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Spin Hurwitz numbers and the Gromov–Witten

invariants of Kähler surfaces

Junho Lee and Thomas H. Parker

The classical Hurwitz numbers which count coverings of a com-
plex curve have an analog when the curve is endowed with a theta
characteristic. These “spin Hurwitz numbers,” recently studied by
Eskin, Okounkov and Pandharipande, are interesting in their own
right. By the authors’ previous work, they are also related to the
Gromov–Witten invariants of Kähler surfaces. We prove a recursive
formula for spin Hurwitz numbers, which then gives the dimen-
sion zero GW invariants of Kähler surfaces with positive geometric
genus. The proof uses a degeneration of spin curves, an invariant
defined by the spectral flow of certain anti-linear deformations of
∂, and an interesting localization phenomenon for eigenfunctions
that shows that maps with even ramification points cancel in pairs.

1. Introduction

The Hurwitz numbers of a complex curveD count covers with specified rami-
fication type. Specifically, consider degree d (possibly disconnected) covering
maps f : C → D with fixed ramification points q1, . . . , qk ∈ D and ramifica-
tion given by m1, . . . ,mk where each mi = (mi

1, . . . ,m
i
�i
) is a partition of d.

The Euler characteristic of C is related to the genus h of D and the partition
lengths �(mi) = �i by the Riemann–Hurwitz formula

(1.1) χ(C) = 2d(1− h) +
k∑

i=1

(
�(mi)− d).

In this context, there is an ordinary Hurwitz number

(1.2)
∑ 1

|Aut(f)|

that counts the covers f satisfying (1.1) mod automorphisms; the sum
depends only on h and {mi}.
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Now fix a theta characteristic N on D, that is, a holomorphic line bundle
with an isomorphism N2 = KD where KD is the canonical bundle of D. The
pair (D,N) is called a spin curve. By a well-known theorem of Mumford and
Atiyah, the deformation class of the spin curve is completely characterized
by the genus h of D and the parity

(1.3) p = (−1)h0(D,N).

Now consider degree d ramified covers f : C → D for which
(1.4)
• each partition mi is odd, i.e., each mi

j is an odd number.

In this case, the ramification divisorRf of f is even and the twisted pullback
bundle

(1.5) Nf = f∗N ⊗O
(

1
2Rf

)
is a theta characteristic on C with parity

(1.6) p(f) = (−1)h0(C,Nf ).

After choosing a spin curve (D,N) and odd partitions m1, . . . ,mk, we can
consider the total count of maps satisfying (1.1) modulo automorphisms,
counting each map as ±1 according to its parity. This sum is also a defor-
mation invariant of the spin curve (D,N), so depends only on h and p. Thus,
we define the spin Hurwitz numbers of a spin curve (D,N) of genus h and
parity p to be

(1.7) Hh,p
m1,...,mk =

∑ p(f)
|Aut(f)| ,

where the sum is over all maps f , non-isomorphic as branched covers, satis-
fying (1.1).

Eskin et al. [3] gave a combinatorial method for finding the spin Hurwitz
numbers when D is an elliptic curve with the trivial theta characteristic
(genus h = 1 and parity p = −1). Our main result gives recursive formulas
that express all other spin Hurwitz numbers (except the related h = 0 and
h = p = 1 cases) in terms of the Eskin–Okounkov–Pandharipande numbers.
The statement involves two numbers that are associated with partition m =
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(m1, . . . ,m�) of d, namely

|m| =
∏

mj and m! = |Aut(m)|,

where Aut(m) is the subgroup of symmetric group S� permuting equal parts
of the partition m of d. We call a partition m odd or even according to
whether |m| is odd or even.

Theorem 1.1. Fix d > 0 and let m1, . . . ,mk be a collection of odd
partitions of d.

(a) If h = h1 + h2 and p ≡ p1 + p2 (mod 2) then for 0 ≤ k0 ≤ k

(1.8) Hh,p
m1,...,mk =

∑
m

|m|m! Hh1,p1

m1,...,mk0 ,m · H
h2,p2

m,mk0+1,...,mk .

(b) If h ≥ 2 or if (h, p) = (1,+) then

(1.9) Hh,p
m1,...,mk =

∑
m

|m|m! Hh−1,p
m,m,m1,...,mk ,

where the sums are over all odd partitions m of d.

Gunningham [4] has used completely different methods to obtain results
that overlap ours. He casts the spin Hurwitz numbers as a topological quan-
tum field theory and obtains a formula for the spin Hurwitz numbers in terms
of the coefficients of Sergeev algebras, which can be determined recursively.
The exact relationship between Gunningham’s result and ours – both the
proof and the formulas – is not obvious and would be interesting to elucidate.

For us, spin Hurwitz numbers arose from studying the GW invariants
of Kähler surfaces. The results of [10] shows that the GW invariants associ-
ated with dimension zero moduli spaces are exactly the etale spin Hurwitz
numbers

Hh,p
d = Hh,p

(1d)

that count degree d etale covers, defined as above by taking m to be the
trivial partition (1d) of d. The precise relation can be described as follows.

Let X be a Kähler surface with a smooth canonical divisor D. By the
adjunction formula, the normal bundle N → D is a theta characteristic, so
each component of (D,N) is a spin curve. The results of [8, 10] show that
the GW invariant of X is a sum over the components of (D,N) of certain
local GW invariants GW loc

g,n. As usual, one can work either with the local
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GW invariants that count maps from connected domains of genus g or with
the local “Gromov–Taubes” invariants GT loc

g,n that count maps from possibly
disconnected domains of Euler characteristic χ. With the latter, the main
formula of [10] reads

(1.10) GTχ,n(X,β) =
∏
k

(ik)∗GT loc
χk,n(Dk, Nk; dk),

where ik is the inclusion Dk ⊂ X.
Now, assume (D,N) is a connected genus h spin curve with parity p

and consider maps f : C → D where χ(C) = 2d(h− 1). Then the space of
degree d stable maps with no marked points has dimension zero, both sides
of (1.10) are rational numbers and, in fact, the dimension zero local GT
local invariants are exactly the etale spin Hurwitz numbers:

(1.11) GT loc,h,p
d = Hh,p

d

(the relation χ = 2d(h− 1) is implicit in this notation). For h = 0, 1, these
invariants were calculated for all degrees d in [8, 10]. As an immediate appli-
cation of Theorem 1.1, one can express the local invariants (1.11) with h ≥ 2
in terms of h = 1 spin Hurwitz numbers calculated in [3]:

Theorem 1.2. Let Hm denote the spin Hurwitz numbers H1,−
m where m is

one or more partitions. Then for h ≥ 2 we have

GT loc,h,p
d =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑ h−1∏
i=1

|mi|mi!Hmh−1

·Hmh−1,mh−2 · · · Hm2,m1 ·Hm1 if h ≡ p (mod 2),

∑ h−1∏
i=1

|mi|mi!Hmh−1,mh−1,mh−2

·Hmh−2,mh−3 · · · Hm2,m1 ·Hm1 if h 	≡ p (mod 2),

where the sums are over all odd partitions m1, . . . ,mh−1 of d.

The proof of Theorem 1.1 involves five main steps, described below. All
are based on the observation that the ∂-operators on spin bundles Nf extend
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to a 1-parameter family of real operators

(1.12) Lt = ∂ + tR : Ω0(C,Nf ) → Ω0,1(C,Nf )

with remarkable properties. The key idea is that the parity of a map f is an
isotopy invariant of the family Lt, and one can explicitly describe the behav-
ior of the operators Lt as both the domain and the target of f degenerate to
nodal spin curves. This allows us to express both the parity and the number
of covering maps in terms of the maps into the irreducible components of
the nodal target curve, giving the recursion formulas of Theorem 1.1.

Step 1: Relating Lt and parity. Section 2 gives a method for constructing
complex anti-linear bundle maps R, which then define a family Lt = ∂ + tR
of operators as in (1.12). We then prove a vanishing theorem showing that
ker Lt = 0 for each stable map f and each t 	= 0. This property was exploited
in our previous work (e.g., [10], [11]) and underlies all later sections.

In Section 3, we express the parity as an isotopy invariant — the “TR
spectral flow” — of the path of operators Lt. In this form, in contrast to the
original definition (1.6), parity is unchanged under deformations. We also
relate the parity to the determinant of Lt on its low eigenspaces.

Step 2: Degenerating spin curves and sum formulas. The Hurwitz
numbers of D can be viewed as the relative Gromov–Witten invariants of D
relative to a branch locus {q1, . . . , q�} ∈ D. Under condition (1.1) the space
of relative stable maps is a finite set corresponding to stable maps f : C → D
branched over {qi}. We then adopt the sum formula arguments of [7], as the
first author has done in [9]. There are three parts of the argument:

• Identifying the maps f : C → D that occur as limits as D degenerates
to a nodal spin curve D0.

• Constructing a family C → Δ of deformations of the maps f : C0 → D0.

• A gluing procedure that relates the moduli space of a general fiber to
data along the central fiber.

In each step, it is necessary to keep track of the target curve, the domain
curve, the map, the spin structures, and ultimately the spectral flow. The
spin structure adds complication: in order to extend the spin structure across
the central fiber it is necessary, following Cornalba [2], to insert a rational
curve at each node as the target degenerates. Section 4 proves Theorem 1.1
assuming two deferred facts: the existence of a smooth family moduli space
and a crucial statement (Theorem 4.2) about parities.
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Step 3: Algebraic families of maps. The required family of maps is
constructed in Section 5. The construction, which uses blowups and base
changes, provides explicit coordinates for the analysis done in later sections.
Extra steps are needed to ensure that there are line bundles on the family
whose restrictions to the general fiber gives the spin structure N on D and
(1.5) for each f : C → D. Moreover, as shown in Section 6, there are anti-
linear bundle maps R, and hence operators Lt = ∂ + tR on the family with
the properties described in Section 2.

Step 4: Eigenbundles of Lt and parity for odd partitions. In Section 7,
we switch from algebraic geometry to analysis and construct bundles of low
eigenspaces of Lt. The formulas of Section 3 then apply on the family, giving
a simple parity formula (Lemma 8.1) for odd partitions. But a complication
arises for even partitions: the maps into D0 may be ramified over the nodes
in a way that does not satisfy (1.4), so the irreducible components of D0

do not have well-defined spin Hurwitz numbers. Correspondingly, we obtain
an analytic formula for the parity (Theorem 8.2) that must be evaluated at
smooth curves.

Step 5: Localization and cancellation. Finally, we exploit another
remarkable property of the operators Lt: as t→∞ there is a basis of the
low eigenspace of L∗t consisting of “bump functions” sharply concentrated
at the nodes, and p(f) can be expressed in terms of L2 inner products of
these bump functions. The concentration allows us to pair up maps with
even ramification and show that the contributions of the maps with even
ramification cancel in pairs. This cancellation is the key observation of the
paper and is the final ingredient in the proof of Theorem 1.1.

Section 11 presents some specific calculations: Theorem 1.1 is used to
determine all spin Hurwitz numbers with degree d = 4 for every genus.

To complete our program of calculating the GW invariants of Kähler
surfaces with smooth canonical divisor, one needs to extend Theorem 1.2
to the cases with higher dimensional moduli spaces. As shown in [11], this
requires calculating the Euler class of a real obstruction bundle arising from
the pullback spin structure. We will apply the methods developed here to
the higher-dimensional case in a future paper.

2. Antilinear deformations of ∂

Let f : C → D be a holomorphic map of degree d > 0 between smooth curves
and let N → D be a theta characteristic. As shown in [10], there is a holo-
morphic 2-form on the total space of N that induces a conjugate-linear
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bundle map R : f∗N → KC ⊗ f∗N with several remarkable properties. In
this section we use a different approach to produce a similar bundle map
R : Nf → KC ⊗Nf , where Nf is the twisted pullback bundle (1.5). This
map R and the associated deformations ∂ + tR of the ∂-operator on Nf are
the central objects in this paper.

To start, let D be a smooth curve with canonical bundle KD and a Rie-
mannian metric. Let N → D be a holomorphic line bundle with a Hermitian
metric 〈 , 〉, conjugate linear in the second factor. Let ( , ) = Re〈 , 〉 be
the corresponding positive definite inner product, and let ∗̄ : Λp,qD ⊗N∗ →
Λ1−p,1−qD ⊗N be the associated conjugate-linear star operator.

Lemma 2.1. Any holomorphic section ϕ of KD ⊗ (N∗)2 induces a bundle
map

(2.1) R : N → KD ⊗N

that, with its adjoint R∗ with respect to the inner product ( , ), satisfies

(2.2) (a) RJ = −JR (b) R∗R = |ϕ|2 Id (c) ∂∗R+R∗∂ = 0.

Proof. Regard ϕ as a complex bundle map ϕ : N → KD ⊗N∗ and set R =
∗̄ ◦ ϕ. Because ∗̄ is conjugate-linear, this immediately gives RJ = −JR. Fix
a point p, a local holomorphic coordinate z around p in which the metric
is Euclidean to second order, and a local holomorphic section ν of N with
|ν(p)| = 1. It suffices to verify that (b) and (c) hold at p.

Let ν∗ denote the dual section to ν and write ϕ(ν) = gdzν∗. Then ∂g = 0
because ϕ is holomorphic, and at p we have R(ν) = ḡdz̄ν and, taking the
adjoint using the real inner product, R∗(dz̄ν) = ḡν. It follows that R∗R =
|g|2 Id = |ϕ|2 Id. Choosing an arbitrary section ξ = fν of N , we have

(2.3) R∗∂ξ = R∗
(

∂f
∂z̄ dz̄ν

)
=
(

∂f
∂z̄

)
R∗(dz̄ν) = ḡ ∂f̄

∂z ν

at p. On the other hand, the formulas ∂∗ = −∗̄∂∗̄ and (∗̄)2 = −1 on Ω0,1(N∗)
show that at p

∂
∗
Rξ = −∗̄ ∂ ∗̄∗̄ϕ(fν) = ∗̄ ∂ (fg dzν∗) = ḡ ∂f̄

∂z ∗̄ (dz̄dzν∗) = −ḡ ∂f̄
∂z ν.

This cancels (2.3), giving statement (c). �
An endomorphism R as in (2.1) determines a 1-parameter family of per-

turbations of the ∂-operator, namely the operators Lt : Ω0(N) → Ω0,1(N)
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defined by

(2.4) Lt = ∂ + tR t ∈ R.

Properties (2.2) imply a remarkably simple vanishing theorem.

Vanishing Theorem 2.2. If R satisfies (2.2) with ϕ 	≡ 0, then ker Lt = 0
for each t 	= 0.

Proof. If Ltψ = 0 then by (2.2) we have

(2.5) 0 =
∫

D
|Ltξ|2 =

∫
D
|∂ξ|2 + |R|2 |ξ|2.

Thus ξ is holomorphic and vanishes on the open set where R = ϕ 	= 0, so
ξ ≡ 0. �

Many of the results in subsequent sections can be viewed as natural
extensions of Theorem 2.2. For a first extension, let f : C → D be a holo-
morphic map with ramification points qj and ramification divisor Rf =∑

(mj − 1)qj . If N is a theta characteristic on D and A is any divisor on C,
we can consider the twisted bundle

Nf = f∗N ⊗OC(A)

on C. We then have the following relative version of Lemma 2.1.

Corollary 2.3. A holomorphic section ϕ of O(Rf − 2A) induces a bundle
map

(2.6) Rf : Nf → KC ⊗Nf

that satisfies properties (2.2), and the Vanishing Theorem 2.2 applies to
Lt = ∂ + tRf .

Proof. The Hurwitz formula and the isomorphism N2 = KD induce an iso-
morphism KC ⊗ (N∗f )2 = O(Rf − 2A), so we can apply Lemma 2.1. �

3. Parity as the TR spectral flow

Suppose that At : Vt →Wt is a smooth path of linear maps where Vt and
Wt are the fibers of real vector bundles V and W over R. The real variety



Spin Hurwitz numbers and the Gromov–Witten invariants 1023

S ⊂ Hom(V,W ) of non-invertible maps separates the bundle Hom(V,W )
into connected open sets called chambers. If At1 and At2 are non-singular,
the mod 2 spectral flow of the pathAt from t1 to t2 is calculated by perturbing
the family to be transversal to S and counting the number of times the family
crosses S modulo 2; this is independent of the perturbation. This section
describes a modified spectral flow that applies to the operators Lt = ∂ + tR
of (2.6).

We begin with a definition that occurs in quantum mechanics. Let V and
W be real vector bundles over R. A TR (“time-reversal”) structure is a lift
of the map t �→ −t to bundle maps T : V → V and T : W →W satisfying
T 2 = −Id. A bundle map A : V →W is TR invariant if there is a T as
above such that

(3.1) [A, T ] = 0 that is, A−t = TtAtT
−1
t .

In particular, T0 = J is a complex structure on V0 and W0 and by (3.1) and
A0 is complex linear.

Let T R denote the space of all smooth TR invariant A : V →W that
are invertible except at finitely many values of t. For an open dense set
of A ∈ T R, A0 is non-singular and A intersects S transversally at finitely
many points {±ti} (proof: given A, perturb At for t ≥ 0 to A′t transverse
to S and with A′0 complex and invertible, then define A′−t by (3.1) and
smooth, symmetrically in t, around t = 0). Thus the mod 2 spectral flow
from t = −∞ to t =∞ is well-defined, but is 0 because the singular points
are symmetric. However, there is a well-defined TR spectral flow

(3.2) SF TR : T R→ {±1}

defined for A ∈ T R by perturbing to a generic C ∈ T R and setting
SF TR(A) = (−1)s where s is the mod 2 spectral flow of C from t = 0 to
t =∞. Regarding C as a path in Hom(V,W ), s is the mod 2 intersection
C ∩ S, which depends only on the homology class is C. If D is another
generic perturbation with s′ = D ∩ S, then s− s′ = γ ∩ S where γ is a path
from B0 to C0. But then s− s′ is even because B0 to C0 are complex -
linear isomorphisms. Thus SF TR(A) is independent of the perturbation. In
practice, two formulas are useful:

(i) If V and W both have finite rank r, the complex orientation on V0 and
W0 extends to orient all fibers of V and W . This means that sgn detAt

is canonically defined for every A ∈ T R and all t. For generic A ∈ T R
the sign of detAt is positive for t = 0 and changes sign with each
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transversal crossing of S. Thus

(3.3) SF TR(A) = sgn detAt

whenever As is non-singular for all s ≥ t.

(ii) Now suppose that ker A0 is finite-dimensional and Ȧ0 restricts to an
isomorphism B : ker A0 → coker A0. Then ker A0 and coker A0 are
complex vector spaces of the same dimension d. Choose a complex-
linear map C : ker A0 → coker A0 and perturb A to a generic A′ ∈ T R
as above with A′0 = A0 + εC and A′(t) = At for all t ≥ δ. Then detC >
0 and the mod 2 spectral flow of A′t from t = 0 to t = δ is sgn detB. But
one sees by differentiating (3.1) that B satisfies JB = −BJ ; therefore
detB = (−1)d because the eigenvalues of B come in pairs ±

√
−1λi.

We conclude that

(3.4) SF TR(A) = (−1)dimC ker A0 .

The TR spectral flow readily applies to the operators introduced in Sec-
tion 3. Let (D,N) be a smooth spin curve with a bundle map R as in
Lemma 2.1 that is non-zero almost everywhere. For each t, Lt = ∂ + tR
extends to a Fredholm map

Lt : VC →WC

from the SobolevW 1,2 completion of Ω0(N) to the L2 completion of Ω0,1(N).
By elliptic theory, VC (resp. WC) decomposes into finite-dimensional real
eigenspaces Eλ of L∗tLt (resp. LtL

∗
t ) whose eigenvalues {λ} are real, non-

negative, discrete, and vary continuously with t. For each t, let Vt ⊂ VC and
Wt ⊂WC be the closure of the real span of the eigenspaces; these form vector
bundles V,W over R. By Property (2.2a) we have

(3.5) JLtJ
−1 = −J(∂ + tR)J = −J(J∂ − tJR) = L−t.

Thus, T = J is a TR structure and L = {Lt} is a TR-invariant operator.
To calculate the invariant (3.2), we can reduce to a finite-dimensional sit-

uation. Fix λ0 > 0 not in the spectrum of ∂∗∂ and define the low eigenspaces
of L∗tLt and LtL

∗
t by setting

(3.6) Et =
⊕
λ<λ0

Eλ and Ft =
⊕
λ<λ0

Fλ.
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These form finite-rank real vector bundles E ⊂ V and F ⊂W over an inter-
val [−δ, δ] where λ0 remains outside the spectrum, and (3.5) again shows
that L : E → F is TR-invariant.

Theorem 3.1. The parity of a spin structure (D,N) is the TR spectral
flow of the Fredholm operator L : V →W , and for 0 < |t| < δ it is also the
determinant of the finite-dimensional operator Lt : Et → Ft:

p = SF TR(L) and SF TR(L) = sgn detLt for |t| ≤ δ.

Proof. By its definition (1.6), the parity is p = (−1)h where h = dimC ker ∂ =
dimC ker L0. Observe that L̇0 = R is injective on ker ∂ by Theorem 2.2, and
hence is an isomorphism because Riemann–Roch shows that dim ker ∂ −
dim coker ∂ = χ(D,N) = 0. The first equality therefore follows by (3.4). For
all −δ ≤ t ≤ δ, L∗tLt is non-singular on the eigenspaces with λ > λ0, so the
spectral flow is determined by the restriction of Lt to the low eigenspaces
(3.6), where it is given by formula (3.3). �

As a corollary, we obtain a simple proof of the Atiyah–Mumford Theorem
on spin structures.

Corollary 3.2. Parity is an isotopy invariant of spin structures (D,N).

Proof. If (Ds, Ns) is a path of spin curves then KDs
(N∗s )2 = O is trivial

for each s, so there are smoothly varying nowhere-zero maps Rs as in
Lemma 2.1. For fixed t 	= 0, Theorem 2.2 shows that Ls = ∂ + tRs is injective
for all s, so SF TR(Ls) — and hence the parity — is independent of s. �

In Sections 5 to 8 we will extend this proof by incorporating maps as in
Corollary 2.3 and applying it to families of spin curves that degenerate to
nodal curves.

4. Degeneration, gluing and the proof of Theorem 1.1

The proof of Theorem 1.1 is based on the method of [9]: we express the
spin Hurwitz numbers in terms of relative Gromov–Witten moduli space
and apply the limiting and gluing arguments of [7] for a degeneration of spin
curves to form a family of moduli spaces. We then use a smooth model of the
family of moduli spaces to calculate parities. The calculation immediately
yields the desired recursion formula. This section outlines the proof, drawing
on two facts that are deferred: the construction of a smooth model (done in
Sections 5 and 6), and the computation of parities (done in Sections 8–10).
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As in [9], we begin by expressing the spin Hurwitz numbers (1.7) in
terms of GW relative moduli spaces (cf. [6]). Let D be a smooth curve
of genus h and let V = {q1, . . . , qk} be a fixed set of points on D. Given
partitions m1, . . . ,mk of d, a degree d holomorphic map f : C → D from a
(possibly disconnected) curve C is called V -regular with contact partitions
m1, . . . ,mk if, for each i = 1, . . . , k, f−1(qi) consists of �(mi) points qi

j so
that the ramification index of f at qi

j is mi
j . If mi

j > 1 then the contact
marked point qi

j is a ramification point of f and qi is a branch point. The
relative moduli space

(4.1) MV
χ,m1,...,mk(D, d)

consists of isomorphism classes of V -regular maps (f, C; {qi
j}) with con-

tact vectors m1, . . . ,mk. Here χ(C) = χ and all marked points are contact
marked points. Since no confusion can arise, we will often write (f, C; {qi

j})
simply as f .

Spin Hurwitz numbers are associated with those moduli spaces (4.1) that
have (formal) dimension 0. Thus we will henceforth assume that

(4.2) dimCMV
χ,m1,...,mk(D, d) = 2d(1− h)− χ−

k∑
i=1

(
d− �(mi)

)
= 0.

With this assumption, all ramification points of a V -regular map (f, C; {qi
j})

in (4.1) are contact marked points. In this case, forgetting the contact
marked points gives a (ramified) cover f satisfying (1.1). If mi = (1d) for
some 1 ≤ i ≤ k then

(4.3) Hh,p
m1,...,mk =

1∏
mi!

∑
p(f)

the sum is over all f in (4.1) and p(f) is the associated parity (1.6)
(cf. Lemma 1.1 of [9]).

Adding trivial partitions does not change the formulas (1.1) and (4.2).
It also does not change the spin Hurwitz numbers, namely,

(4.4) Hh,p
(1d),m1,...,mk = Hh,p

m1,...,mk .

Below, we fix h, d, χ and odd partitions m1, . . . ,mk of d so that the dimen-
sion formula (4.2) holds. In light of (4.3), we will add trivial partitions
mk+1 = mk+2 = mk+3 = (1d) to make our discussion simpler.
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To adapt the main argument of [7] we will build a degeneration of target
curves. Let D0 = D1 ∪ E ∪D2 be a connected nodal curve of arithmetic
genus h of a rational curve E and smooth curves D1 and D2 of genus h1

and h2 with h1 + h2 = h, joined at nodes p1 = D1 ∩ E and p2 = D2 ∩ E. Fix
k + 3 points qi, all distinct and distinct from p1 and p2, with

qk+1, q1, . . . , qk0 ∈ D1, qk+2 ∈ E, qk0+1, . . . , qk, qk+3 ∈ D2.

where 0 ≤ k0 ≤ k. In Section 5, we will construct a deformation of D0 with
sections: a smooth complex surface D fibered over the disk Δ with parameter
r so that the central fiber is D0 and the fibers Dr with r 	= 0 are smooth
curves of genus h and Qi(0) = qi for 1 ≤ i ≤ k + 3.

(4.5) D
ρ

��
Δ

Qi

��

For each partition m of d, consider the moduli space of maps

Pm =MV1
χ1,mk+1,m1,...,mk0 ,m(D1, d)×MVe

χe,m,mk+2,m(E, d)(4.6)

×MV2
χ2,m,mk0+1,...,mk,mk+3(D2, d)

where V1 = {qk+1, q1, . . . , qk0 , p1}, Ve = {p1, qk+2, p2}, V2 = {p2, qk0+1, . . . ,
qk, qk+2} and

(4.7) χ1 + χe + χ2 − 4�(m) = χ.

For simplicity, let M1
m, Me

m and M2
m denote the first, second and third

factors of Pm. By (4.7) and our assumption that the dimension formula
(4.2) holds, it is easy to see that whenever the space Pm is not empty,
the relative moduli spaces M1

m, Me
m and M2

m all have dimension zero. In
particular, χe = 2�(m) and

(4.8) |Me
m| =

d!m!
|m| ,

where |Me
m| denotes the cardinality of Me

m (cf. Section 2 of [9]).
For (f1, fe, f2) ∈ Pm, let xi

j and yi
j be contact marked points of fi and

fe over pi ∈ Di ∩ E with multiplicity mj where i = 1, 2 and j = 1, . . . , �(m).
By identifying xi

j with yi
j , one can glue the domains of fi and fe to obtain a
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map f : C → D0 with χ(C) = χ. For notational convenience, we will often
write the glued map f as f = (f1, fe, f2). Denote by

(4.9) Mm,0

the space of such maps f = (f1, fe, f2). Identifying contact marked points
associates to each node of C a multiplicity mj labeled by j. But the nodes
of C are not labeled. One can thus see that gluing domains gives a degree
(m!)2 covering map:

(4.10) Pm →Mm,0.

Remark 4.1. Let f = (f1, fe, f2) be a map in Mm,0. For i = 1, 2, since
Mi

m has dimension zero, (i) the ramification points of fi are either contact
marked points or nodal points of the domain of f , (ii) fi can have even rami-
fication points only at nodal points and (iii) the number of even ramification
points of fi is even.

For r 	= 0, consider the moduli spaces of V -regular maps into Dr, which
we denote by

(4.11) Mr =MVr

χ,m1,...,mk+3(Dr, d) where Vr = {Q1(r), . . . , Qk+3(r)},

By Gromov convergence, a sequence of holomorphic maps into Dr with
r → 0 limits has a subsequence that converges to a map into D0. Denote the
set of such limits by

lim
r→0

Mr.

Lemma 3.1 of [9] shows that

(4.12) lim
r→0

Mr ⊂
⋃
m

Mm,0,

where the union is over all partitions m of d with Pm 	= ∅.
Conversely, by the Gluing Theorem of [7], the domain of each map in

Mm,0 can be smoothed to produce maps in Mr for small |r|. Shrinking Δ
if necessary, for r ∈ Δ, one can assign to each fr ∈Mr a partition m of d
by (4.12). Let Mm,r be the set of all pairs (fr,m) and for each f ∈Mm,0
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denote by

(4.13) Zm,f → Δ

the connected component of
⋃

r∈ΔMm,r → Δ that contains f . It follows
that

(4.14) Mr =
⊔
m

⊔
fr∈Mm,0

Zm,f,r (r 	= 0),

where Zm,f,r is the fiber of (4.13) over r ∈ Δ. The Gluing Theorem shows
that one can smooth each node xi

j = yi
j of the domain of f , where i = 1, 2

and j = 1, . . . , �(m), in mj ways to produce |m|2 maps in Mm,r, (there are
two nodes on the target, the fiber Zm,f,r (r 	= 0) consists of |m|2 maps).

We now introduce a spin structure on ρ : D → Δ assuming that D is
smooth. Given parities p, p1 and p2 with p1 + p2 = p (mod 2), Cornalba’s [2]
constructs a line bundle L → D and a homomorphism

(4.15) Φ : L2 → KD,

whose restrictions satisfy the following properties:

(a) For r 	= 0, L restricts to a theta characteristic on Dr with a parity p
and Φ restricts to an isomorphism (L|Dr

)2 → KDr
.

(b) Φ vanishes identically on E and L|E = OE(1).

(c) For i = 1, 2, L restricts to a theta characteristic on Di with parity pi,
and Φ restricts to an isomorphism (L|Di

)2 → KDi
.

The pair (L,Φ) is called a spin structure on ρ : D → Δ.
Let f = (f1, fe, f2) be a map in Mm,0. Note that all ramification points

of maps in Zm,f,r (r 	= 0) have odd ramification indices since m1, . . . ,mk

are odd partitions. So, each map fr in Zm,f,r has an associated parity p(fr)
defined as in (1.6) by the pullback bundle f∗r (L|Dr

) and its ramification
divisor Rfr

. When the partition m is odd, fi (i = 1, 2) also have associated
parities p(fi) defined by f∗i (L|Di

) and Rfi
. In this context, (4.3), (4.4) and

(4.14) shows that for r 	= 0 we have

Hh,p
m1,...,mk = Hh,p

m1,...,mk,(1d),(1d),(1d)(4.16)

=
1

(d!)3
∏k

i=1m
i!

∑
m

∑
f∈Mm,0

∑
fr∈Zm,f,r

p(fr).
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In Sections 5 to 10, we will establish the following facts about the parity.

Theorem 4.2. Let f = (f1, fe, f2) ∈Mm,0 and r 	= 0.

(a) If m is odd, then p(fr) = p(f1) p(f2) for all fr ∈ Zm,f,r.

(b) If m is even, then
∑

fr∈Zm,f,r

p(fr) = 0.

We conclude this section by showing how Theorem 1.1a follows from
Theorem 4.2.

Proof of Theorem 1.1a: Together with (4.16), Theorem 4.2 shows

(4.17) Hh,p
m1,...,mk =

1

(d!)3
∏k

i=1m
i!

∑
m:odd

|m|2
∑

f=(f1,fe,f2)∈Mm,0

p(f1) p(f2),

where the factor |m|2 appears because the fiber Zm,f,r (r 	= 0) consists of
|m|2 maps. Since the map (4.10) has degree (m!)2, the last sum in (4.17) is∑
f=(f1,fe,f2)∈Mm,0

p(f1) p(f2) =
1

(m!)2
∑

(f1,fe,f2)∈Pm

p(f1) p(f2)

=
1

(m!)2
∑

fe∈Me
m

⎛⎝ ∑
f1∈M1

m

p(f1)

⎞⎠·
⎛⎝ ∑

f2∈M2
m

p(f2)

⎞⎠
=

(d!)3m!
|m|

k∏
i=1

mi ·Hh1,p1

m1,...,mk0 ,m ·H
h2,p2

m,mk0+1,...,mk ,(4.18)

where the last equality holds by (4.3) and (4.8). Theorem 1.1a follows from
Equations (4.17) and (4.18).

The proof of Theorem 1.1b is identical to that of Theorem 1.1a except
that one uses a smooth family of target curves D → Δ and a line bundle
L → D satisfying:

• The general fiber Dr (r 	= 0) is a smooth curve of genus h ≥ 1 and
L|Dr

is a theta characteristic.

• The central fiber of D → Δ is a connected nodal curve D̄ ∪E where
D̄ is a smooth genus h− 1 curve that meets E ∼= P1 at two points.

• L restricts to O(1) on E and to a theta characteristic on D̄ with
p(L|D̄) ≡ p(L|Dr

) for r 	= 0.
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Minor modifications to the arguments of this section and to the constructions
and calculations in Sections 5 to 10, yield parity formulas analogous to
Theorem 4.2, which leads to Theorem 1.1b. �

5. The algebraic family moduli space

In this section, we construct a deformation of a map f : C → D0 from a nodal
curve to a nodal spin curve. The deformation has many components, indexed
by roots of unity. Each component is a curve C → Δ over the disk with
smooth total space, with a map to a deformation D → Δ of D0 and a bundle
N → C whose restriction to each general fiber Cs is a theta characteristic
on Cs. In fact, there are many such bundles N ; we fix one that makes
computations in later sections possible.

Throughout this section we fix, once and for all, a partitionm = (m1, . . . ,
m�) of d, a map f = (f1, fe, f2) : C → D0 in Mm,0 where Mm,0 is the space
(4.9), and the spin structure (L,Φ) on ρ : D → Δ in (4.15). As in Section 4,
D0 is a nodal curve D1 ∪ E ∪D2 with exceptional component E = P1 and
with nodes p1 ∈ D1 ∩ E and p2 ∈ D2 ∩ E. The domain C is a nodal curve
C = C1 ∪ Ce ∪ C2 with 2� nodes where χ(Ce) = 2� such that for i = 1, 2 and
j = 1, . . . , �

• f−1(pi) consists of the � nodes pi
j ∈ Ci ∩ Ej ,

• Ci is smooth and fi = f |Ci
: Ci → Di has ramification index mj at the

node pi
j ,

• Ce is a disjoint union of � rational curves Ej , fe = f |Ce
and each restric-

tion f |Ej
: Ej → E has degree mj and ramification index mj at pi

j .

For i = 1, 2, let Rfi
denote ramification divisor of fi, and let Rev

fi
be the

divisor on Ci consisting of the even ramification points:

(5.1) Rev
fi

=
∑

j |mj is even

pi
j .

By Remark 4.1, |Rfi
| and |Rev

fi
| are both even. For j = 1, . . . , �, we set

(5.2) nj =
|m|
mj

.

LetQm denote the set of vectors of the form ζ = (ζ1
1 , ζ

2
1 , . . . , ζ

1
� , ζ

2
� ) where

ζ1
j and ζ2

j are mj-th roots of unity. The following is a main result of this
section.
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Theorem 5.1. Let f = (f1, fe, f2) ∈Mm,0 and Qm be as above. Then, for
each vector ζ ∈ Qm, there exists a family of curves Cζ → Δ,over a disk Δ
(with parameter s) with smooth total space Cζ , a holomorphic map Fζ : Cζ →
D and a line bundle Nζ over Cζ satisfying:

(a) For s 	= 0, the fiber Cζ,s is smooth and the restriction Nζ,s = Nζ |Cζ,s
is

a theta characteristic on Cζ,s and the restriction map fζ,s = F|Cζ,s
has

the associated parity p(fζ,s) = p(Nζ,s) such that the last sum in (4.16)
is

(5.3)
∑

fr∈Zm,f,r

p(fr) =
∑

ζ∈Qm

p(fζ,s) where r = s|m|.

(b) The central fiber Cζ,0 is a nodal curve C1 ∪ (∪�
j=1Ēj ) ∪ C2 where, as

in the figure at the end of this section, each Ēj is a chain of rational
curves with dual graph

(5.4)

(c) Nζ |Ci
= f∗i (L|Di

)⊗ O
(

1
2(Rfi

−Rev
fi

)
)

for i = 1, 2.

(d) Nζ |Ei
j;k

=

⎧⎪⎨⎪⎩
O(1) if mj is even and k = nj − 1,

and if mj is odd and k = 0
O otherwise.

Here, for the case k = 0, E1
j;0 = E2

j;0 denotes Ej. Note that nj > 1, whenever
mj is even (because |Rev

fi
| is even).

The proof of Theorem 5.1 requires six steps; each is a standard procedure
in algebraic geometry. Steps 1 to 4 use Schiffer Variations (cf. [1]) and are
described in detail in [9].
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Step 1 – Deform the target: As in (4.5) there is an algebraic curve ρ :
D → Δ over the disk Δ with k + 3 sectionsQi whose central fiber is identified
with D0 with the marked points qi = Qi(0). Denoting the coordinate on Δ
by r, there are local coordinates (u1, v1, r) and (u2, v2, r) around the nodes
p1 and p2 in D so that the fiber Dr = ρ−1(r) is locally given by u1v1 = r
and u2v2 = r.

Step 2 – Deform the domain: A similar construction yields a deformation
ϕ2� : X → Δ2� of C0 over polydisk

(5.5) Δ2� = { r = (r11, r
2
1, . . . , r

1
� , r

2
� ) ∈ C2� : |ri

j | < 1 }.

Furthermore, there are local coordinates (xi
j , y

i
j , r) around each node pi

j of
C0 in C in which the fiber Cr of ρ over r is given by xi

jy
i
j = ri

j .

Step 3 – Extend the map: The map f : C → D0 extends to a map of
families over the curve V ⊂ Δ2� defined by

(5.6) V =
{

(r11)
m1 = (r21)

m1 = · · · = (r1� )
m� = (r2� )

m� = r
∣∣∣ r ∈ C

}
.

Near the nodes of C0 the extension is given on ϕ−1
2� (V) by

(5.7) (xi
j , y

i
j , r) → (ui, vi, r), where ui = (xi

j)
mj , vi = (yi

j)
mj , r = (ri

j)
mj .

Note that this extension maps fibers to fibers only over V.

Step 4 – Normalization: The one-dimensional variety (5.6) has |m|2
branches at the origin. To separate the branches, we lift to the normal-
ization as follows. For each vector ζ = (ζ1

1 , ζ
2
1 , . . . , ζ

1
� , ζ

2
� ) in Qm, define a

holomorphic map

δζ : Δ → Δ2� by s → (ζ1
1s

n1 , ζ2
1s

n1 , ζ1
2s

n2 , ζ2
2s

n2 , . . . , ζ1
� s

n� , ζ2
� s

n�)

where nj is the number (5.2). The pullback Xζ = δ∗ζX is a deformation of C
over Δ:

Xζ ��

ϕ̂ζ

��

X
ϕ2�

��
Δ

δζ �� V ⊂ Δ2�

Near the node pi
j of the central fiber C, the fiber of Xζ over s is the set

of (xi
j , y

i
j , s) ∈ C3 satisfying xi

jy
i
j = ζi

js
nj and the pullback of (5.7) is a map
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fζ : Xζ → D which, by (5.2), is given locally by

(5.8) Gζ(xi
j , y

i
j , s) =

(
(xi

j)
mj , (yi

j)
mj , s|m|

)
.

Step 5 – Blow-up: The surface Xζ is singular at the nodes pi
j when nj >

1. The singularities can be resolved by repeatedly blowing up, as follows.
Suppressing i and j from the notation, Xζ is locally given by xy = ζsnj with
C1 given by y = 0 and E0 = Ej given by x = 0.
First blowup: Blow up along the locus y = s = 0 by setting y = y1s
and pass to the proper transform. This introduces an exceptional curve
E1 on C0 with coordinates y1 and x1 = 1/y1. The proper transform is
given by

Second blowup: Blow up along y1 = s = 0 by setting y1 = y2s. This intro-
duces E2 with coordinates y2 and x2 = 1/y2; the proper transform is given
by

Blowing up nj − 1 times, and repeating on the other side of E0 = Ej and at
each node pi

j , yields a smooth surface Cζ and a diagram

Cζ

���
��

��
�� Fζ

�����������������������

ϕζ

���
��

��
��

��
��

��
��

Xζ
Gζ

��

ϕ̂ζ

��

D
ρ

��
Δ

s→s|m| �� Δ

The central fiber of Cζ → Δ is as described in Theorem 5.1, and all other
fibers are smooth. Using (5.8) and the equations x = ζsnj−nxn and y = snyn,
one sees that, for 1 ≤ n < nj , the map Fζ : Cζ → D is given locally near
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En ∩ En−1 = {yn−1 = s = 0} ∩ {xn = s = 0} by

Fζ(xn, yn−1, s) =
(
(xn)mj(nj−n+1) (yn−1)mj(nj−n),(5.9)

× (xn)mj(n−1) (yn−1)nmj , s|m|
)

with xnyn−1 = s where y0 = y, and near Enj−1 ∩ C1 by the same formula
with C1 and x labeled as Enj

and xnj
and with xynj−1 = ζs.

We can now relate the fibers of Cζ to the spaces Zm,f,r in (4.14). Note
that for each vector ζ as in Step 4, the restriction of Fζ to the fiber over
r = s|m| 	= 0 is a map

(5.10) fζ,s = Fζ |Cζ,s
: Cζ,s → Dr.

Lemma 5.2. Whenever s 	= 0 and r = s|m|, we have

(5.11) Zm,f,r =
⋃

ζ∈Qm

{ fζ,s},

where the union is over all vectors ζ.

Proof. Recall that f : C → D0 has contact marked points qi
j over qi ∈ D0

with multiplicities given by an odd partition mi for 1 ≤ i ≤ k + 3. By our
choice of qi in Step 1, around each qi

j the map Fζ is

(5.12) (x, s) → (f(x), s|m|).

Hence, the pullback F∗ζQi of D → Δ consists of �(mi) sections Qi
j given by

Qi
j(s) = (qi

j , s). After marking the points Qi
j ∩ Cζ,s, each of the |m| maps

(5.10) has contact marked points Qi
j(s) over Qi(r) with multiplicity mi

j ,
and thus lies in the space Mr of (4.11). As r = s|m| → 0 we have fζ,s → f
in the Gromov topology; in particular, the stabilization of the domain Cζ,s

converges to C. The lemma follows because |Qm| = |m|2 = |Zm,f,r|. �

Step 6 – Twisting at nodes: The pullback F∗ζL of the spin structure
(L,Φ) on the family D → Δ is not a theta characteristic on the fibers of C.
In this step, we twist F∗ζL by a divisor A to produce a line bundle

(5.13) Nζ = F∗ζL ⊗O
(

1
2Q+A

)
.

over Cζ with the properties described in Theorem 5.1: it restricts to a theta
characteristic on the general fiber, and is especially simple on the central
chains Ēj . This twisting is crucial for later computations.
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Specifically, let Q =
∑

(mi
j − 1)Qi

j be the divisor on Cζ as above and let
A =
∑
Aj where

Aj =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

njmj − 2
2

Ej +
nj−1∑
n=1

(nj−n)mj−2
2 (E1

j;n + E2
j;n) if mj is even,

nj(mj − 1)
2

Ej +
nj−1∑
n=1

(nj−n)(mj−1)
2 (E1

j;n + E2
j;n) if mj is odd.

(5.14)

To compute the restriction of Nζ to the fibers of Cζ we note a general fact: fix
any irreducible component χm of C0 and consider the bundle O(χm) on C.
For each other component χn, let Pmn be the divisor χm ∩ χn. By restricting
local defining functions (cf. [5], page 253) one sees that the restriction of
O(χm) to a general fiber Cs and to χn are:

O(χm)
∣∣
Cs

= O, O(χm)
∣∣
χn

= O
(
Pmn

)
for m 	= n,(5.15)

O(χn)
∣∣
χn

= O
(
−∑m�=nPmn

)
.

Proof of Theorem 5.1. For each ζ and s 	= 0, the ramification divisor of the
map fζ,s in (5.10) is Q|Cζ,s

, and by (5.15) the restriction of Nζ to Cζ,s is

Nζ,s = f∗ζ,s(L|Dr
)⊗O

(
1
2Q|Cζ,s

)
Thus, as in (1.5), Nζ,s is a theta characteristic on Cζ,s and fζ,s has the
associated parity p(Nζ,s). Therefore (5.3) follows from Lemma 5.2. This
completes the proof of part(a) of Theorem 5.1. Part(c) follows similarly,
using (5.15) and noting that fi = Fζ |Ci

has ramification index mj at the
node in Ci ∩ Ei

j;nj−1. Part(b) was shown in Step 5 above. Finally, Part(d)
follows by successively applying (5.15), taking χi to be the various Ei

j;n and
observing that Q is disjoint from the chains Ēj and that

• F∗ζL|Ei
j;n

= O for n = 1, . . . , nj − 1 because the image Fζ(Ei
j;n) is a

point,

• F∗ζL|Ej
= O(mj) since Fζ |Ej

= f |Ej
: Ej → E has degree mj and

L|E = O(1).

�
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6. The operators Lt on the family

For each ζ, we now have an algebraic family Cζ → Δ and a bundle Nζ on
Cζ . One can then apply the construction of Section 2 to the fibers of Cζ to
obtain operators

(6.1) Ls,t = ∂Cs
+ tRs : Ω0(Cζ,s, Nζ,s) → Ω0,1(Cζ,s, Nζ,s)

that are a family version of the operators (2.4). This section describes a
global construction on the complex surface C whose restriction to fibers
gives the operators (6.1). The global construction will be important in later
sections to obtain estimates on Ls,t that are uniform in s.

Lemma 6.1. Each spin structure on D determines a nowhere-zero section
ψ of KC ⊗ (N ∗

ζ )2 ⊗O(−Â) where, with the same notation as (5.14),

Â =
�∑

j=1

Âj with Âj =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
2Ej +

nj−1∑
n=1

2(E1
j;n + E2

j;n) if mj is even,

njEj +
nj−1∑
n=1

(nj − n)(E1
j;n + E2

j;n) if mj is odd

Proof. The spin structure (4.15) on D vanishes to first order along E ⊂ D0,
so defines a section φ of KD ⊗ (L∗)2 ⊗O(−E). Noting that O(D0) = O, we
can write O(−E) as O(D1 +D2). Using the definition (5.13), the pullback
ψ = F∗ζ φ is then a section of

(6.2) F∗ζ (KD)⊗O(Q)⊗O(2A)⊗ (N ∗
ζ )2 ⊗F∗ζO(D1 +D2).

Recall that the ramification divisor RFζ
of the map Fζ has local defining

functions given by the Jacobian of Fζ . One can thus see from (5.9) and
(5.12) that RFζ

= Q+ |m|Cζ,0. Choosing a trivialization O(Cζ,0) = O, the
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Hurwitz formula gives

(6.3) KCζ
= F∗KD ⊗O(RFζ

) = F∗ζKD ⊗O(Q).

From the second equation in (5.9) we also have

(6.4) F∗ζO(D1 +D2) = O

⎛⎝|m|C1 + |m|C2 +
�∑

j=1

nj−1∑
n=1

nmj(E1
j;n + E2

j;n)

⎞⎠
because {vi = 0} ⊂ Di and {yi

n−1 = 0} ⊂ Ei
j;n. Together with the fact

O(|m|Cζ,0) = O, the last two displayed equations imply that the right-hand
side of (6.2) is KC ⊗ (N ∗

ζ )2 ⊗O(−Â). �

Corollary 6.2. There is a conjugate-linear bundle map Rζ : Nζ → K̄C ⊗
Nζ whose divisor is Â.

Proof. Choose a global section a of O(Â) with divisor Â. Then with ψ as in
Lemma 6.1, ψ ⊗ a is a section of KC ⊗ (N ∗)2 whose divisor is Â. Regarding
this as a map ψ̂ : Nζ → KC ⊗N ∗

ζ and composing with the (conjugate-linear)
star operator ∗̄ : Ω2,0(C,N ∗

ζ ) → Ω0,2(C,Nζ) gives a bundle map

(6.5) Rζ = ∗̄ ψ̂ : Nζ → K̄C ⊗Nζ

with divisor Â. �

Because C is a smooth surface, the canonical bundle KC is isomorphic
to the relative dualizing sheaf ωζ of ϕζ : C → Δ. In fact, the restrictions of
KC and ωζ are related by the commutative diagram

(6.6) ωζ ⊗N ∗
ζ |Cs ∗̄s

��

∧ds
��

ω̄ζ ⊗Nζ |Cs

∧ds̄
��

KC ⊗N ∗
ζ |Cs

∗̄ �� K̄C ⊗Nζ |Cs

where ∗̄ is as in Corollary 6.2, ∗̄s is the similar operator on the fiber Cs of
C, and all four arrows are isomorphisms. In local coordinates (x, y, s) near
a node xy = s of Cs, we have ds = xdy + ydx and ωζ is freely generated
by τ = dx

x = −dy
y . The star operator on Cs is multiplication by i on (1, 0)

forms and by −i on (0, 1)-forms, so ∗̄τ = ∗τ̄ = −iτ̄ . The diagram commutes
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because, after restricting to Cs and suppressing the bundle coordinates, τ ∧
ds = dx

x ∧ (xdy + ydx) = dx ∧ dy and hence

∗̄(τ ∧ ds) = ∗(dx̄ ∧ dȳ) = −i ∗ (dx̄ ∧ dȳ) = −i ∗ (τ̄ ∧ ds̄) = (∗̄sτ) ∧ ds̄.

Diagram (6.6) implies that for each s there is a section ψs of ωζ ⊗N ∗
ζ

on Cζ,s such that ψs ∧ ds is the section ψ̂ in (6.5). Consequently, for each s,
Rs = ∗̄sψs is a conjugate-linear bundle map

(6.7) Rs : Nζ,s → ω̄ζ ⊗Nζ,s

between bundles on the curve Cζ,s. Let Nζ,i = Nζ |Ci
for i = 1, 2.

Theorem 6.3. The map (6.7) satisfies Properties (2.2). Furthermore,

(a) On each smooth fiber Cζ,s, Rs is an isomorphism Nζ,s → K̄Cζ,s
⊗Nζ,s.

(b) For i = 1, 2, the restriction of R0 to Ci is a map Ri : Nζ,i → K̄Ci
⊗Nζ,i

with divisor Rev
fi

.

Proof. The proof of Lemma 2.1 shows that Rs satisfies Properties (2.2). By
Diagram (6.6) we have Rs ∧ ds̄ = ∗̄sψs ∧ ds̄ = Rζ , so the divisor of Rs is
Â ∩ Cζ,s. Statement (a) holds because this intersection is empty for s 	= 0.
For (b), note that the restriction of ωζ to Ci is KCi

⊗O(
∑

j p
i
j), so the

divisor of Rs is Ci ∩ Â−
∑

j p
i
j = Rev

fi
. �

It is useful to have a local formula for R around the nodes pi
j , where Ci

meets the chain Ēj . As in (5.9), we have local coordinates (x, y, s) around
pi

j in which C1 = {y = s = 0} and Ei
j,nj−1 = {x = s = 0}. By Corollary 6.2

and the definition of Â, there is a local nowhere-zero section ν of Nζ and a
constant a ∈ C∗ such that R(ν) = ax̄p τ̄ ⊗ ν where p = 2 if mj is even and
p = 1 is mj is odd. By replacing ν by eiθν, we can assume that a is real and
positive. Thus after writing τ as dx/x we have

(6.8) R(ν)
∣∣∣
Ēj

= 0 R(ν)
∣∣∣
Ci

=

{
ax̄ dx̄⊗ ν mj even
a dx̄⊗ ν mj odd.

for some real a > 0. Similarly, one finds that at each interior nodes of Ēj ,
there are local coordinates in which R(ν) = ax̄ ȳ2 dx̄⊗ ν.

We conclude this section by stating two facts about the index of the
operators (6.1).
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Lemma 6.4. For s 	= 0, the operator Ls,t on Cs has index 0, and for i = 1, 2
the restriction of L0,t to Ci has index −�ev where �ev is the number of even
ramification points of fi = f0|Ci

.

Proof. For each s, Ls,t is a compact perturbation of the ∂-operator, so its
index is twice of the holomorphic Euler characteristic χ(Nζ,s). But χ(Nζ,s) =
0 for s 	= 0 because Nζ,s is a theta characteristic on Cs. Similarly, for i = 1, 2,
N|Di

is a theta characteristic on Di so 2 deg(N|Di
) = 2h− 2. Theorem 5.1c,

the Riemann–Roch and Riemann–Hurwitz formulas then give
(6.9)
2χ(Nζ,i) = −deg(f∗i TDi) + deg(Rfi

−Rev
fi

) + χ(Ci) = −deg(Rev
fi

) = −�ev.

�

7. Bundles of eigenspaces

In Section 5, we constructed curves Cζ → Δ over the disk whose general
fibers are smooth and whose central fiber C0 is a union C1 ∪ E ∪ C2 of
nodal curves where C1 and C2 are disjoint and

Ē = ∪jĒj ,

where each Ēj is the chain of rational curves (5.4). For simplicity, we will
drop ζ from our notation. There is also is a line bundle N → C whose restric-
tion Ns to each fiber Cs comes with the bundle map Rs described in Theo-
rem 6.3 and the one-parameter family of operators

Lt = ∂ + tRs

To take adjoints, we fix a Hermitian metric on N and a Riemannian metric g
on C, with g chosen to be Euclidean in the local coordinates (x, y, s) around
in node of C0 (as described in Section 5).

On each curve Cs, the operator L∗tLt on Ns has non-negative real eigen-
values {λ} that vary continuously with s for s 	= 0. Given a function λ1(s) >
0 on Δ (we will fix a value later), consider the family of vector spaces E → Δ
whose fiber over s is spanned by the low eigensections as in (3.6):

(7.1) Es = spanR

{
ξ ∈ L2(Cs;Ns)

∣∣ L∗tLtξ = λξ for λ < λ1

}
.

The eigensections of LtL
∗
t give a similar family F → Δ of L2 sections:

(7.2) Fs = spanR

{
η ∈ L2(Cs;KCs

⊗Ns)
∣∣ LtL

∗
t η = λη for λ < λ1

}
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and Lt is a bounded finite-dimensional linear map Lt : Es → Fs. In general,
the dimension of such eigenspaces can jump as s varies. This section estab-
lishes conditions under which E and F are actually vector bundles over Δ.

We will show that the spaces of Es can be modeled on the space of
holomorphic sections of N along the central fiber C0.

Lemma 7.1. Let E0 = {continuous ψ ∈ H0(C0, N0)}. There are L2 orthog-
onal decompositions

(7.3) E0 = W ⊕ E ′0 W =
⊕

j|mj even

Wj ,

where W = ker Lt ∩ E0, each Wj is a 1-dimensional complex space and E ′0 ∼=
H0(C1, N1)⊕H0(C2, N2). Furthermore, F0 = ker L∗0,t|C0 has real dimension
2�ev.

Proof. Because R is non-trivial on C1 ∪ C2 and trivial on Ē, the proof of
Theorem 2.2 shows that any continuous ψ ∈ ker Lt vanishes on C1 ∪ C2 and
is holomorphic on Ē, so lies in the direct sum of the L2 orthogonal complex
vector spaces

(7.4) Wj =
{
continuous ψ ∈ H0(C0, N0) with support on Ēj

}
.

If mj is odd, N0 is O(1) on the center component of Ēj and is trivial the
other irreducible components; the boundary conditions (7.4) then imply that
Wj = 0. If mj is even, N0 is O(1) on the first and last components of Ēj

and trivial on the others; hence Wj
∼= C and each ψ ∈Wj is constant on Ēj

except on the end components.
One similarly sees that each ψ ∈ H = H0(C1, N1)⊕H0(C2, N2) extends

continuously and holomorphically over C0; the extension is unique modulo
W and hence there is a unique extension ψ̄ perpendicular to W . Let E ′0 ∼= H
denote the set of all extensions. Then for each continuous ξ ∈ H0(C0, N0)
there is a ψ̄ ∈ E ′0 so that ξ − ψ̄ has support in Ē, and therefore lies in W as
above. Thus, E0 decomposes as in (7.3).

Finally, note that the restriction of each η ∈ F0 = ker L∗0,t to each com-
ponent of Ē satisfies (∂∗ + tR∗)η = 0 with R = 0, so by Theorem 5.1d lies
in H01(P1,O) = 0 or H01(P1,O(1)) = 0. Thus, η = η1 + η2 where ηi lies in
the kernel of the operator Li = L0,t|Ci

. But Theorem 2.2 and Lemma 6.4
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show that

dim ker L∗i = dim ker Li − index Li = 0− (−�ev) = �ev,

so we conclude that F0 has real dimension 2�ev. �
The following theorem shows that the decomposition Lemma 7.1 on the

nodal curve C0 carries over to nearby smooth curves. Parts (a) and (b)
cover the case where |t| is small, part (d) covers the case where |t| is large,
and (c) holds for all t. The upshot is that the low eigenspaces are of three
types: one whose eigenvalues grow linearly with t, one whose eigenvalues
are logarithmically small in |s|, and one whose eigenvalues are bounded by
|s|2(1 + t2) and which splits as a sum of 2-dimensional eigenspaces.

(7.5) λ1(s) =
c0

| log |s|| .

Theorem 7.2. (a) There is a c0 > 0 such that, with λ1(s) as in (7.5)
and 0 < |s|, |t| � 1, the low eigenspaces (7.1) and (7.2) form vector bundles
EW , E ′ and F ′ over Δ and F0 over Δ \{0} and a diagram of bundle maps

Δ× (W ⊕ E ′0)
Φ−−−−→∼= EW ⊕ E ′⏐⏐�Lt

F0 ⊕F ′

(7.6)

(b) There are positive constants C1, C2, C3 such that for t 	= 0

EW =
⊕{

Eλ

∣∣λ ≤ C1|s|2(1 + t2)
}

(7.7)

E ′ =
⊕{

Eλ

∣∣C2t
2 ≤ λ ≤ C3(|s|2 + t2)

}
.

(c) For t 	= 0 and |s| � 1 + t2, the first component of Φ is a bundle isomor-
phism

(7.8) Δ×⊕j Vj
ΦV

−−−−→∼=
⊕

j Ej ,

where the Ej are real rank 2 bundles that are L2 orthogonal up to terms of
order O(|s|

√
1 + t2).

(d) For each τ > 0 there is a δ > 0 such that (7.8) is an isomorphism
onto the sum of the eigenspaces with eigenvalue λ ≤ C1|s|2(1 + t2), whenever
|t| ≥ τ and |s| < δ.
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The proof of Theorem 7.2 occupies the rest of this section. The method
is straightforward: transfer elements of ker Lt on C0 to Cs by extending and
cutting off, then estimate using the coordinates introduced in Section 5.

Proof. For each node p of C0, the construction of Section 5 provides coordi-
nates (x, y) on a ball B(p, ε) ⊂ C in which Cs = {xy = ζs}. After shrinking ε
we may assume these balls are disjoint and that on each ball there is a local
holomorphic section ν of N with 1

2 ≤ |ν|2 ≤ 2 pointwise. Let B(ε) be the
union of these balls. Each ψ ∈W ⊕ E ′0 is continuous and can be extended as
follows:

• On C0 ∩B(ε), ψ has the form fν for some continuous holomorphic
function. Extend this to the section ψin = Fν by setting

F (x, y) = f(x, 0) + f(0, y)− f(0, 0)

on each B(p, ε). This extension is continuous, holomorphic and agrees
with ψ along C0.

• The construction of Section 5 shows that C0 \B(ε) is a disjoint union of
embedded smooth curves. Hence we can extend ψ to a smooth section
ψout of N on a neighborhood of C0 \B(ε) by parallel translation in
the normal directions; the normal component of ∇ψout then vanishes
along C0.

To merge the above extensions, fix a smooth bump function βε supported on
B(2ε) with βε = 1 on B(ε) and with 0 ≤ βε ≤ 1 and |dβε| ≤ 2/ε everywhere.
Then

(7.9) ψ̂ = βεψ
in + (1− βε)ψout

is a smooth extension of ψ to a section of N on a neighborhood of C0.
After choosing an L2 orthonormal basis {ψk} of W ⊕ E ′0, this construction
creates extensions {ψ̂k}. We can then define a linear map Ψs : W ⊕ E0 →
C∞(Cs, Ns) for each small s by setting

(7.10) Ψs(ψk) = ψk,s where ψk,s = ψ̂k

∣∣
Cs

for each basis vector ψk and extending linearly. For each j, ψs = ψk,s is
continuous, holomorphic on Cs ∩B(ε), and satisfies the following bounds
for |s| < 1:
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(i) Because ψin and ψout are continuous extensions of ψ, we have |ψin
s −

ψout
s | ≤ c1(ε)|s| on the region As(ε) = Cs ∩ (B(2ε) \B(ε)), which con-

tains the support of dβε.

(ii) On the complement of B(ε), the curves Cs converge to C0 in C1 as s→
0 and ∂ψk,0 = 0. Hence, |∂ψout

k,s | ≤ c2(ε)|s| on the support of 1− βε.

The L2 norm of Ltψs = ∂βε(ψin
s − ψout

s ) + (1− βε) ∂ψout
s + tRψk,s therefore

satisfies

‖Ltψk,s‖2 ≤ c3|s|2
(∫

As(ε)

8
ε2

+ Area(Cs)

)
+ c4t

2‖ψk,s‖2(7.11)

≤ c5(|s|2 + t2)‖ψk,s‖2

where the last inequality holds because R is bounded and ‖ψk,s‖ → ‖ψk‖ = 1
as s→ 0.

If ψk ∈W then (7.11) can be strengthened. There is a basis {ψj} of
W where the support of ψj lies in an even chain Ēj and R = 0 along that
chain; we therefore have |Rψj,s| ≤ c6|s||ψj,s| outside the 2ε-balls around the
even nodes pi

j . In those 2ε-balls, there are local coordinates (x, y) in which
xy = ζs on Cs and R has the form (6.8) and ψk = by for some b ∈ C (cf.
Theorem 5.1d). Therefore, |Rψj,s| ≤ c3|x̄ȳ| = c7|s| and (7.11) becomes

(7.12) ‖Ltψj,s‖2 ≤ c8|s|2(1 + t2)‖ψj,s‖2.

The constant c5 and c8 can be taken independent of j and k, and hence
(7.11) holds for all ψ ∈ E0 and (7.12) holds for all ψ ∈W .

We also have a lower bound on ‖Rψs‖ for ψs ∈ E ′. In this case, ψ is
holomorphic and is non-zero on an open set in C1 ∪ C2. The facts that |R|
is non-zero almost everywhere on Ci and ‖ψs‖ → ‖ψk‖ = 1 as s→ 0 imply
that, for small |s|,

(7.13) ‖Rψs‖2 ≥
∫

Ci\B(2ε)
t2|R|2 |ψs|2 ≥ c9t

2

∫
Ci\B(2ε)

|ψs|2 ≥ c10t
2‖ψs‖2.

At this point we can define E and the decomposition E = EW ⊕ E ′ by pro-
jecting onto low eigenspaces. For this, we assume that s is not zero and is
small enough that |s| < c5(|s|2 + t2) < 1

2λ1(s) with λ1(s) as in (7.5). Apply-
ing Lemma 7.3 below twice shows that:
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• The composition Φs = πsΨs : E0 → Es of Ψs with the L2 orthogonal
projection into the sum of the eigenspaces Eλ on Cs with λ ≤ c5(|s|2 +
t2) is an isometry up to terms of order O(|s|+ |t|)).

• The composition ΦW
s = πsΨW

s : W → Es of ΨW
s with the L2 orthog-

onal projection into the sum EW of the eigenspaces Eλ on Cs with
λ ≤ c8|s|2(1 + t2) is an isometry up to terms of order O(|s|

√
1 + t2); it

has the form πW Φs for small |s| and |t| ≤ T .

Because basis elements {ψj} of W = ⊕Wj have disjoint support, the image
ΦW (⊕Wj) defines real rank 2 subbundles Ej ⊂ EW as in (7.8).

Now let E ′ be the orthogonal complement of EW in E . Each eigenvec-
tor ψ ∈ E ′ with eigenvalue λ and norm 1 can be written as an orthog-
onal sum ψs + v with ψs in the image of (7.10) and v ∈ EW satisfying
‖v‖ ≤ c8(

√
�(s) + |t|) ‖ψs‖. We then obtain a lower bound on λ = ‖Ltψ‖2

using (2.5), the inequality 2(a+ b+ c) ≥ a2 − 4b2 − 4c2 and (7.13), noting
that R is bounded and ψ has unit norm:

λ ≥ t2‖Rψ‖2 ≥ t2

2
[
‖Rψs‖2 − 4‖Rw‖2 − 4‖Rv‖2

]
≥ t2

4
[
c11 − c12

(
�(s) + |t|2

)]
.

For small |s| and |t|, this gives the inequality λ ≥ C2t
2 in (7.7).

In fact, one can choose the constant c0 in the definition (7.5) of λ1 so that
Φs : E0 → Es is surjective. The proof, which is crucial but rather technical,
is given in the appendix.

To finish, set F0 = Lt(EW ) and F ′ = Lt(E ′) and observe that Lt maps
the non-zero eigenspaces of L∗tLt isomorphically to the eigenspaces of LtL

∗
t

with the same eigenvalues. But ker Lt = 0 for s 	= 0 by Theorem 6.3 and
ker Lt = W on C0 by Lemma 7.1, so after shrinking Δ, F ′ is a bundle over
Δ and F0 is a bundle over Δ \{0}. Finally, given τ > 0, we have C1|s|2(1 +
τ2) < min{λ(s), C2τ

2} for all small |s|; the eigenvalue bounds (7.7) then
show that the sum of the eigenspaces in Theorem 7.2d is exactly EW . �

The proof of Theorem 7.2 made use of the following elementary lemma.

Lemma 7.3. Let L : H → H ′ be a bounded linear map between Hilbert
spaces so that all eigenvalues of L∗L lie in [0, μ] ∪ [λ1,∞) with 0 < μ < λ1.
Consider the low eigenspace

Elow =
⊕
λ≤μ

Eλ
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and suppose that V ⊂ H is a subspace with |Lv|2 ≤ cμ |v|2 for all v ∈ V .
Then the orthogonal projection π : V → Elow is the identity plus an operator
of order O(

√
μ).

Proof. Fix v ∈ V and write v = v0 + w where v0 = πv and 〈v0, w〉 = 0. Then
〈Lv0, Lw〉 = 〈L∗Lv0, w〉 vanishes because L∗Lv0 ∈ Elow, while |Lw|2 ≥
λ1 |w|2 because w ⊥ Elow. Thus, λ1 |w|2 ≤ |Lw|2 = |Lv|2 − |Lv0|2 ≤ c1μ|v|2,
which means that |v − πv| = |w| ≤ c2

√
μ |v|. �

8. Parity formulas

As Section 7, we fix a partition m, a map f = (f1, fe, f2) in Mm,0 and
ζ ∈ Qm; these data determine maps fζ,s : Cζ,s → Ds. Theorem 5.1 shows
that for s 	= 0 the restriction of N is a theta characteristic Ns on Cs, so
defines a parity p(fζ,s). In fact, by Theorem 3.1, p(fζ,s) is the TR spectral
flow of the finite-dimensional linear map

Ls,t = ∂ + tRs : Es → Fs

between the fibers of the bundle of Theorem 7.2. Moreover, this sign is
independent of s 	= 0 and t 	= 0. In this section we will express the parity as
a product of 2× 2 determinants.

When the partition m is odd, f1 and f2 themselves have parities given
by the theta characteristics N1 and N2 on C1 and C2 (cf. Theorem 5.1), and
these determine the parity of fζ,s.

Lemma 8.1. If m is odd then for every ζ ∈ Qmand s 	= 0 the parity of fζ,s

is
p(fζ,s) = p(f1) · p(f2).

Proof. If m is odd, Lemma 7.1 shows that W = 0 and the complex dimen-
sion of E0 is h0(N1) + h0(N2). By the discussion in Section 3, p(fζ,s) is
sgn detLs,t : E ′s → F ′s, and this is independent of s for small |s| and |t| in
the trivialization of Theorem 7.2a. But for s = 0, L0,t = tR0|E0 is a complex
anti-linear isomorphism and therefore, as in (3.4),

sgn detL0,t = (−1)h0(N1)+h0(N2) = p(f1) · p(f2).

�
If m is not an odd partition, the parity can be partially computed by

the method of Lemma 8.1.
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Theorem 8.2. For each partition m and s 	= 0, and for every ζ ∈ Qm and
t 	= 0, the parity of fζ,s is given by

(8.1) p(fζ,s) = (−1)h0(N1)+h0(N2)
∏

j |mj even

sgn detLt

∣∣∣
Ej

.

Proof. Theorem 3.1 again shows that the parity is sgn detLs,t where Ls,t

is the map Lt in Theorem 7.2 on the fiber over s 	= 0. Since Lt preserves
eigenspaces and ker Lt = 0 for non-zero s and t, we have

p(fζ,s) = sgn detLs,t

∣∣
E ′s · sgn detLs,t

∣∣
EW
.

The first factor is equal to p(f1)p(f2) as in the proof of Lemma 7.1. To decom-
pose the second factor, choose an L2 orthonormal basis of EW consisting of
eigenvectors ψi

j ∈ Ej of L∗s,tLs,t with eigenvalues λi
j . Then ‖Ls,tψ

i
j‖2 = λi

j ,
while Theorem 7.2c gives

|〈Lψi
j , Lψ

i
j′〉| = |〈L∗Lψi

j , ψ
i
j′〉| = λi

j |〈ψi
j , ψ

i′
j′〉| ≤ c1|s|

√
1 + t2 λi

j

whenever j′ 	= j. Thus for fixed t and 0 < |s| � t, the matrix of Ls,t on
EW has a block form whose off-diagonal entries that are arbitrarily small
compared to the diagonal entries, giving (8.1). �

We conclude this section by observing that (8.1) remains valid when
Lt is replaced by a perturbation of the form L̂t = Lt + εtS for certain S.
Specifically, applying Theorem 2.2 and the inequality 2t|(∂ξ, Sξ)| ≤ |∂ξ|2 +
t2|Sξ|2, we have∫

Cζ,s

|L̂tξ|2 =
∫

Cs

|Ltξ|2 + 2tε(∂ξ, Sξ) + ε2t2|Sξ|2(8.2)

≥
∫

Cζ,s

(1− ε)|∂ξ|2 + t2
(
|Rξ|2 − ε|Sξ|2

)
.

Now recall from (6.8) that R has the local expansion R(ν) = ax̄dx̄ ν at
each even node p = pi

j . Take S of the same form: S(ν) = bx̄dx̄ ν near p
and bumped down to 0 outside a small neighborhood of p. Then there are
constants c1, c2 such that

|Sξ|2 ≤ c1r
2|ξ|2 ≤ c2|Rξ|2.

Substituting into (8.2) shows that there is an ε0 such that ker L̂t = 0 for
all ε ≤ ε0. This means that sgn det L̂t = sgn detLt, so Proposition 7.3 holds
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with R replaced by

(R+ εS)(ν) = (1 + εb) x̄dx̄ ν + · · ·

for small ε. In this sense, we are free to replace the leading coefficient in the
Taylor expansion of R by any small perturbation and still have formula (8.1).

9. Concentrating eigensections

The last factor in the parity formula (8.1) is independent of non-zero s and
t. In this and the next section, we explicitly evaluate (8.1) by first taking t
large, and then s small. The key observation is that as t→∞ the elements
of ker L∗t on C0 concentrate around the points where R vanishes, and that on
nearby smooth curves Cs the low eigensections of L∗tLt similarly concentrate
with essentially explicit formulas.

On each smooth curve Cs, the adjoint of Lt is the map L∗t : Ω0,1(Ns) →
Ω0(Ns) given by

(9.1) L∗t = ∂
∗ + tR∗

where R∗ (the pointwise adjoint of R) is a real bundle map that satisfies
R∗J = −JR∗. Thus, R∗ is zero at those points where R = 0, and is an iso-
morphism at all other points of Cs.

Lemma 9.1. A = ∂R∗ +R∂
∗ is a bundle endomorphism and for each s 	= 0

(9.2)
∫

Cs

|L∗t η|2 =
∫

Cs

|∂∗t η|2 + t〈η,Aη〉+ t2 |R∗η|2 ∀η ∈ Ω0,1(Cs, Ns).

Proof. Formula (9.2) follows immediately from (9.1). Clearly A is a first
order linear differential operator, so is a bundle endomorphism if its symbol
is 0. For a non-zero tangent vector v, the symbols σv of ∂ and −σ∗v of ∂∗ are
isomorphisms, in fact, σvσ

∗
v = |v|2 Id. Taking the symbol of Equation (2.2c)

gives R∗σv = σ∗vR. But then −|v|2 times the symbol is A is

−|v|2 (σvR
∗ −Rσ∗v) = σvR

∗σvσ
∗
v − σvσ

∗
vRσ

∗
v = σv [R∗σv − σ∗vR]σ∗v = 0.

�

Lemma 9.2. For each neighborhood B of the set of zeros of R∗ there is
a constant c > 0 such that for all t ≥ 1 each solution of L∗sLtη = λη with
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λ ≤ 1 satisfies ∫
C\B

|η|2 ≤ c

t

∫
C
|η|2.

Proof. Noting that R∗ is an isomorphism on C \ B and applying (9.2) gives
the inequalities∫

C\B
|η|2 ≤ c

t2

∫
C\B

t2|R∗η|2 ≤ c

t2

∫
C
|L∗t η|2 + t |〈η,Aη〉|

≤
(
cλ

t2
+
c

t
‖A‖∞

)∫
C
|η|2.

�

Lemma 9.2 means that as t→∞ the low eigensections of L∗tLt concen-
trate in small neighborhoods D(ε) of the zeros of R∗. The zeros occur only
at the nodes with even multiplicity, where R is given by (6.8). In particular,
the elements of ker L∗t on C0 concentrate at the even nodes pi

j ; these are
explicitly described in the next lemma.

Writing η = φdx̄⊗ ν in the coordinates of (6.8), the equation L∗t η = 0
takes the form

(9.3) −∂φ
dx

+ at x̄φ̄ = 0

with a > 0. Regarded as an equation on C, this has the explicit L2-normalized
solution

(9.4) η = φdx̄⊗ ν, where φ(x) = i
√

at
π e−atxx̄.

By cutting off and gluing, these forms give approximate elements of ker L∗t
on curves. For example, we can glue onto C1 as follows. Fix disjoint disks
Dj = D(p1

j , 2ε) in C1 with coordinate x centered on the points p1
j of even

multiplicity. Choose a cutoff function βj = βε on Dj as defined before (7.9)
and set

(9.5) Fapprox
t = spanR

{
ηj = βj · φ(x) dx̄⊗ ν

∣∣ j = 1, . . . , �ev
}
.

Lemma 9.3. For large t, the L2 orthogonal projection πa : Fapprox
0,t →

ker L∗t on C1 is an isomorphism and an isometry up to terms of order
O(1/t).
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Proof. Integration in polar coordinates shows that 1
2 ≤ ‖ηj‖ ≤ 2 for all j and

all large t. Also, L∗t ηj = (∂ + tR∗)(βjη) = βjL
∗
t η − ∗(∂β ∧ ∗η) with L∗t η = 0.

Integrating using (9.4) yields

(9.6) ‖L∗t ηj‖2 ≤
∫

Dj

|dβ|2 |η|2 ≤ c1
ε2

∫ 2ε

ε
φ2(r) rdr ≤ c2

t2
‖ηj‖2

after noting that t2 e−2atε2 ≤ ε2 for large t. Lemma 7.3 then shows that πa

is an isometry up to terms of order 1/t. It is an isomorphism because the
{ηj} are linearly independent (they have disjoint support) and ker L∗t and
Fapprox

0,t have the same dimension �ev by Lemma 7.1. �

Lemma 9.3 is easily modified to apply to the smooth fibers Cs of C → Δ.
For each node pi

j of C0 with even multiplicity, let βi
j to be the function βε

as in (7.9) in (x, y) coordinates on the ball B(pi
j , 2ε) in C and replace (9.5)

by the 2�ev-dimensional real vector space

Fapprox
t = spanR

{
ηi

j = βi
j · φ(x) dx̄⊗ ν

∣∣ j = 1, . . . , �ev, i = 1, 2
}
.

The restriction to Cs followed by the L2 orthogonal projection gives a linear
map πa : Fapprox

t → F low
t onto the low eigenspace of LtL

∗
t .

Theorem 9.4. Whenever 0 < |s| ≤ 1/t2 and t is large, πa : Fapprox
t → F low

t

is an isomorphism and an isometry up to terms of order O(1/t).

Proof. For each i, j, the support of ηi
j lies in the portion of Cs given by

(x, ζs/x) for |s|/2ε ≤ |x| ≤ 2ε with metric (A.3). Integration in polar coor-
dinates shows that 1

2 ≤ ‖ηi
j‖ ≤ 2 for all large t. Noting that the support of

dβε lies in A ∪A′ where A = {ε ≤ r ≤ 2ε} and A′ = {|s| ≤ 2εr ≤ 2|s|}. Then
the L2 norm of L∗t η is bounded by the first integral in (9.6) with the domain
Dj replaced by A ∪A′. On A, the metric (A.3) approaches the Eucidean
metric as s→ 0, so the bound (9.6) holds. On A′, we can replace the con-
formally invariant quantity |dx̄|2 d vols by its value in the Eucidean metric,
namely 2rdrdθ and replace |dβε|2 by its euclidean value times γ−1. Noting
that |dβε|2γ−1 ≤ 4|εs|−2

(
1 + |s|2r−4

)−1 ≤ c1ε
−2 on A′ we have, as in (9.6),

(9.7)
∫

A′
|dβε|2 |ηi

j |2 d vols ≤
c2
ε2

∫ |s|
ε

|s|
2ε

e−2atr2
rdr ≤ c3

t|s|2
ε4

≤ c4
t2
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where we have used the inequalities |s| ≤ 1/t2 and e−x − e−4x ≤ 4x for small
x and assumed that t ≥ ε−4. Combining these bounds yields

(9.8) ‖L∗t ηi
j‖2 ≤

c5
t2
‖ηi

j‖2.

Lemma 7.3 then shows that πa is an isometry up to O(1/t) terms. It is an
isomorphism because (7.6) implies that for s 	= 0 F low

t
∼= EW

∼= W has real
dimension 2�ev. �

10. Cancellation for even partitions

For each partition m and each ζ ∈ Qm, Theorem 8.2 expresses the parity
p(fζ,s) in terms of the linear operators Lt,j between the low eigenspaces
E low

j and Ft,j described in Theorem 7.2 and, for large t, Theorem 9.4.
In this section we will use the concentration principle of Section 9 to show
the following remarkable cancellation property.

Theorem 10.1. Let m be an even partition as above and s 	= 0. Then∑
ζ∈Qm

p(fζ,s) = 0.

To prove Theorem 10.1, fix an even partition m = (m1, . . . ,m�) and
ζ = (ζ1

1 , ζ
2
1 , . . . , ζ

1
� , ζ

2
� ) in Qm and choose an even component mj of m. We

will focus on the chain Ēj corresponding to the chosen mj and the nodal
points p = p1

j ∈ C1 ∩ Ēj and q = p2
j ∈ C2 ∩ Ēj at the two ends of Ēj . For

any bases {ψ1, iψ1} of E low
j and {η1, η2} of F low

j the jth factor in (8.1) is the
sign of the determinant of the matrix

(10.1) Lt,j = Lt

∣∣
E low

j

=
(

(η1, Ltψ1) (η2, Ltψ1)
(η1, Ltψ2) (η2, Ltψ2)

)
whose entries are given by conformally invariant L2 inner products

(η, ξ) =
∫

Cζ,s

Re(η ∧ ∗ξ)η, ξ ∈ Ω0,1(Cs, Ns)

on smooth fibers Cζ,s of Cζ . Theorems 7.2 and 9.4 give explicit formulas for
sections ψj and ηk which give bases up to terms of order O(

√
|s|); using

these in (10.1) will correctly give sgn detLt,j for small s.
The results of Section 9 show that for large t the inner products in

the first column of (10.1) are concentrated near p, and those in the second
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column are concentrated near q. Thus, detLt,j can be regarded as the con-
tribution of an “instanton” tunneling across the chain Ēj between p and q.

To proceed, we need coordinate formulas for ψ, η1 and η2. Recall that
there are local coordinates (x, y) and a local holomorphic section ν of N
defined a ball B(p1

j , 2ε) so that Cζ,s is locally given by xy = ζs, |ν(p)| = 1,
and

R(ν) = ax̄ dx̄⊗ ν
for a positive real constant a (cf. (6.8)). Noting that elements in Wj vanish
to order 1 at p and q, we can take ψ1 and η1 to be the restrictions of

(10.2) ψ = β(r) by ν η =
i

2π
β(ρ) e−atr2

dx̄⊗ ν

to Cζ,s where b ∈ C∗, r = |x|, ρ2 = |x|2 + |y|2 as described in (7.10) and
(9.4) but with η normalized so that its L2 norm satisfies ‖η‖2 ≈ (4πat)−1

for large t.

Lemma 10.2. There is a T such that whenever t > T and 0 < |s| ≤ 1/t we
have

(10.3) (η, Ltψ)Cζ,s
= aRe(ibsζ) e−at|s|2/4ε2

+O
(

1√
t

)
.

Proof. Writing Ltψ = ∂ψ + tRψ with Rψ = βb̄ȳR(ν) = βb̄a xy dx̄⊗ ν and
using the equation xy = ζs, one sees that the L2 inner product is

(η, Ltψ)Cζ,s
= I +

at

2π
Re(ibsζ)

∫
Cζ,s

β(ρ)β(r) e−atr2 |dx̄|2 |ν|2 d vols

with |I| ≤ ‖η‖ · ‖∂ψ‖ ≤ c1|s|/t ≤ c1/
√
t by (7.11), our normalization of η

and the hypothesis on s. As in the proof of Theorem 9.4, we can replace
|dx̄|2 d vols by 2rdrdθ. Writing |ν|2 = 1 + h1 with |h1| ≤ c2r and integrating
over θ gives

(η, Ltψ)Cζ,s
= 2at Re (ibsζ)

∫ ∞
|s|/2ε

(1 + (β − 1) + h2) e−atr2
rdr +O

(
1√
t

)
.

where β = β(ρ)β(r) satisfies |β − 1| ≤ 1 and |h2| ≤ c3r. The first and the
last parts of this integral can be estimated using the formulas∫ ∞

|s|/ε
e−atr2

rdr = 1
2ate

−at|s|2/4ε2
,

∫ ∞
0

r2 e−atr2
dr =

√
π

4 (at)−3/2.
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Noting that β − 1 = 0 for |s|/ε ≤ r ≤ ε and estimating as in (9.7), the middle
integral is dominated by∫ |s|/ε

|s|/2ε
e−atr2

rdr +
∫ ∞

ε
e−atr2

rdr ≤ −1
2at

[
e−atr2

∣∣∣|s|/ε

|s|/2ε
+ e−atε2

]
≤ c4

(
|s|2 +

1
t2

)
.

The lemma follows. �

The remaining entries in (10.1) can be calculated from (10.3). Setting
ψ1 = ψ, ψ2 = iψ and η1 = η, the substitution b �→ ib gives

(η1, Ltψ2)Cζ,s
= −aRe(ibsζ) e−at|s|2/4ε2

+O
(

1√
t

)
.

The entries in the second column of (10.1) are evaluated using similar coor-
dinates (x2, y2, ν2) around q; in these coordinates R(ν2) = a2x̄2dx̄2 ⊗ ν2 for
some real number a2 > 0, and ψ1 and η2 have the form (10.2) with b replaced
by a different constant, which we write as ib2 ∈ C∗. After a little algebra,
one obtains

detLt,j = −aa2

∣∣∣∣Re(ibsζ1
j ) Re(b2sζ2

j )
Re(bsζ1

j ) Re(ib2sζ2
j )

∣∣∣∣ = aa2 |s|2 · Re( bb̄2 ζ1
j ζ

2
j ) +O

(
1√
t

)
.

Proof of Theorem 10.1. By the remark at the end of Section 8 we may
assume that Re(bb̄2 ζ1

j ζ
2
j ) is non-zero for each j with mj even. For these

j, the above formula gives sgn detLt,j = sgn Re(bb̄2 ζ1
j ζ

2
j ) when t is large

and 0 < |s| ≤ 1/t. For each ζ ∈ Qm, Theorem 8.2 therefore shows that

(10.4) p(fζ,s) = (−1)h0(N1)+h0(N2) ·
∏

sgn Re(bb̄2 ζ1
j ζ

2
j )

where the product is over all j with mj even.
Now comes the punch line. Fix an index j with even mj . For each

ζ = (ζ1
1 , ζ

2
1 , . . . , ζ

1
� , ζ

2
� ) in Qm, replacing ζ1

j by −ζ1
j defines an involution

ι : Qm → Qm that reverses the sign of (10.4). Thus the sum∑
ζ∈Qm

p(fζ,s) = 1
2

∑
ζ∈Qm

[
p(fζ,s) + p(fι(ζ),s)

]
= 0.

�
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Theorem 10.1 completes the proof of Theorem 1.1 — the main result
stated in the introduction. Specifically, Lemmas 5.2 and 8.1 imply Theo-
rems 4.2a, 10.1 and (5.3) imply Theorem 4.2b, and the arguments at the
end of Section 4 showed how Theorem 1.1 follows from Theorem 4.2.

11. Calculational examples

This last section uses Theorem 1.1 to explicitly compute the degree d = 4
spin Hurwitz numbers for every genus. For degrees 1 and 2 the computation
is trivial: since the only odd partitions of 1 and 2 are (1) and (12), by (4.4)
the degree d = 1, 2 spin Hurwitz numbers are the etale spin Hurwitz numbers

Hh,p
1 = (−1)p, Hh,p

2 = (−1)p 2h,

which are the GW invariants of Kähler surfaces calculated in [10] and [8].
For notational simplicity, we will write the spin Hurwitz numbers Hh,p

m,...,m

with the same k partitions m of d simply as Hh,p
mk and the etale spin Hurwitz

number Hh,p
d as Hh,p

m0 . The numbers 3 and 4 each have two odd partitions,
namely (3) and (13), and (31) and (14). Thus, by (4.4), it suffices to compute
Hh,p

(3)k and Hh,p
(31)k for all k ≥ 0. The degree d = 3 case is calculated in [9]:

Hh,±
(3)k = 32h−2

[
(−1)k2k+h−1 ± 1

]
where + and − denote the even and odd parities. Here, we will compute the
corresponding degree 4 invariants.

Theorem 11.1. The degree 4 Hurwitz numbers are

Hh,±
(31)k = (3!)2h−2 · 2k

[
± 2k+h−1 + (−1)k

]
for k ≥ 0.

We begin by computing three special cases.

Lemma 11.2. (a) H1,−
4 = 0, (b) H1,−

(31) = −6 and (c) H0,+
(31)3 = 2

3 .

Proof. For a genus one spin curve with odd parity, formula (3.12) of [3]
shows that

(11.1) H1,−
(31)k = 2−k

[(
f(3)(31)

)k − (f(3)(4)
)k]

.
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Here the so-called central character f(3) can be written as f(3) = 1
3 p3 +

a2p2
1 + a1p1 + a0 for some ai ∈ Q and p1 and p3 are the functions of parti-

tions m = (m1, . . . ,m�) of d defined by

p1(m) = d− 1
24 and p3(m) =

∑
j m

3
j − 1

240

The case k = 0 gives (a), and the case k = 1 gives (b).
Next consider a map f in the dimension zero relative moduli space

MV
χ,(31),(31),(31)(P

1, 4). By the dimension formula (4.2), χ = 2 and hence the
domain of f is either a rational curve or a disjoint union of a rational curve
C0 and an elliptic curve C1. Maps of the first type have parity p(f) = 1 since
Nf = O(−1). For maps of the second type,

• f0 = f |C0 ∈MV
2,(1),(1),(1)(P

1, 1) and Nf0 = O(−1),

• f1 = f |C1 ∈MV
0,(3),(3),(3)(P

1, 3) and Nf1 = O (cf. the proof of
Lemma 7.2b of [9]).

It follows that p(f) = p(f0) · p(f1) = 1 · (−1) = −1. Thus by (1.2) and (1.7)
the difference between the ordinary and spin Hurwitz numbers is twice the
contribution of the maps of the second type:

H0,+
(31)3 = H0

(31)3 − 2H0
(1)3 ·H0

(3)3 .

The three (ordinary) Hurwitz numbers on the right-hand side can be calcu-
lated by using formula (0.10) of [12]. This yields (c). �

Lemma 11.3. Theorem 11.1 holds for genus h = 0 and genus h = 1.

Proof. Taking h = h1 = 1 and p = p1 = 1 in Theorem 1.1a and using
Lemma 11.2 gives

(11.2) H1,−
(31)2 = 3H1,−

(31) ·H
0,+
(31)3 = −12.

Using (11.2) and Lemma 11.2b to evaluate the k = 1 and k = 2 cases of
(11.1), one sees that f(3)(31) = −4 and f(3)(4) = 8. Formula (11.1) then
becomes

(11.3) H1,−
(31)k = (−1)k2k − 4k for k ≥ 0.
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For k ≥ 1, we can apply Theorem 1.1a with (h1, p1) = (1,−), (h2, p2) =
(0,+) and k0 = 0 and use Lemma 11.2a to obtain

H1,−
(31)k−1 = 3H1,−

(31) ·H
0,+
(31)k = −3 · 3!H0,+

(31)k .

Together with (11.3), this equation yields

(11.4) H0,+
(31)k = − 1

3·3!
[
(−1)k−12k−1 − 4k−1

]
for k ≥ 1,

and the same formula holds for k = 0 because the invariant H0,+
(31)0 = H0,+

4 is
1
4! . Finally, combining (11.4) with the formula of Theorem 1.1b with (h, p) =
(1,+), shows that

(11.5) H1,+
(31)k = 3H0,+

(31)k+2 + 4!H0,+
(31)k = (−1)k2k + 4k.

�

Proof of Theorem 11.1: By Lemma 11.3 we can assume that h ≥ 2. Apply-
ing the formula of Theorem 1.1a with (h2, p2) = (1,+), we obtain

Hh,p
(31)k = 4!Hh−1,p

(31)0 ·H
1,+
(31)k + 3Hh−1,p

(31) ·H1,+
(31)k+1 .

From this, we can deduce the matrix equation⎛⎝ Hh,p
(31)k

Hh,p
(31)k+1

⎞⎠=

(
4!H1,+

(31)k 3H1,+
(31)k+1

4!H1,+
(31)k+1 3H1,+

(31)k+2

)(
4!H1,+

(31)0 3H1,+
(31)

4!H1,+
(31) 3H1,+

(31)2

)h−2(
H1,p

(31)0

H1,p
(31)

)
.

Theorem 11.1 follows after inserting the values given by (11.3) and (11.5).
�
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Appendix A.

This appendix establishes the subjectivity statement needed in the proof
of Theorem 7.2. Let E (resp. EW ) be the image of the map Φs (resp. ΦW

s )
defined below (7.13).
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Lemma A.1. Given 0 < T , there are constants c0, δ > 0 such that when-
ever |s| is sufficiently small all eigenspaces Eλ with λ| log |s|| < c0 satisfy

(A.1) (a) Eλ ⊂ E for |t| ≤ δ (b) Eλ ⊂ EW for T < |t|.

Proof. Otherwise there would be sequences tn → τ and sn → 0 and L2 nor-
malized eigensections ξn on Cn = Csn

with eigenvalues satisfying λn| log
|sn|| → 0 and with L2 orthogonal to E on Cn with t0 = 0 in case (a), and L2

orthogonal to EW with τ ≥ T in case (b). By (2.5) the L2 norms satisfy

(A.2) ‖∂ξn‖2 + t2‖Rξn‖2 = ‖Ltn
ξn‖2 = λn → 0

as n→∞. On any compact set K ⊂ C \ {nodes of C0} we can use the coor-
dinates of Section 5 to identify K ∩ Cs with K ∩ C0 and regard ξn as a
section on K ∩ C0. Under this identification, the geometry of K ∩ Cs con-
verges to that of K ∩ C0. An elliptic estimate for ∂ then provides a bound
on the Sobolev W 1,2 norm of ξn:∫

Cn

|∇ξn|2 + |ξn|2 ≤ c1

∫
Cn

|∂ξn|2 + |ξn|2 ≤ c2 (λn + 1) ≤ 2c2

for large n. Therefore, by elliptic theory, a subsequence converges in L2(K)
and weakly in W 1,2(K) to a limit ξ0 with L∗τLτξ0 = 0. Applying this argu-
ment for a sequence of compact sets K that exhaust C \ {nodes} and repeat-
edly extracting subsequences yields a solution of Lτξ0 = 0 on C0 \ {nodes}.
By a standard argument (see the proof of Lemma 7.6 in [11]) ξ0 extends over
the nodes in the normalization of C0 to a solution of Lτξ0 = 0. Theorem 2.2
then implies that ξ0 is holomorphic.

To show ξ0 is non-trivial we must rule out the possibility that the L2

norm of ξn accumulates at the nodes. Fix a node p of C0, a local holomorphic
section ν of N with 1

2 ≤ |ν|2 ≤ 2 pointwise on Cn(2ε) = B(p, 2ε) ∩ Cn, and
coordinates (x, y) around p in which Cn = {xy = ζsn}. Then the functions
fn defined by ξn = fnν satisfy |ξn|2 ≤ 2|fn|2 and |∂fn|2 ≤ 2|∂ξn|2 on Cn.
Lemma A.2 below and (A.2) show that∫

Cn(ε)
|ξn|2 ≤ c4ε

2

∫
Cn

|∂ξn|2 + c5

∫
Cn(2ε)\Cn(ε)

|ξn|2 ≤ c4ε
2λn + c5

∫
K
|ξn|2

with λn → 0. If ξ0 = 0 then the last integral also vanishes as n→∞ because
ξn → ξ0 = 0 in L2(K). Thus, the L2 norm does not accumulate at any node,
which implies that ‖ξ0‖ = limn→∞ ‖ξn‖ = 1; this is a contradiction unless
ξ0 	= 0.
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Furthermore, ξ0 is continuous, as follows. Fix a node p, a local holomor-
phic trivialization of N → C around p, and local coordinates in which Cs

is given by xy = ζs and regard ξ0 as a holomorphic function. Let p′ and
p′′ be the points in the normalization above p and let An be the annular
region on Cn between the circles γ1(s) = {x = 1} and γ2(s) = {y = 1}. Set-
ting η = x−1dx = −y−1dy we have

2πi ξ0(p′) =
∫

γ1(0)
ξ η = lim

n→∞

∫
γ1(sn)

ξnη.

and similarly for ξ0(p′′). Setting r = |x| and noting that |η|2g dvg is confor-
mally invariant (cf. Lemma A.2), we have

2π
∣∣ξ0(p′)− ξ0(p′′)∣∣ ≤ lim

∫
An

|∂ξn| |η| ≤ lim ‖∂ξn‖
(

2π
∫ 1

sn

r dr

r2

) 1
2

≤ lim
(
2πλn| log |sn||

) 1
2 = 0.

Thus ξ0 is a continuous element of ker Lτ on C0. Lemma 7.1 then implies
that ξ0 ∈ E0 in case (a) and ξ0 ∈W in case (b).

But in case (a) each ξn is L2 orthogonal to Esn
on Cn. For the basis

{ψk,s} in (7.10), one sees that for each δ > 0 there is a compact set K so
that the L2 norm of ψk,s on Cn \K is less than δ, uniformly in s. A simple
estimate then shows that ξ0 is L2 orthogonal to E0. Likewise, in case (b) one
sees that ξ0 is L2 orthogonal to W . This contradicts our previous conclusion
about ξ0, completing the proof. �

Lemma A.2. Let Cs(2ε) be the curve {xy = ζs | |x| < 2ε, |y| < 2ε} in C2

with the induced Riemannian metric. Then there are constants c1 and c2,
independent of s and ε, such that every smooth function f on Cs satisfies∫

Cs(ε)
|f |2 ≤ c1ε

2

∫
Cs(2ε)

|∂f |2 + c2

∫
Cs(2ε)\Cs(ε)

|f |2.

Proof. A simple calculation shows that the Riemannian metric gs on Cs is
conformal to the euclidean metric in the x-coordinate:

(A.3) gs = γ2dx2 where γ2 = 1 +
s2

r4
, r = |x|.

Fix a smooth cutoff function β(ρ), ρ2 = |x|2 + |y|2, supported on
B = B(2ε) ⊂ C2 with β = 1 on B(ε), 0 ≤ β ≤ 1 and |dβ| ≤ 2/ε pointwise.
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Then h = βf is a smooth function of x that vanishes on ∂B. Setting φ =
1
2(r2 − s2/r2), we have d vols = φ′ drdθ by (A.3) and can integrate by parts:

I =
∫

B
|h|2 d vols =

∫
B
|h|2φ′ drdθ ≤

∫
B
|h| |dh| 2φ drdθ.

But 2φ ≤ r2γ2 = ρ2 with ρ ≤ 2ε so, continuing using Cauchy–Schwarz and
d vols = γ2 rdrdθ,

I ≤
∫

B
|h|γρ

√
r · |dh|

√
r drdθ ≤ 2ε

√
I

(∫
B
|dh|2 r drdθ

)1/2

.

The last integrand is conformally invariant, so can be replaced by |dh|2g dvg.
Rearranging, we have I ≤ 4ε2‖dh‖2 ≤ 8ε2‖∂h‖2 where this second inequal-
ity is obtained by integrating by parts using the formula 2∂∗∂ = d∗d. The
lemma follows because |∂h|2 ≤ 2(|∂β|2|f |2 + |∂f |2) where dβ has support on
Cs(2ε) \ Cs(ε). �
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