) to a compact Riemannian manifold (M,g)
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with E(fn) < EQ. Then there is a subsequence {fn} and a bubble tower
domain T so that the renormalized maps

{/„,/} : T - ^ M

converge in L1>2ΠC° to a smooth harmonic bubble tree map {//} : T -»
M. Moreover,

(a) (No energy loss) E(fn) converges to ΣE(fi), and
(b) (Zero distance bubbling) At each bubble point xj (at any level

in the tree), the images of the base map // and the bubble map fj meet
at fi(xj) = fj(p~).

Consequently the image of the limit {//} : T —ϊ M is connected, and
the images of the original maps fn : Σ -» M converge pointwise to this
image {//}.

Thus the image of the limit map appears like the first picture in
Figure 2 instead of the middle picture. The limiting image has no
necks.

Remark. Theorem 2.2 is exactly the result proved in [12] for
J-holomorphic maps. For harmonic maps the "no energy loss" state-
ment was previously proved by Jost ([10]). The argument below uses
aspects of both these proofs. It simplifies Jost's argument and includes
the zero distance bubbling statement and the precise statement of the
convergence of the images.

Zero distance bubbling implies that the bubble tree limit preserves
homotopy. Each map fn : Σ -> M represents a class [fn] in the set
[Σ, M] of free homotopy classes. A bubble tree map f :T = ΣU\J Si —>
M also has a class [/] G [Σ,M] obtained by succesively adding the
bubble maps to the class [/o] of the base map as follows. For each
bubble point xj of //, choose a path 7 from the image point fi{xj) to
fj(p~), the image of the basepoint of the bubble domain Sj. Then form
the connected sum by mapping an annulus around xj to the boundary
of a tubular neighborhood of 7 and the interior of this annulus to M
by stereographic projection and the bubble map — this reverses the
bubbling procedure. In general the choice of 7 is well-defined only up
to τri(M). However, by Theorem 2.2b there is a canonical choice, and
with that choice we have the following homotopy statement.

Corollary 2.3 // each fn represents the same homotopy class in
[Σ,M], then

(2.1) a = [fn] =
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(sum over all vertices of the bubble tree). IfΣ = S2, then this statement
is true in π2(M). The corresponding homology statement (1.22) also
holds.

The proof of Lemma 2.1 is based on the observation that a harmonic

map can be "suspended" to give a conformal harmonic map. This trick

was first used by Schoen [14] to prove a regularity result; his method

was simplified by Grύter [7] and used in the present context by Jost

[10].
To describe the suspension process, we consider a harmonic map

/ : D -> M from a disk D with energy E(f) and Hopf differential

(2.2) φf dz2 = [ \fx\
2 - | / / - 2t (fxjy) } dz2.

Recall that φ is holomorphic, and vanishes if and only if / is conformal.

The suspension F of / is defined by finding the unique solution to

(2.3) dξ = O, dξ = ~ψf, ξ\dD = 0

and setting

F = (f,z + ξ) : D-^MxC.

Then F is harmonic and conformal, since its Hopf differential φp =
φf + Ad(z + ξ)d(z + ~ξ) = φf + Adξdz vanishes. Moreover, since φ is
holomorphic with L1 norm bounded by 2E(f), we have the pointwise
bounds

(2.4) IVI < 4dE(f)

and \\d{z + ξ\2 = 1 + |^|2/16 < 1 + c2E(f). Hence the energy of F on
any subdomain Ad D satisfies

(2.5) < / e(f) + Area(Λ) [l + c\E2{fj\ ,
JA

and for the circle Sr C D of radius r

length(F(SV)) < / * \dθf\ + \dθ(z + ξ\ dθ
Jo

(2.6) < length(/(5r)) + 2r (l + c\E{f)).

The advantage of conformal harmonic maps is that their images are

minimal surfaces. We can then use the following standard measure-

theoretic facts about minimal surfaces.
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Lemma 2.4 Let (M,g) be a closed Riemannίan manifold and let
Σ be a minimal surface in (M xR 2 ,^ + dx2 + dy2). Then there are
constants CM, CM > 0 such that if Area(Σ) < e^, then

(a) (Isoperimetric Inequality) Area(Σ) < CM length2(5Σ), and

(b) (Monotonicity) for any ball B(p,δ) around p E Σ that contains
no part of dΣ

(2.7) ^

Proof. Statement (a) follows from the isoperimetric inequality of
Hoffman and Spruck [9]. Monotonicity is an easy consequence: by (a)
the function A(r) — Area(Σ Γ\B(p,r)) satisfies \/A(r) < CMAf(r); inte-
grating from 0 to δ gives (2.7). q.e.d.

The proof of Lemma 2.1 is now quite simple.

Proof of Lemma 2.1. Apply the bubble tree construction of §1 with
CR = \ min{eo,6Λ/}, where these are the constants of Proposition 1.1
and Lemma 2.4. Then, starting with the sequence {/n} : D(cn,en) -»
M around a bubble point, form the suspended maps and restrict to
the collar domain An of (1.14), obtaining conformal harmonic maps
Fn : An —> M x C. Let Σ n = Fn(An) be the image surface. Since the
energy of a conformal map is the area of the image, (2.5) shows that

Area(Σn) = E(Fn) < E(fn) + c2e
2 < CR + c2/n2,

so Area(Σn) < CM for all large n. Moreover, as n -» oo the lengths
of the boundary curves 9Σ go to 0 by (2.6) and (1.7). Applying the
isoperimetric inequality,

(2.8)
E{fn) < E{Fn) = Area(Σn)< cM length2{dΣn) -> 0,

and hence τ(x) = 0.
The statement v(x) = 0 now follows from monotonicity. Fix δ > 0.

Since the lengths of the curves dΣn go to 0, there are points P,Q G
M x C such that dΣn C B(P,δ) U B{Q,δ) for all large n. By (2.8) we
also have Area(Σn) < δ2/8c2

M for all large n. If, for some large n, there
is a point R E Σ n not in B(P, 2δ)UB(Q, 25), then monotonicity gives the
contradictory statement δ2 < Acj^ Area(ΣnΠi?(i?, δ)) < δ2/2. Therefore
Σn C B(P,2δ) U B(Q,2δ), and, since Σn is connected, Σ n C B(P,4δ)
for all large n. Hence v(x) = 0. q.e.d.
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3. Path space

In this section we give a second proof of Lemma 2.1. This proof is
direct and elementary, and uses no any special techniques from harmonic
map theory. The viewpoint introduced in the proof is an important
prelude to the examples in §4 and §5.

Prom Lemma 1.7 the neck maps are a sequence of maps φn : [0, Tn] x
Sι —>• M that are harmonic for metrics dt2 + ηndθ2 (with ηn —)> 0 in C2)
and have energy

E(Φn) = x / / \dtφn\2+η-l\dθΦn\2 Vηdθdt < CR.
* Jo Jo

Equivalently, φn associates to each t a loop jt(θ) = φ(t,θ) in M and
thus defines a path

in the free loop space CM = Lι'2(Sι,M). Prom this viewpoint, E(φ)
can be thought of as a Lagrangian

\ fn \\φf(3-1) L{φ) = \ f \\φf + P(t) dt,
* Jo

which is the sum of kinetic and potential energy terms

(3.2)
/*2π / 2π J Λ

= / \dtφ\2 ,/ηdθ, P(t) = / \dθφ\2 —.
Jo Jo v7?

This Lagrangian describes the motion of a point particle moving in loop
space in the potential —P. By Lemma 1.7 the trajectories corresponding
to the neck maps lie near the set M C CM where — P assumes its
maximum; this is the submanifold M = M of point maps along which
L(φ) reduces to the geodesic energy. One can visualize two types of
trajectories in CM as in Figure 3. Trajectory A rises, follows a geodesic
along the "ridge" Λ4, and then falls; the corresponding surface in M
is the long neck of Figure 3b. Trajectory B rises and falls with little
motion along M, corresponding to the small neck of Figure 3c. We will
show that the neck map trajectories are of type B.

The estimates below use two facts about the neck maps φn:

(a) φn extends to a finite-energy harmonic map [0, oo) x S1 -> M (by
(1.16), noting that the neck maps fn in (1.14) extends over the
disk), and
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FIGURE 3A FIGURE 3B FIGURE 3C

(b) E(φn) < CR, where we can choose CR smaller if needed.

Our first lemma shows that property (a) implies that E(φn) can be
calculated from the function P(t). This is equivalent to Lemma 3.5 in
[16]; the proof is transparent in the present context. Our second lemma
derives an inequality for P{t) using methods familiar from the theory
of geodesies. A simple comparison argument then proves Lemma 2.1.

Lemma 3.1 If φ : [0,T] x Sι —> M is harmonic and extends as in
(a) above, then

(3.3) E = / P(t) dt.
Jo

Proof. The Hamiltonian corresponding to the Lagrangian (3.1),
namely

(3-4) H(t) = \ [ Wφtf - P(t)

is a constant of motion. Since φ has finite energy /0°° H(t) dt < E(φ) <
oo, so H = 0. Hence the integral (3.1) reduces to (3.3). q.e.d.

Lemma 3.2 If CR is sufficiently small, then for each φn with n
large

(3.5) P"{t) > ^P(t) > 0.

Proof Set X = φ*{d/dθ), T = φ*(d/dt), and dθ = η-ι'2dθ. Then
P(t) is the integral of \X\2dθ, and P'(t) is the sum of the first variation
in the T direction and the t derivative of the metric:

'(t) = Γ2(X,VXT) -ξ\X\2dθ,
Jo
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where ξ = \η~ιή. Differentiating again and computing the second
variation in the usual way (cf. [2]), we obtain

"(*) = ί
Jo

2π

~ + 2(R(T,X)T,X)

- 4ξ(X,VτX) + (ξ2-O\X\2 dθ,

where V and R are respectively the covariant derivative and the Rie-
mannian curvature of M. Now integrate the term involving Vx VTT by
parts, subsitute in the harmonic map equation

= -η~ιVxX -ξT + ζX, ζ = l-

and estimate, using |(X,VτX)\ < \X\2 + |VrJf|2 and the similar in-
equalities for (X,VχX) and (X,T). Since η —> 1 in C2 as n —> oo, we
obtain

P"(t) > / 2 π2(|VχΓ| 2 +η~ι \VχX\2) dθ
Jo

r2π
(3.6) - 2||i?||oo||T||2oo / \X\2 dθ

Jo

- c(n) Γ \VTX\2 + \VXX\2 + \X\2 + \T\
Jo

with c(n) -> 0. But |i?| is bounded, \T\2 < \dφ\2 < CχCR by (1.18), and
the integral of η\T\2 dθ is the integral of \X\2 dθ since the Hamiltonian
(3.4) vanishes. Thus for large n

(3.7) P"(t) > Γ \VXX\2 - aCRP(t).
Jo

By (1.19) and the choice of CR made after Lemma 1.7, the image
curve ηt — φ(t, •) lies in a coordinate chart of radius R = \JC\CR. In
this chart the metric is uniformly equivalent to the euclidean metric and
the Christoffel symbols satisfy |Γ| < C2R < C<I\JC\CR. Moreover, for
any W1 -valued function 7 on 5 1 Fourier expansion shows that

/*2π p2π

Jo Jo
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Hence
r2π r2π r2π

/ \x\2 < / \dθxf = /
Jo Jo Jo

r2π r2iτ
/Q Q\ s" r\ I lτ-7 V l2 i OIIT1 II2 II Vl l2 / I V|2

(o.oj < 2, I | V χ Λ \ + 2,\\L IIOOIIAIIQQ / \Λ\ .
JO JO

Using the above bound on Γ and (1.18), |Γ||X| < | Γ | | # | < C2CXCR.

Hence for CR small the last term in (3.8) can be absorbed on the left,
giving

r2π

(3.9) Z f V l 2 ^ 2 Γ\VXX\2.
4 Jo Jo

The norms in (3.9) are with respect to the euclidean metrics on Σ and
M in normal coordinates; for large n and small CR these can be replaced
by the metric norms after increasing the constant slightly. Thus (3.9)
yields

(3.10) P(t) < 3 Γ \VXX\\
Jo

and the lemma follows by combining (3.7) and (3.10) and taking
CR

Proposition 3.3 There is a constant C3 such that for all large n
(a) E(φn) < cz/n2, and
(b) dist (φn(p),φn(q)) < c3/n for all points p,q e[0,Tn] x S1.

Proof. Fix n. By Lemma 3.2, P{t) satisfies P" > \P with initial
conditions P(0) = ei and P(Tn) = €2- Let f(t) be the solution of

f" = \f, /(O) = eχ, /(Tn) = e2.

Then P(t) < f(t) by the maximum principle. Explicitly, f(t) =
Be'*/2 with

(3.11)

( ) B = Y^ (e2

and a = eTn/2. Hence by Lemma 3.1 we have

n ί n
E = I n P{t) dt < ί n Ae^2 + Be-*'2 dt = 2(α - 1) U + | | .
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Subsitututing for A and B, simplifying, and using (1.7) yield

E - 2 € 2 ) - - r,2'

To bound the length of the image we compute the length of the curve
φ(t, θ) for 0 < t < Tn for each fixed θ, and average over θ. This average
length C satisfies

2π7 0 Jo
dθdt < ^ /

2π Jo

|Γ | 2 dθ) dt.

Noting that (3.4) vanishes and that η is uniformly close to 1, we have

Γ2π l/2T / Γ2π

i Π \T\2 dθ

Integration gives

lf|1/2)
Using the definitions of α, A, and B, and simplifying, we get

(3.12)

y/2πC < lβ^ei + e2 ( , "e2
( ,
\ v α 2 — 1

P(Tn).

Finally, note that P(t) has no strict interior maximum on [0, Tn] since
P" > 0 by (3.5). Thus the loop ηt = ^n(t, •) has

(3.13) length2 ( 7 t) < 2πP(ί) < 2π [P(0) + P(Tn)].

For points p - (<i,0i),g =
(1.7) yield

,^2) in [0,Tn] x 5 1, (3.12), (3.13) and

< length ( 7 ί l ) + £ +length ( 7 ί 2 ) < c3/n.

q.e.d.
Proposition 3.3 implies Lemma 2.1, thus giving a second route to

Theorem 2.2. In fact, Proposition 3.3 is a sharper result: it shows that
the length of the neck measured along the image goes to 0, while Lemma
2.1 shows only that the image lies balls with radii going to 0.
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Finally, the argument of this section gives a new proof of the Re-
movablity Singularities Theorem (Proposition l.ld above and Theorem
3.6 in [16]).

Proof of Removablity Singularities. Integration by parts with a cut-
off function shows that / is weakly harmonic (cf. [12, Lemma 3.5]). It
then suffices to establish an energy growth rate

(3.14) / e(f) < Cr«
JD(0,r)

for r < ro and some a > 0 (by [11, Theorem 3.5.2]; this implies that
/ is Holder continuous, and hence is smooth by standard bootstrap
arguments). The map φ : K x S1 -> M defined by /(r,0) = φ{e~ι,θ) is
harmonic with finite energy, and by Lemma 3.1, (3.14) is equivalent to

/

oo / 2π
/

Jo

(3.15) = ί°° P(s) ds < Ce~at

Jt

for t > to. Choose to such that E(to, oo) is small enough that Lemma 3.2
applies, and choose a sequence t{ —> oo with P(U) —> 0. Applying the
comparison argument of Proposition 3.3 on [to,U] shows that P(s) <
A{esl2 + Bie~sl2\ solving for A{ and B{ and letting U -> oo reduce this
to P(s) < P(to) exp [(to-s)/2]. Integrating over [t, oo) then gives (3.15)
with α = 1/2. q.e.d.

The above proof simplifies further because we can assume (by mak-
ing an initial conformal change of metric) that the metric is locally
euclidean.

4. Palais-Smale sequences

This section presents examples that show that energy loss can occur
for Palais-Smale sequences for the energy function

E(f) = \

with respect to the natural L1'2 metric. Of course, there are numerous
technical problems arising because L1'2 is the "borderline" norm. How-
ever, the recent regularity result of Helein [8] (that weakly harmonic L1'2
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maps are smooth) has renewed interest in proving a bubble convergence
theorem for Palais-Smale sequences of L1 '2 maps. The examples below
show that this cannot be done: a general Palais-Smale sequence simply
does not have enough regularity to have good convergence properties.

Remark. Because the L1 '2 norm is borderline, the space of maps
L1)2(Σ,M) is not a manifold. Hence we must be careful about the
definition of Palais-Smale sequence. On a Hubert manifold a sequence
{fn} is Palais-Smale if E(fn) < Eo and || grad E(fn)\\ -> 0. This latter
condition is equivalent to dEfn —>• 0 as a functional on the tangent space.
We will use this definition, interpreting the L1>2 "tangent space" to be
the L1 '2 completion of the smooth variational vector fields. Thus we say
that {/n} is Palais-Smale if E(fn) < E$ and

(4.1) \dEfn{X)\ < cn\\X\\h2 with c n -+0.

Our examples are based on the following elementary observation.
Let 7 : [0, T] —> M be a geodesic parameterized proportion to arclength.
Then the map

/ : [0,T] x S 1 ->M

by f(t, θ) = j(t) is harmonic — since / is independent of 0, the harmonic
map equation

dθfdθf
k)

reduces to the geodesic equation. The energy of this harmonic map
depends on the parameterization: if the image geodesic has length L,
then

1 Γτ Γ2π

(4-2) E(f) = \ |7|
* Jo Jo

2 dt =

Thus, even if L is fixed, we can choose T to make the energy E(f) equal
to any given number.

Using this observation we can construct a Palais-Smale sequence
Φn : 5 2 ->• M by the following general procedure. First choose two
harmonic maps, a base map / : S2 -> M, a bubble map h : S2 -> M,
and a closed geodesic 7 in M that intersects the images of / and h. Fix
an arclength-proportional parameterization of 7 with p — 7(0) G im(/)
and q = 7(0 + fen) G im(#) for each n G Z. After a rotation we can
assume that there is a point x G S2 with f(x) = p and h(x) = q. Then
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FIGURE 4

choose disks D(x, δn) C D(x,en) and define maps Φn : S2 —> M that
agree with / outside D(x, en), that take D(x, δn) onto most of the image
of h (by conformally rescaling /ι), and take the annulus between these
disks first to a cylinder [0,T] x 5 1, then to the geodesic 7 starting at
p, wrapping around n times, and ending at q (see Figure 4). When en

and δn are choosen appropriately, these maps Φn give a Palais-Smale
sequence that loses energy in the neck.

This construction can already be carried out when the target man-
ifold is the 2-sphere. Later in this section we will fill in the details to
prove the following specific result.

Proposition 4.1 For each a > 0 there is a Palais-Smale sequence
{Φn} of smooth maps S2 —> S2 that converges pointwise on S2 — {x} to
a degree-1 harmonic map f, and after renormalization at x converges
to a degree -1 harmonic map h, and satisfies

(4.3) lim E(Φn) = E(f) + E(h) + a.
71—) OO

The maps Φn represent the same homotopy class, but their images have
no pointwise limit.

The same construction reveals a more fundamental impediment to a
bubble tree convergence theorem. Recall that by Lemma 1.1b a sequence
of harmonic maps cannot bubble unless a certain threshhold of energy
concentrates at a point. It was this fact that allowed us, in the proof
of Lemma 1.2, to identify the bubble points and show that each bubble
carries a certain minimal amount of energy. Our second example shows
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that Lemma 1.1b fails for Palais-Smale sequences: there is no such
energy threshold, and energy loss can occur on a dense set.

Proposition 4.2 For each a > 0 and x G S2 there is a Palais-
Smale sequence {Φn} of smooth maps S2 -> S2 that converges pointwise
on S2 — {x} to a harmonic map f with

(4.4) lim E(Φn) = E{f) + a.
n—ϊoo

More generally, given any countable set of points {x{} C S2 and pos-
itive numbers {α^} with Σai < oo? there is a Palais-Smale sequence
that loses energy αz at each X{. If {x{} is dense, this sequence fails to
converge in L 1 ' 2 or C° on any open set in the domain.

The remainder of this section is devoted to the proofs of Propositions
4.1 and 4.2. We first construct the sequence {Φn} of Proposition 4.1,
and then verify the Palais-Smale property, and modify the construction
to prove Proposition 4.2.

Fix a number a > 0. For each n > 0 set

δn = e-^ and en = - e " n 2 / α ,

and consider M2 as the overlapping union of the disk £)(0,en/£ 2) and
the annuli A(en, ^) and A(δ^/n, oo). We will construct maps φn : R2 —>•
S2 by defining maps fn,gn,hn on these domains and patching them
together on the overlap annuli

An = A(^,^), Bn = λ(ψ^

(i) Let fn : A(δ^/n, oo) —>• S2 be the restriction of the stereographic

projection / from M2 to the unit sphere S 2 C R 3 ; this is the conformal

harmonic map given explicitly by

(ii) Define gn : A(en, ^) -> [0,n2/α] x S 1 4 S 2 by composing the

conformal map (r,0) ι-> (-log(nr),^) with an arclength-proportional

parameterization of a geodesic that winds around the sphere n times:

0n(r, β) = ί - sin - ^ log(nr) , 0, cos - ^ log(nr) IJ .
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Then as in (4.2) each gn is harmonic with energy

(4.5) E(gn) = 4π3α.

(iii) Define hn : Z>(0, en/£2) -» 5 2 by inverting and rescaling the
stereographic projection /; thus hn is the conformal harmonic map

hn(x,y) = fφ,&).

We next patch these maps together over An and Bn using "log cutoff
functions" βn and ηn defined as follows. Choose smooth functions β and
η with

_ / 1 for t < Vn, _,,* _ ί 1 for t < n 2 /α -
" \ 0 for t > 2v^, η [ ) " { 0 for <> n 2 /α -

and with 0 < )9,r/ < 1, |^'| < 2/v/n, and |rf | < 2/v/ή pointwise. Then
the cutoff functions

βn(r, θ) = β(- log(nr)) and ηn(r, θ) = rj{- log(nr))

satisfy

(4.6) /
An n

Define the patched-together map by

(4.7) φn = βnf + (1 - / ^ n ) ^ ^ + (1 - ηn)hn.

Outside the regions An and Bn only one term in (4.7) is non-zero. For
z G An U β n , /n(^)?5n(^), and /ιn(^) ϋ e near the north pole p of 5 2,
and (4.7) means the sum in stereographic coordinates around p. More
specifically, one checks that

(4.8)

f(An) C S(p, 2/n), /(iln U

Finally, define Φn : iS2 ->- S2 by composing stereographic projection
f~1:S2-^R2 with (/>n. These Φn represent the same homotopy class
(since τri(5'2) = 1) and their images have no pointwise limit (Φn wraps
n times around S2). Hence Proposition 4.1 is proved by the following
lemma.
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Lemma 4.3 {Φn = φno f~λ} is a Palais-Smale sequence satisfying
(4.1).

Proof. Only one term of (4.7) is non-zero outside An\JBn, so

E(Φn) = \\ί \df\2 + ί \dgn\
2

1 [JA(δ/n,oo) JA(e/δ ,δ /n)

+ / . IdΛnl2 + / \dΦn\Ί •

Since the energy is conformally invariant, we have E(Φn) = E(φn) and
E(hn) = E(f) over corresponding domains. Calculating the energy of
gn as in (4.5) and taking the limit give

(4.9)

lim E(Φn) = 2E(f) + 4π3α + ]• lim / \dφn\
2.

n-yoo 2 n->oo JAnUBn

Differentiating (4.7) and taking the L2 norm, we obtain

\dφn\
2 < 3 / \df\2 + \dgn\

2 + \dβn(f - gn)\2

J An

/ \dgn\
2 + \dhn\

2 + \dηn(gn-hn)\2.
JBn

Prom the defintions of /, gn and hn one calculates that

\df\2 = 8/(1 + r2)2 < 8, \dgn\ = 2πa/nr, \dhn\ = Ae2/(r2 + e4).

Prom (4.8) we know | / - 5 n | < ^ ( α + 1 ) on An and | 5 n - ^ n | < ^ ( α

on Bn, and also, in consequence of (4.6),

(4.10) / \dφn\
2 < C l (« + l) 2 n" 3 / 2 .

JAnUBn

Combining this with (4.9) gives (4.3) and shows that the energies E(Φn)
are uniformly bounded.

It remains to verify (4.1), where X is a smooth vector field tangent
to S2 C M3 along the image of Φn. Thus we have X Φn — 0 pointwise,
and

dEΦn = {d*dΦn)
τ = d*dΦn - \dΦn\

2Φn,
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where d*d is the Laplacian on S'2, and T denotes this projection onto the
tangent space to S 2 C R 3 . But X is already tangent, and dEφn vanishes
everywhere except on the domains Λn and Bn in S2 which correspond
to An and Bn under stereographic projection, so

(4.11) dEΦn(X) = [ (X,d*dΦn)
Js2

= ί (X,d*dΦn) .
JΛnUBn

Now introduce log cutoff functions (n(r, θ) = ζ(— log(nr)), where ζ
has support on [0,3̂ /n\ U [n2/a — 3y/n, n2/a], is equal to 1 on [̂ /n, 2y/n\
and [n2/a — 2y/n,n2/a — ̂ /n], and satisfies 0 < ζ < 1 and |ζ" | < 2/y/n
pointwise. Then ζn is identically 1 on An U Bn and has support on the
larger annuli A'n = A(δ^/n, 1/n) and B'n = A(en,en/5^).

Expanding the annuli An and 5 n in this way makes little difference;
in particular one can check that, as in (4.6) and (4.10),

. 32π
(4.12) /

\dφn\
2 <

We can then replace X by ζnX in the middle term of (4.12) and integrate
by parts,

\dEΦn(X)\ = f (ζnX,d*dΦn) = ί (dX,ζndΦn) + (dζn,X dΦn).
JS' JΛ'nUB'n

DifΓerentiating the condition X • Φn = 0 gives X • dΦn = — dX • Φn,
with |Φ n | < 1 pointwise. Hence by Holder's inequality, the conformal
invariance of the L2 norm, and (4.13) we obtain

\dEΦn(X)\ < (HCndΦnlb + Wdζnh) \\dX\\2

which is the Palais-Smale condition (4.1). q.e.d.

Proof of Propostion 4-2. Simply replace the maps hn in (4.7) by the
point map hn(z) = p where p is the north pole of S2. The resulting
maps Φn are then degree-one maps S2 —> S2 with a "tail": a small
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neighborhood of one point is taken to a geodesic that winds n times
around the image S2. The proof of Lemma 4.3 (without change) shows
that this sequence is Palais-Smale, and (4.4) replaces (4.3).

For each n this construction modifies the map / : S2 —» S2 in a disk
D(x, 1/n) (by adding a tail of energy α) to produce a map Φ n . Write
Φn = T(rr, α ) / , where T(x, α) denotes this operation of adding a tail.

Now fix a countable dense set of distinct points {x{} in S2 and
numbers α* > 0 with Σ α* < oo. For each k = 1,2... there is an
such that the disks D(x{, l/M^), i = 1, ...,&, are disjoint, and then

Φ n Λ = T(xk, ak) " T(x2, a2)T{xu aλ)f

is well-defined for all n > Mk. As in (4.9) and (4.10) we have

(4.13)

E(Φn,k) <

Thus the energies E(Φn^) are bounded uniformly once we pass to a
subsequence with n > k. The remainder of the proof of Lemma 4.3
shows that

\dEΦn(X)\ < c3n-1/2 Σ(ai + I) 2 | |X||1 | 2 < *(a) kn~1'2

Choose a subsequence {Φ^ = &nk)k} inductively by setting
max {rik + l,Mfc,fc4}. This sequence has bounded energy and satisfies
\dEφn(X)\ < c4A;-1||X||i)2, so is Palais-Smale. But it clearly fails to
converge in L 1 ' 2 or C° on any open set. q.e.d.

5. Varying the conformal structure

Thus far we have considered maps from a Riemann surface Σ with
a fixed Riemannian metric h. In this section we allow the metric to
vary, and ask how sequences of harmonic maps fn : (Σ,/in) —> M can
degenerate. Of course, the hypotheses of the Bubble Tree Convergence
Theorem 2.2 are conformally invariant, so it is only the conformal classes
of the metrics {hn} that are relevent. The hypotheses are also invari-
ant under reparameterizations so, modulo reparameterization, only the
complex structures j n associated to the hn are relevent. In particular, if
these complex structures range over a compact region in moduli space,
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then {fn} has a subsequence whose images converge pointwise to the
connected image of a bubble tree map. On the other hand, we will show
by an explicit example that if the conformal classes are unbounded in
moduli space, then the bubble tree convergence procedure can break
down completely.

Proposition 5.1 There is a sequence {hn} of conformal structures
on the torus T2 and a sequence of harmonic maps φn : (T2, hn) —>• M =
S2 x Sι with E(fn) < EQ such that every subsequence fails to converge
in Cι on every open set ί / c Γ 2 .

In the example the images, as sets in M, do exhibit some regularity
— they look like "necklaces" as in Figure 5. Later in this section we
give a renormalization procedure that makes sense of the limit as the
image of a collection of "bead maps" S2 —>• M. This renormalization is
completely different from the one of §1. Moreover, energy is lost in the
limit.

To produce the example, we look for harmonic maps from R x Sι

into S2 x R, where S2 is the unit sphere. Using coordinates ({?, v) on
S2 x R C M3 x R, the second fundamental form is

where v is the unit normal. We seek a harmonic map / of the form

/(ί,0) = (r(t) cos 0, r(t) sin0, z(t), w(t))

with r2 + z2 = 1. Fixing the metric dt2 + dθ2 o n R x S 1 , one finds that

KV/, V/) = (r2 + r 2 + i 2 ) (r cos 0, r sin 0,^,0) .

Then / satisfies the harmonic map equation Δ/ = —Λ(V/, V/) if and
only if

(o) z{t) =z{z2-l)-^,

(5.1) (ft) r( t) = r ( i _ r 2 ) _ _ r i ^ ?

(c) ώ(<) = 0 .

It is easy to check that if z satisfies (5.1a), then r = \/l — z2 satisfies
(5.1b). Equation (5.1a) can be rewritten as

z2

dt\l-z2
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and hence

(5.2) z2 = (l-z2)(c-z2)

for some constant c. We are looking for non-trivial solutions with \z\ < 1
for all t, so (5.2) implies that c > 0; we will rewrite this constant as
c = 1/k2 for some k > 0. The solution of (5.2) is then the elliptic
integral

ίz dC
t(z) +to = k / s

Jo ^(l-C2)(l-k2ζ2)
Inverting this gives the solutions of (5.2) in terms of Jacobi elliptic
functions (cf. [4]):

(t) = at + b.

Thus we get solutions depending on four parameters. Two of these —
the time translation to and the translation of the image b — do not
affect the geometry. Setting these equal to zero, we have a 2-parameter
family of harmonic maps /fc>α : R x S1 ->• S2 x R given by

(5.3)
cos0, sin0, ), at).

When k — 1, the Jacobi functions reduce to hyperbolic trigonometric
functions; in particular sn(ί, 1) = tanh(t), and cn(ί, 1) = sech(ί). For
k < 1 the functions sn(t/k, k) and cn(t/k, k) are periodic in t with period
4Kk, where K is the complete elliptic integral

( 5 ' 4 )
K -s:

Like the ordinary trigonometric functions they also satisfy

(5.5) sn(ί + 2KI, k) ={-l)ιsn(t, &),

cn{t + 2Kl,k) ={-l)ιcn(t,k)

for integers /. Now as k approaches 1 the period AKk becomes arbitrarily
large. Thus given a positive integer p and a real number a > 0 we can
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choose an increasing sequence kn -» 1 with 4fiΓnfcn = n2 /a and take
k = kn and a = a/np in (5.3). After composing with the projection
S2 x R -> S2 x IK/Z, this gives a sequence of harmonic maps fn :
R x S1 -» S 2 x 5 1 that are periodic in £ with period 4Knknp. Then

(5.6) </>„(*) = fn(4Knknpt)

are harmonic maps on 5 1 x S1 with the metric (AKnknp)2dt2 + dθ2, and
hence are also harmonic for the conformal metric

(5.7) hn = dt2 + {AKnknp)-2dθ2 = dt2 + (a/n2p)2dθ.

Note that the conformal classes of these metrics {hn} are unbounded
in the moduli space of the torus.

Lemma 5.2 Let Tn be the torus S1 x S 1 with the metric (5.7), and
let M = S2 x S1 be the product of the unit 2-sphere and the circle of
length 1. Then the functions

t,kn) cos0, cn(4:Knpt,kn) sin0,

(5.8) sn(4Knpt,kn), nt (mod 1))

give harmonic maps φn :Tn —>> M with E(fn) < EQ (see below).

Looking at the last component we see that \dtφn\ > n at each point,

so the statement of Proposition 5.1 clearly holds for this sequence.

Henceforth consider the subseqence of {φn} with n = 2pm + 1, m =
1,2,3,.... In the remainder of this section we will use a renormalization
method to describe the geometry of this subsequence.

The image of φn is a "necklace" consisting of 2p "beads" strung
together by 2p strings; Figure 5 depicts the case p = 2. The map φn

is equivariant under the rotation t»-» t + 1/p, and because of (5.6) the
energy density (5.12 below) is invariant under t ^ ί f l/2p. To analyze
these we divide the torus into "bead domains" and "string domains".
The Zth bead domain of φn is a thin cylinder centered o n ί = Ij2p\

Bι =

and the Ith string domain is the cylinder between Bι and Bι+\\

(5.9) 5, =
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FIGURE 5. The map φn takes the four shaded annuli in Tn

to approximations to the corresponding vertical spheres in

S2 x S1. It takes the neck between loops a and b into a thin

tube near the geodesic that goes from a to β around the circle

{north pole} x Sι m times, and then on to β.

Beads. Consider the restriction of φn to the bead domain B\.
Translating by t ι-> t + l/2p, reversing steps (5.6) and (5.7) above, and
using (5.6), this corresponds to the harmonic map

(-l)'cn(^,fcn) sin0,

(5.10) (-lMfΛ), — + ̂  (mod
kn up 2p

defined on the domain Ωn = [—py/ΰ/a,py/n/ά\ x Sι with metric dt2 +
dθ2. Next recall that there is a conformal map μ : R x 5 1 -> S2 ("Mer-
cator projection") given by μ(t,θ) — (sech t cos^, sech t sin^,tanh t).
Pulling back by μ~ι gives the renormalized bead map

Rlφn : ( μ " 1 ) * ^ : μ(Ωn) -+ M.

Lemma 5.3 As n —> oo; the renormalized bead maps Rιφn converge
to φ1^ — ((—1)̂  Id.,//2p) : S2 -> S2 x S1 uniformly on compact sets in
S 2 -{(0,0,±l)} .

Proof. As k = kn —> 1 we have cn(t/fc, k) —> sech(t) and sn(t/A;, k) -¥
tanh(ί) uniformly on compact sets. Thus φn ->• ((-l)ιμ,l/2p) uniformly
on ΩN for each N > 0. The lemma follows because the domains μ(Ω^)
exhaust S2 - {(0,0, ±1)} as N -» oo.

Strings. On the string domains the maps φn behave very much like
the necks in the examples of §4 — the images become longer and longer
geodesies.
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L e m m a 5.4 The image φn{Sι) of each string domain is a thin tube

that wraps more than m times around the Sι factor of M = S2 x S1.

As n —> oo this tube has circumference —> 0 and energy

(5-11) / e(φn) -> £ £ .

Proof. Let π be the projection M —> 5 1 . For each fixed 0 the curve
= π o φn(t,θ) has 7 = n = 2pm + 1. Integrating over the limits

(5.9) shows that length^) = m + l/2p for large n.
Using the properties of the Jacobi elliptic functions (cf. [4]) and the

metric (5.7) one finds that the energy density e(φ) = \hι^diφdjφ yfh dtdθ
is

(5.12) e(φn)(t)

Integrating over Si, changing variables to τ — AKkpt, and noting that

the function ξ(t) — cn2(t/k,k) is 2/fΛ -periodic by (5.6), we obtain

Is e{M

s

where v — p^/n/a. As n -> 00 we have kn —> 1 and by (5.4)

4RΓ(1 - k2) < 4 V l - A:2 / / ^ = π\/l - A;2 -> 0.
" Jo ^ϊ^ζ2

Thus, after noting that ξ(2Kk - t/k,k) = ξ(t) by (5.6),

(5.13) / e{φn) -> ^ + ^ lim f { ( r ) dr.

Again using basic properties of the elliptic functions one finds that on

[0,Kk]

since k < 1. On the other hand, g(τ) = sech2 τ satisfies g' = —2gy/l — g

with ξ(0) = 5(0) = 1, ξ'(0) = g'(0) = 0, and ξ"(0) < - 2 = g"(0). It

follows that on [0, Kk]

(5.14) ξ(τ) = cn2(τ/k,k) < sech2(r) < 4e~2τ.
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One then sees that the limit in (5.13) is zero, so (5.13) reduces to (5.11).
Finally, for t in the range (5.9), we can bound the length of the loop
φn{t,θ) using (5.8) and (5.14), obtaining

/

2τr 2

\dθφn\dθ =2π\cn(4Knpt,kn)\ < 4π exp( ^-t)
a

-> 0.
a

q.e.d.

The total energy of φn comes from the 2p beads, each with energy
4π, and the 2p strings, each with energy (5.11). Thus

7ΓOί

(5.15) E{φn) —> 8pπ H .
P

This gives the last statement of Lemma 5.2.
The beads in this example are different from the bubbles of §1 —

energy is not concentrating at isolated points and the renormalization
of step 2 of §1 does not apply. Nevertheless, Lemmas 5.3 and 5.4 do
give a bubble graph (it is not a tree) that describes the limit: it has
2p vertices labeled by the bead maps φ1^ joined in a circle by 2p edges
labeled by the string maps φn\s These string maps are clearly part of
the same general picture as the proofs of §3 and the examples of §4. But
now, because the metrics are changing, the Bubble Tree Convergence
Theorem 2.2 fails: energy is lost in the strings and the images do not
converge pointwise. The energy lost - the last term in (5.15) - can be
choosen to be any positive number.

6. Appendix

This appendix contains the proofs of Lemmas 1.2-1.7. These proofs
are elementary but technical; they use only the facts stated in Propo-
sition 1.1. Some of these proofs can be simplified by assuming — after
an initial conformal change — that the metric is euclidean. We have
avoided this to make the proofs adaptable to other contexts.

Proof of Lemma 1.2. Cover Σ by ί-balls such that the balls of half
the size also cover and such that each point lies in at most 10 balls.
At most KλEoΛo of these balls contain energy greater that eo; passing
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to a subsequence we can assume that the centerpoints of these balls
converge. Let Ω = Ω(δ) be the union of these limit 'high energy' balls.
By Lemma 1.1b we can choose a subsequence that coverges in C 1 on
Σ — Ω(δ). Doing this successively with δ = δ{ —» 0 and taking the
diagonal subsequence give a subsequence {fn} that converges in C1 on
Σ — ΠiΩ(δi) to a limit f^ . Moreover, the intersection ΠiΩ(δi) consists of
points {#1,..., xι} with I < KλEoAo Then /QQ is smooth and harmonic
on Σ — {#1,... ,#/}, and therefore extends to a smooth harmonic map
/oo : Σ -> M by Lemma l.ld. It also follows that the energy densities
converge as in (1.2). Finally, if mi < eo for some i, then integrating
(1.2) over a sufficiently small disk D(xi,2ro) we see that (1.1) applies,
giving a uniform bound on e(fn) for all large n, so e(fn) could not be
approaching a δ measure, q.e.d.

Proof of Lemma 1.3. Choose a subsequence {fnk} inductively as
follows. Given k > 1, write Dk = D(0,2ek) as the union of Bk =
D(0,ek/8k2) and the annulus Λk = Dk - Bk. By (1.2) and (1.4) there
is an Nk such that for all n > Nk

, Λ n 8A:2 - 1 f 8k2+ 1

(A1) ^ J { U ) *

/ e(/n) <

By Lemma 1.2 we can also assume that for n > Nk

(A.2) sup dist(/n(s),/oo(s)) < - ,

sup |e(/n)-e(/oo)| < 1.
Di-Bk

Set nk = max{7V ,̂l + nk-\). Starting with no = 1, this defines a
subsequence {/nfc}7 which we immediately rename {/n} Then for each
n the denominator in (1.5) is at least ra(8n2 — l)/8n2, while

ί ί ί Γ24n2 + l l
/ \x\ e(/n) < en/8n2 / e(/n) + 2en / e(fn) < enm 4 .

J Dn J βn J Λ.n L J

Hence \cn\ < en/2n2. We thus have Bn C B' = D(cn,en/n2), so for each
n

ID B>
 β(/n) " I A

 e(/n) " 8 ^ " 5 - CR
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It follows from (1.6) that λn < en/n2. Finally, applying (1.1) on disks
in Σ with radius equal to the injectivity radius of Σ gives

(A.3) supld/ool2 < C2E0.
Σ

Using this and (A.2) we have

distCfooOr) Jn{dDn)) < 2ensup|d/oo | + sup dist {fn(z)Joo(z))
zedVn

(A.4, < £.

q.e.d.

Proof of Lemma 1.4- Write the metric on TXΣ as exp* g = go + h
where go is the euclidean metric and h = hijdxιdχi satisfies \h\ < ce2,
\dh\ < c'en, and \d2h\ < c" on D(0,2en). Recall that σ is conformal:
σ*go = ψgs for some function ψ. Then fn is harmonic for the pullback
metric

σ*Λ^Tn* [go + h] =σ*\2

n [go +

and hence for the conformal metric gs + fφ~1σ*(A^T*hij)dxιdx^. Be-
cause Ψ and σ* are smooth away from p~, convergence follows by bound-
ing the C2 norm of A^T^hij(z) = hij(Xn(z + cn)) on its domain. But
this is bounded by the sup of \h\ + \\ndh\ + \X^d2h\ on Dn, which is less
than c7//e2 -> 0 by the above bounds and Lemma 1.3.

The energy of fn in Sn is the energy of fn on D n , which converges
to m by (A.2). Similarly, the energy of fn in S~ is the energy of fn in
D(0, en) — D(cn, λn), which is CR by definition (1.6), plus the energy of
fn in Dn — D(0, en), which converges to 0 by (A.2). Finally, by definition
the measures e(T*fn) - and hence e(Λ*T^/n) — have center of mass at
the origin, so e(/n) has center of mass on the z-axis. q.e.d.

The inclusion (1.10) is obtained by repeating the argument of Lemma
1.3. Specifically, as in (A.4) we can pass to a subsequence to insure that

(A.5)

sup dist (/n(z),/«,(*)) < " . sup | e ( / j - eί/oJI < 1.
n
 B

n
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As in (A.3) and (A.4) we then obtain

(A.6)

< CiEo, dist (/ ,>-),/„(<?£„)) < ^ .

Proof of Lemma 1.5. Integrating (1.9) over Sn , comparing with (1.8)
and noting that rrij > eo > CR show that each yj lies in the northern
hemisphere.

If E(foo) < €o, then by Proposition 1.1c / ^ is a map to a point and
e(foo) = 0. The limit measure Y^mjotyj) + τδ(p~) in (1.9) has center
of mass on the z-axis, and by (1.8) has energy CR in the southern
hemisphere and energy m — CR > 0 in the northern hemisphere. This
is impossible if I = 0, and if Z = 1 it implies that y\ is the north pole
and r = CR. q.e.d.

Before proceeding we make two observations. First, from (A.2) and
(A.3) we have

(A.7)

sup e(/B) <
Di-D(0,en/S)

< 1 + C2E0 = C5-

Similarly, (A.5) and (A.6) give

(A.8) sup e(/n) < C6.

Second, we can bound the energy of the cone extension (1.12) as follows.
The metric on D'n = jD(cn,en) is uniformly equivalent to the euclidean
metric, so for large n fn satisfies

ί e(fn) < ί \9rfn
DL JD'n

-Γΐ
Jo Jo

-dθfn(en,θ) rdrdθ.

But \fn(^n,θ)\ < C3/TI by Lemma 1.3, and on the circle dD'n we have
\r~ιdθfn\ < \dfn\ < y/Cl by (A.7). Thus

(A.9)
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Using (A.6) and (A.8) we get a similar bound for the extensions (1.13).

Proof of Lemma 1.6. For notational simplicity we assume there
is only one bubble point. By Lemma 1.3 the off-center disks D'n =
D{cn,en) in (1.11) satisfy £>(0,cn/2) C Dn C Dn = D{0,2en). Hence
for n > k > 1, (A.9) and (A.7) yield

(A.10)

/ e(fn) = I e(fn) + I e(fn)
JDk JD'n JDk-D'n

Also, connecting each z G Dk by a line to the nearest point in dDn and
using the triangle inequality, Lemma 1.3, (1.12), and (A.7) we obtain

dist(/n(£>*),/oo(a0) < dist(/n(jDn),/oo(a;)) + 2cfc sup \dfn\
Dk-Dn

(A.ll)
n

Now fix δ > 0 and choose k large enough that e ,̂ (A. 10), and (A.ll)
are all less that δ for all n > k. With this A;, we have fn —ϊ /oo in C 1

on Σ — Djς. Consequently

L\e(7n)-e(foo)\ + sup dist(7n(z),

for all large n. It follows that Jn -> / ^ in L1'2 Π C° on Σ. The
same argument, now using (A.8) and (1.10), shows that Rfn ->• /oo in
L1'2 Π C° on any compact set in S — {yj}.

The partitioning done in step 3 of §1 accounts for all the energy, and
the extension adds only a small amount by (A.9); hence

E{fn) - > EUoo) + Urn ^ [ £ ( / n U n t < ) + E(Rfn,i)}

Now the sets Bk — σ~ιD(0, k) exhaust S as k -» oo, and for n > k
the domain Sn of fn contains Bk. Thus

r = lim lim / e(/n)
A;^oon->ooy 5 n_ β f c

= lim lim [ / e(/n) + / e(/n)| .
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The sup bound (A.8) implies that this last integral vanishes in the limit.
Since Sn-Bn = R~ι (X>(0,2en) - D(cn,nλn)], we have

(A.12)

τ = lim lim
D(0,2en)-Γ>(cn,€n)

ί e(fn)
J An

e(fn) + ί e(fn)
J

By Lemma 1.3, £>(0,2en) - D(cn,en) lies in the domain Λn of (A.2).
Hence the first integral in (A. 12) vanishes as n -> oo, and after taking
a subsequence the second converges to limsup£?(0n). q.e.d.

Proof of Lemma 1.7. In polar-normal coordinates exp* g = dr2 +
r2η(r,θ)dθ2 where |1 - η\ < cr2, \dη\ < dr, and \d2η\ < c". Writing
Φn(ί,fl) = (ene~t,θ), we see that φn = Φ^/n is harmonic for the metric

Φ; (dr2 + r2ηdθ2) = e2

ne-2t [dt2 + η{ene-\θ)dθ2] ,

and therefore for the metric in square brackets. The chain rule shows
that 1 — ηn —> 0 in C2, and Tn = log(en/nλn) —> oo by Lemma 1.3.

The first inequality in (1.19) is the usual length-energy inequality for
loops parameterized by [0,2π]. Now by definition (1.6) φn has energy
at most CR on An, and each point on [1,T — 1] x S1 lies in a unit disk
in [0,Γn] x 5 1, so from (1.1) it follows that

Pn(t) = / \dφn\
2 dθ < 2πCιCR for 1 < t < Tn - 1.

Jo

For 0 < t < 1 and large n, 7n>ί is the image under fn of a circle that
lies in the region Un = D(cn,en) — D(cn,en/8) to which (A.7) applies.
Since r~1dβ becomes a unit vector a s n - ^ oo, we have

| % M ) | < 2supr 2 |d/n | 2 < 4C5e
2,

θ

and en < 1/n. Hence P(t) < 8πC5/n2 < 2πCιCR for 0 < t < 1 and
large n. For Tn — 1 < t < Tn, using (A.8) we get a similar bound, and
the lemma follows, q.e.d.
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