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Abstract. In a previous paper the authors defined symplectic “Local Gromov-Witten invariants” as-
sociated to spin curves and showed that the GW invariants of a Kähler surface X with pg > 0 are a
sum of such local GW invariants. This paper describes how the local GW invariants arise from an ob-
struction bundle (in the sense of Taubes) over the space of stable maps into curves. Together with the
results of our earlier paper, this reduces the calculation of the GW invariants of elliptic and general-
type complex surfaces to computations in the GW theory of curves with additional classes: the Euler
classes of the (real) obstruction bundles.

On a compact Kähler surface X, a holomorphic 2-form α is a section of
the canonical bundle whose zero locus is a canonical divisor D. Several years ago,
the first author observed (see [Lee1]) that each such 2-form α naturally induces an
almost complex structure Jα that satisfies a remarkable property:

Image Localization Property. If a Jα-holomorphic map represents a non-
trivial (1,1) class, then its image lies in D.

After further perturbing to a generic J near Jα, the images of all J-
holomorphic maps cluster in ε-neighborhoods of the components of the canonical
divisor D. This implies that the Gromov-Witten invariant of X is a sum

GWg,n(X,A) =
∑

k

GW loc
g,n

(
Dk,dk

[
Dk
])

over the connected components Dk of D of “local GW invariants” that count the
contribution of maps whose image lies near Dk.

When D is smooth, the local invariants depend only on the normal bundle
N to D ⊂ X. By the adjunction formula, N is a holomorphic square root of the
canonical bundle KD, that is, N is a theta-characteristic of the curve D and the pair
(D,N) is a spin curve. The total space ND of N has a tautological holomorphic
2-form α whose zero locus is the zero section D ⊂ ND. For perturbations of the
corresponding Jα, all J-holomorphic maps cluster around the zero section. These
clusters define local GW invariants of the spin curve (D,N) which, the authors
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proved in [LP], depend only on the parity of N (i.e. on h0(N) mod 2). Altogether,
we have

GWg,n(X,A) =
∑

k

(
ik
)
∗GW loc

g,n

(
NDk ,dk

)
(0.1)

where (ik)∗ is the induced map from the inclusion Dk ⊂X. Thus the computation
of the GW invariants of Kähler surfaces with pg > 0 is reduced to the problem of
calculating the local invariants of spin curves.

Recently, Kiem and Li [KL] defined the local invariants by algebraic geometry
methods and proved the formulas for degree 1 and 2 local invariants conjectured by
Maulik and Pandharipande [MP]. The first author [Lee2] reproved those formulas
by adapting the symplectic sum formula of [IP2] to local GW invariants.

Because (0.1) applies to all GW invariants, not just those of the “embedded
genus”, one cannot apply Seiberg-Witten theory. Nor can the local invariants be
computed by the usual methods of algebraic geometry, such as localization and
Grothendieck-Riemann-Roch, because the linearized Jα-holomorphic map equa-
tion is not complex linear. In particular, when genus(Dk) > 0 the local invariants
in (0.1) are not the same as the “local GW invariants” used to study Calabi-Yau
3-folds [BP] or the “twisted GW invariants” defined by Givental.

While the local invariants are defined in terms of the GW theory of the (com-
plex) surface ND one would like, as a step toward computation, to recast them in
terms of the much better-understood GW theory of curves (cf. [OP]). This paper
uses geometric analysis arguments to prove that the local GW invariants of a spin
curve (D,N) arise from a cycle in the space of stable maps into the curve D. The
cycle is defined by constructing an “obstruction bundle”. While the basic idea is
clear and intuitive, the construction is difficult because of technical issues involving
the construction of a complete space of maps.

The intuition goes like this. The tautological 2-form α on ND determines an
almost complex structure Jα. By the Image Localization Property, the space of
stable Jα-holomorphic maps into ND representing d[D] is the same as the space
of degree d stable maps into D:

MJα
g,n

(
ND,d[D]

)
=Mg,n(D,d).(0.2)

Counting dimensions, one sees that the formal dimension of Mg,n(D,d) is exactly
twice the dimension of the virtual fundamental class that defines the local GW
invariants of ND (when n = 0). The dimensions do not match because Jα is not
generic. Perturbing Jα to a generic J effectively reduces the space of maps to
a half-dimensional cycle in Mg,n(D,d) that defines the local GW invariants of
the spin curve (D,N). To understand this reduction, we use another remarkable
property of the Jα-holomorphic maps:



AN OBSTRUCTION BUNDLE RELATING GROMOV-WITTEN INVARIANTS 455

Injectivity Property. The linearization of the map f "→ ∂Jαf , when restricted
to the normal bundle, is an elliptic operator Lf whose kernel vanishes for every
Jα-holomorphic map (α $= 0).

The injectivity property implies that the vector spaces cokerLf have constant
dimension. The construction of Section 8 shows that these cokernels form a locally
trivial real vector bundle

Ob
'

Mg,n(D,d)

(0.3)

over the space (0.2) whose rank is the formal GW dimension for surface. This is
an “obstruction’ bundle” in the sense of Taubes: the Implicit Function Theorem
shows that the space of perturbed holomorphic maps is diffeomorphic to the subset
of Mg,n(D,d) given by the zero set of a certain section of Ob. As always, we have
the associated map

êv = st× ev : Mg,n(D,d)−→Mg,n×Dn(0.4)

whose first factor is the stabilization map and whose second factor records the
images of the marked points. In this context, the GW invariants of the curve D are
defined as the image of the virtual fundamental class [Mg,n(D,d)]vir under êv∗.
Our main result is that the local GW invariants are defined from these by capping
with the Euler class of this obstruction bundle:

MAIN THEOREM. There is an oriented real bundle Ob over Mg,n(D,d)
whose isomorphism class depends only on the parity of the spin curve (D,N).
When genus(D)> 0

GW loc
g,n

(
ND,d

)
= êv∗

([
Mg,n(D,d)

]vir ∩ e(Ob)
)
,(0.5)

where the virtual fundamental class [Mg,n(D,d)]vir defines the GW invariants of
the curve D.

This formula describes how the local invariants evaluate on elements of the co-
homology of Mg,n×Dn. But in the context of this theorem, all descendant classes
are pullbacks of classes in H∗(Mg,n×Dn) (see Section 1). Thus the equality (0.5)
applies to descendant classes.

This theorem is a step toward computing the GW invariants of minimal Kähler
surfaces with pg > 0. For non-minimal surfaces, one would also need a version of
the Main Theorem for the local GW invariants of an exceptional curve: when N
is the bundle O(−1) over D = P1. This case is fundamentally different: it is sim-
pler because the Image Localization and Injectivity Properties hold for the stan-
dard complex structure, but is more complicated because a lemma essential for the
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analysis—Lemma 1.2 below—does not apply when D = P1. As a result, the right-
hand side of (0.5) is well-defined and the associated GW invariants are computable
[FP], but our analysis does not show the equality in (0.5). This D = P1 case will
be analyzed elsewhere.

The main theorem would not be difficult to prove if Ob→Mg,n(D,d) were
a smooth vector bundle over a manifold, or if one could perturb to the smooth sit-
uation while retaining the Image Localization and Injectivity properties. Unfortu-
nately, there do not currently exist theorems or techniques for smoothing the com-
pactified moduli space. As a result, the proof of the main theorem must address
two significant technical issues: (i) the lack of information about the structure of
the moduli space near its boundary, and (ii) the local triviality of the obstruction
bundle.

To deal with issue (i), we first perturb the Jα-holomorphic map equation in
the manner of Ruan-Tian [RT2]. The resulting moduli space M =Mg,n(D,d) of
(J,ν)-holomorphic maps into D consists of a smooth top stratum M and boundary
strata of codimension at least two. We fix a small neighborhood U of the boundary
and consider its complement MU = M\U . Then, after smoothing and perturb-
ing U if necessary, MU is a compact smooth oriented manifold with boundary, so
defines a relative homology class in Map. In Section 3 we prove that this “rela-
tive virtual fundamental class” defines the same Gromov-Witten invariants as other
standard definitions, including the one used in algebraic geometry.

On the compact manifold MU , the (J,ν)-holomorphic map equation defines
a section of the obstruction bundle, and the Euler class e(Ob) is Poincaré dual to
the zero set of any section that is transverse to zero. We achieve transversality by
adding a second Ruan-Tian perturbation term. In Section 9 we prove a generalized
Image Localization Theorem that shows that this second perturbation leaves M
unchanged. The main theorem is proved in Section 10 by showing that the zero
set of a section defines a rational homology class that is equal to the local GW
invariants by cobordism, and on the other hand is equal to the right-hand side of
(0.5) by Poincaré duality for MU .

The analysis aspects of the proof are aimed at issue (ii) above: proving that
the obstruction bundle is locally trivial. The key difficulty is that the normal com-
ponent of the linearization of the Jα-holomorphic map equation at a map f is
an operator of the form Lf = ∂+A(df), and df is not pointwise bounded in the
topology of the Gromov compactness theorem. Thus it is not clear whether Lf is
continuous in f on the space of smooth maps—a fact we need in order to show that
Ob, which is essentially cokerLf , is locally trivial (in the literature, continuity is
often implicitly assumed). For this purpose, we introduce a stronger topology on
the space of maps in Section 2 and prove a strengthened version of the Gromov
compactness theorem. Then in Section 4 we extend the operators Lf off the set of
Jα-holomorphic maps as a family of “modified linearizations”; these are equally
natural, but are more easily estimated, than the actual linearizations. Sections 5–7
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develop the needed analysis results to show that Lf is continuous in f as an opera-
tor on appropriate weighted Sobolev spaces. The key to this analysis is the Poincaré
inequalities proved in Section 6, which lead to estimates for the weighted norms
that are uniform even as the domain degenerates to a nodal curve. These results are
used in Section 8 to define the obstruction bundle and prove that it is locally trivial.

For computations, one would like to express the obstruction bundle Ob in terms
of algebraic geometry. At the Kähler structure J0 on ND, Lf is the ∂-operator on
the bundle f ∗N , the fiber Obf is H0,1(f ∗N), and the Injectivity Property suggests
that h0(f ∗N) = 0. This would imply that Ob is the index bundle ind∂. However,
when D has genus h > 1 the Injectivity Property does not hold for J0 and, as in
Brill-Noether theory, h0,1(f ∗N) can jump up at special maps. (Pandharipande and
Maulik showed us a specific example where such a jump necessarily occurs in the
moduli space, and a similar example appears in [KL].) Thus Ob is not in general
equal to the ind∂. We clarify this in Section 11 by showing how the linearization
f "→ Lf defines a map from M to a space F of real Fredholm operators. There
are natural classes κi ∈H∗(F), first defined by Koschorke, that give obstructions
to the bundle indRL being an actual vector bundle rather than a virtual bundle.
We prove that all Koschorke classes vanish for the family of maps defined by the
moduli space (0.2), so Ob= indRL is an actual bundle over the moduli space. This
gives a homotopy-theoretic characterization of the obstruction bundle.

Zinger [Z] independently obtained (0.5) following the approach of Fukaya-
Ono [FO] and Li-Tian [LT2]. He also describes some interesting generalizations of
our main theorem.

Acknowledgment. We thank the referee for many helpful comments.

1. Jα-holomorphic maps with stabilized domains. We begin with a re-
view of the setup for Jα-holomorphic maps; for details see [Lee1, LP]. Fix a Kähler
surface X with complex structure J and geometric genus pg > 0. Then the real vec-
tor space

H = Re
(
H2,0⊕H0,2)

has dimension 2pg > 0. Using the Kähler metric compatible with J , each α ∈ H
defines an endomorphism Kα of TX by the equation

〈u,Kαv〉= α(u,v).(1.1)

Each Kα is skew-adjoint, anti-commutes with J , and satisfies K2
α = −|α|2Id. It

follows that JKα is skew-adjoint and Id+JKα is invertible. Thus there is a family
of almost complex structures

Jα =
(
Id+JKα

)−1
J
(
Id+JKα

)
(1.2)
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on X parameterized by α ∈H. Note that while α is holomorphic, the correspond-
ing almost complex structure Jα need not be integrable, and indeed, usually isn’t
integrable.

For each α ∈H, we can consider the set of maps f : C→X from a connected
complex curve with complex structure j into X that satisfy the Jα-holomorphic
map equation

∂Jαf = 0(1.3)

where ∂Jαf = 1
2(df + Jαdfj). It was shown in [Lee1] that these are exactly the

maps that satisfy the “perturbed J-holomorphic map equation”

∂Jf −να = 0 where να =Kα
(
∂Jf

)
j(1.4)

(even though ∂Jαf is not equal to ∂Jf − να for arbitrary maps). In this paper, we
fix J and work with the Jα-holomorphic map equation in the form (1.4) rather than
(1.3).

Because any holomorphic map into a Kähler surface represents a (1,1) class,
we can restrict attention to maps representing (1,1) classes: the GW invariants van-
ish for all other classes. In this context, the first author observed that the following
remarkable fact.

LEMMA 1.1. (Image Localization) If f : C → X is a Jα-holomorphic map
that represents a non-trivial (1,1) class, then the image of f lies in one connected
component Dk of the zero set of α.

This fact leads to the general formula (0.1) expressing the GW invariant as a
sum of local invariants associated with the components of the divisor of α. When
such a divisor D is smooth with multiplicity one, the square of its holomorphic
normal bundle N is the canonical bundle KD , so (N,D) is a spin curve. In this
case, it was shown in [LP] that the local GW invariants depend only on the genus
and parity of the spin curve (D,N) (the parity is h0(N) mod 2).

Now consider a genus h spin curve (D,N), that is, a curve D with genus h
and a holomorphic line bundle N on D with N 2 =KD. The total space ND of N
has a complex structure J that makes the projection π : ND→D holomorphic. We
then have an exact sequence

0−→ π∗N −→ TND −→ π∗TD −→ 0(1.5)

and hence the canonical bundle of ND is π∗(N ∗ ⊗KD) = π∗N . The tautological
section of π∗N is thus a holomorphic 2-form α on N that vanishes transversally
along the zero section D⊂ND. This 2-form α induces an almost complex structure
Jα on ND as in (1.2). The local GW invariants of D are the invariants associated
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with the space

MJα
g,n

(
ND,d

)
(1.6)

of all stable Jα-holomorphic maps f : C → ND whose domain has genus g and
n marked points and whose image represents d[D] ∈H2(ND). By Proposition 1.1
this is the same as the space Mg,n(D,d) of stable J-holomorphic maps into the
zero section D with degree d. However, the linearizations of these equations differ
in a way that will be crucial in later sections.

LEMMA 1.2. If D has genus h ≥ 1 and 2g+n ≥ 3, then the domain of every
map in Mg,n(D,d) is a stable curve.

Proof. When D has genus h ≥ 1 all rational components of the domain are
mapped to points, so are stable curves (by the definition of stable map). Similarly,
all components with genus one are mapped to points or have a node (so are stable),
unless the domain is smooth and the map is etale, in which case the domain has at
least one marked point since 2g+n≥ 3. !

In particular, because all domains are stable, the relative cotangent bundles
over Mg,n(D,d) are pull-backs of the relative cotangent bundles over Mg,n by
the stabilization map. The descendent classes are thus pull-backs of cohomology
classes via the map (0.4).

One usually takes Mg,n to be a Deligne-Mumford space. However, it is more
convenient to take it to be the moduli space described by Abramovich, Corti and
Vistoli [ACV], building on the key work of Looijenga [Lo]. This is a finite branched
cover of the compactified Deligne-Mumford space that is a fine moduli space and
a smooth projective variety ([ACV, Theorem 7.6.4]); it solves the moduli problem
for families of “G-twisted curves” that carry a principle G-bundle for a certain
finite group G together with certain additional structure at their nodes and marked
points (see [ACV] for details). As described in [IP1, Section 1], this modification
has no substantial effect: one recovers the standard GW invariants by dividing by
the degree of the cover. Accordingly, we will use the standard notation Mg,n for
compactified Deligne-Mumford space and leave the presence of twisted structures
implicit. In this context, the space Mg,n of G-twisted curves and the total space of
its universal curve

Ug,n'π

Mg,n

(1.7)

are manifolds with Riemannian metrics.
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Throughout, we will work with the moduli spaces of solutions of perturbations
of (1.4), namely, solutions of the perturbed Jα-holomorphic map equation

∂Jf −Kα
(
∂Jf

)
j = νf(1.8)

for various perturbation terms ν. We will use perturbations of the type introduced
by Ruan and Tian in [RT2], which can be described as follows. Fix an almost
complex manifold (X,J) and let U be the universal curve (1.7). Because G-twisted
curves have no non-trivial automorphisms, the domain of a map f : C → X is
uniquely identified (as a G-twisted curve) with a fiber of U , and the graph of f is a
map F : C→ U×X. Consider the bundle T ∗U"TX = Hom(π∗1TU ,π∗2TX) over
U×X. A Ruan-Tian perturbation is an element ν of the space

P = Ω0,1
J

(
T ∗U "TX

)
(1.9)

of (0,1) sections, that is, sections ν satisfying ν ◦ju =−J ◦ν where ju is the com-
plex structure on U . Here, and everywhere below, (0,1) components are determined
by J , not Jα. Restricting such a ν to the graph of f gives a form νf ∈Ω(0,1)(f ∗TX),
defined by

vf (x)(u) = v
(
x,f(x)

)
(u) ∀x ∈C, u ∈ TxC,(1.10)

that can be used in (1.8). Note that νf depends on f , but not on df .
We will routinely use the phrase “for generic ν” to mean “for ν in a Baire set

in the space P”.

2. Convergence of maps with stable domains. The proof of the main the-
orem requires a careful definition of the space of maps as a topological space. The
appropriate topology is not the one defined by Gromov compactness. Instead, we
will use the stronger “λ-topology” defined by carefully-chosen weighted Sobolev
norms. In this section, we set out the definitions and then prove that Gromov com-
pactness holds in the λ-topology.

Let π : U →Mg,n be the universal G-twisted curve (1.7). There is a δ0 > 0
such that in each fiber Cz = π−1(z) the nodes are separated from each other and
from the marked points by a distance of at least 4δ0. We will scale the metric so
that δ0 = 1 and choose a continuous function

ρ : U −→ R(2.1)

that is equal to the distance to the nodal variety on the set {ρ < 1} and satisfies
1≤ ρ≤ 2 on the complementary set. For each δ < 1 we will also write

Cz(δ) =Cz ∩{ρ≥ δ} and Bz(δ) = Cz ∩{ρ< δ}.(2.2)

For small δ, Bz(δ) is a union of components, each being either a union of two disks
with their center points identified (a node) or a thin annular neck (a near node).
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Because the universal G-twisted curve (1.7) is a fine moduli space, the fibers have
no non-trivial automorphisms and:

(i) Around each smooth fiber Cz there is a neighborhood Vz of z and smooth
local trivialization

φ : Cz×Vz −→ Uz.(2.3)

(ii) Around each fiber Cz with Bz(δ) $= /0 there is a similar local trivialization

φ : Cz(δ)×Vz −→ Uz(2.4)

where Uz = π−1(Vz)∩{ρ> δ}.
Now fix an isometric embedding of X into RN for some N . The space of maps

is defined using the following weighted Sobolev norms.

Definition 2.1. Fix a constant λ with 0 < λ< 1
6 . For each p≥ 2 and each curve

C , let Mapλ(C,X) be the completion of the set of smooth maps f : C→X in the
weighted norm

|||f |||1,p =
(∫

C
ρp−2−λ |df |p

) 1
p

+

(∫

C
ρ−λ |df |2

) 1
2

+

(∫

C
|f |p

) 1
p

(2.5)

where |f | is defined by the embedding X ⊂ RN , and both |df | and the measure on
C are defined using the Riemannian metrics on C and X induced from the metrics
on U and RN .

If we replace C by Cz(δ) in the Definition 2.1 then the resulting norms are
uniformly equivalent, for each δ, to the usual L1,p norm on the fibers of the local
trivializations (2.3) and (2.4). After fixing p, we also define the p-energy Ep(f)
and total energy E(f) of a map f : C→X to be

E(f) = Ep(f)+E2(f) where Ep(f) =

(∫

C
ρp−2−λ |df |p

) 2
p

.(2.6)

We will consider only the subset of Mapλ(X) whose total energy is below a fixed
level.

Definition 2.2. (λ-topology) For each number E and p > 2, set

MapEg,n(X) =
{
(z,f) | z ∈Mg,n, f ∈Mapλ

(
Cz,X

)
and E(f)<E

}
.(2.7)

Give this space the λ-topology: a sequence (Cn,fn) converges to (C,f) if (a)
Cn → C in Mg,n, (b) Ep(fn)→ Ep(f) and E2(fn)→ E2(f), and (c) fn → f
in the norm (2.5) on Cz(δ) for every δ > 0.

The convergence in (c) is defined using the trivialization (2.4). For simplicity,
we will often denote the space (2.7) by Mapλ(X).
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When working with the norm (2.5) on curves Cz near a nodal fiber C0 of the
universal curve, it is helpful to use the definitions (2.2) to decompose Cz into the
“thick” region Cz(δ) away from the nodes, and the “thin” regions Bz,i(δ) ⊂ Cz

that lie within distance δ from one of the nodes ni of C0. The thin regions are of
two types—nodes and necks—described as follows.

Near a node ni of C0, choose holomorphic coordinates {xi} on the universal
curve such that

Bz,i(δ) =
{(

x1, . . . ,xn
)
| x1x2=µ, xj=cj ∀j > 2, and

∣∣x1
∣∣2+

∣∣x2
∣∣2<δ

}
(2.8)

for some constants µ,cj ∈C. For notational simplicity, we will often omit the sub-
script z in Cz(δ) and Bz,i(δ).

• (Nodes) When µ= 0, Bi(δ) is diffeomorphic to two disks D1(δ) and D2(δ)
with their center points identified. The punctured disk D1(δ)\{0} can be parame-
terized by the map

φ : (t,θ) "→=
(
e−t−iθ,0, c3, . . .

)
(2.9)

from the half-infinite cylinder T 1 = (L,∞)×S1 where L = − lnδ. Composing φ
with x1 ↔ x2 gives a parameterization of D2(δ)\{0}. Together, Bi(δ)\{0} is
parameterized by a disjoint union T (δ) = T 1∪T 2 of two cylinders.

• (Necks) When µ $= 0, Bi(δ) can be parameterized by the map

φ : (t,θ) "−→
(
x1,

µ

x1
, c3, . . .

)
where x1 =

√
|µ|et+iθ(2.10)

from the cylinder T (δ) = (−L,L)× S1 for the unique positive L that satisfies
2|µ| cosh(2L) = δ2. Note that L→ ∞ as the neck pinches.

To obtain uniform estimates, it is useful to express the norm (2.5) in the pa-
rameterizations (2.9) and (2.10). In the coordinate chart used in (2.8), the metric on
U is uniformly equivalent to the Euclidean metric g0 in these coordinates, and the
distance function is uniformly equivalent to the Euclidean distance. Furthermore,
under the maps (2.9) and (2.10) g0 is conformally related to the cylindrical metric
ĝ = dt2 +dθ2 by

φ∗g0 = ρ2ĝ where ρ2 =

{
e−2t near a node

2|µ|cosh(2t) in a neck.
(2.11)

Consequently, after identifying f and ρ with their φ-pullbacks we have, for both
nodes and necks and for each p≥ 2,

∫

Bi(δ)
ρp−2−λ |df |p dvolg ∼=

∫

T (δ)
ρ−λ |df |p dvolĝ(2.12)

where ∼= means that the ratio between the two sides is bounded above and below
by positive constants that depend only on p and λ. It is useful to note that, because
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ρ is essentially exponential in t, the integrals of its powers in the cylindrical metric
satisfy

∫

ρ≤δ
ργ dtdθ ≤ cγ δ

γ for γ > 0.(2.13)

The following two lemmas give properties of maps in MapEg,n(X). The first
shows that the images of necks and nodal neighborhoods are uniformly small, and
the second shows that when two maps are close in the λ-topology then the Haus-
dorff distance distH between their images is small.

LEMMA 2.3. Fix g,n,E and p> 2. Then there are constants δ0 > 0 and c such
that for every (C,f) ∈MapEg,n(X) and every δ < δ0, each component Bi(δ) of
B(δ)⊂ C satisfies

diam
(
f
(
Bi(δ)

))
≤ cδ

λ
p .

Proof. By the compactness of U , there is a δ0 > 0 so that whenever δ< δ0 there
is a nodal fiber C0 of U and holomorphic coordinates centered on a node ni ∈ C0

so that Bi(δ) is given by (2.8). Identifying f : Bi(δ) → X with its φ-pullback
f : T →X ⊂ RN as in (2.9) or (2.10), we have

diamf
(
Bi(δ)

)
= diamf(T ) = osc

T
f.

In the node case, the Sobolev inequality oscf ≤ c1‖df‖p holds on each segment
Tn = [L+ n,L+ n+ 1]× S1 of T , and (2.11) implies that ρ ≤ c2δe−n on Tn.
Summing from n= 1 to ∞ yields

diamf
(
Bi(δ)

)
≤ c3

∑

n

(∫

Tn

(
δe−nρ−1)λ |df |p

) 1
p

≤ c3 δ
λ
p

∑

n

e−
nλ
p

(∫

T
ρ−λ|df |p

) 1
p

≤ c4
√
E δ

λ
p

using (2.6) and (2.12). The same argument applies in the neck case, noting that
(2.11) again implies that ρ≤ c5δe−n on both Tn = [L−n−1,L−n]×S1 and on
T ′n = [−L+n,−L+n+1]×S1 for 0≤ n < L. !

LEMMA 2.4. Fix g,n,E and p > 2. Given (C0,f) ∈MapEg,n(X), ε> 0 and a
sufficiently small δ > 0, there are neighborhoods Nf (ε) and Nf (ε,δ) of (C0,f) in
the λ-topology such that

distH
(
f
(
C0
)
,g(C)

)
≤ ε for all (C,g) ∈Nf (ε)

and

‖f − g‖∞;C0(δ) ≤ ε for all (C,g) ∈Nf (ε,δ).
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Proof. By Lemma 2.3 we can choose δ1 > 0 so that diam(f(Bi(δ1))) ≤ ε/3
for all f ∈MapEg,n(X). Fix δ with 2δ ≤ δ1. We can then choose a neighborhood
Nf of (C0,f) small enough so that the domains of all maps g : C→X in Nf lie in
the uniform local trivialization (2.4) around C0 for this δ. Decompose the domain
C0 of f into C0(δ) and the union of neighborhoods Bi(δ) of its nodes. Then for
each (C,g) ∈ Nf we have δ ≤ ρ ≤ 2 on C(δ), so the norm (2.5) is uniformly
equivalent to the (unweighted) L1,p norm on C(δ). Furthermore, the fibers of the
local trivialization (2.4) have uniform geometry, so there is a uniform constant
(depending on δ) for the usual Sobolev embedding C0 ⊂ L1,p. Consequently,

‖f − g‖∞;C0(δ) ≤ c(δ) |||f − g|||1,p .

We can then choose Nf (ε,δ) to make the right-hand side less that ε/3 for all g ∈
Nf (ε,δ). In particular, setting Nf (ε) =Nf (ε,δ1/2), each g ∈Nf (ε) satisfies

distH
(
f
(
C0
)
,g(C)

)
≤ ‖f − g‖∞;C0(δ) + sup

i
diamf

(
Bi(δ)

)
+ sup

i
diamg

(
Bi(δ)

)

≤ ε

3
+
ε

3
+
ε

3
. !

We next prove an enhanced version of the Gromov Compactness Theorem. It
assumes that all maps have stable domains (cf. Lemma 1.2), and proves conver-
gence in the λ-topology, which is stronger than the convergence in the standard
formulations of Gromov Compactness (cf. [FO, IS2, RT2]).

THEOREM 2.5. (Compactness) Suppose that all maps in MJ,ν
g,n(X,A) have

stable domains. Then there is an E = E(p,g,n,A) such that MJ,ν
g,n(X,A) is a

compact subset of MapE(X) whenever sup |ν| is small.

Proof. Given a sequence of maps fk : Ck →X in M(J,ν)
g,n (X,A) we can con-

sider their graphs Fk : Ck→ U×X as described before equation (1.9). Then {Fk}
is a sequence of Jν-holomorphic maps with uniformly bounded energy. Moreover,
as explained in Section 1, each Ck is a stable curve with no non-trivial automor-
phisms. The first factor of each Fk is therefore a diffeomorphism onto a fiber of
the universal curve. The Gromov Compactness Theorem [IS2], applied to {Fk}
implies that there is a subsequence such that (i) the domains Ck converge in U to a
limit C0, (ii) the maps fk converge to a limit f0 in Hausdorff distance and in L1,p

on compact sets in the complement of the nodes of C0, and (iii) the energy densities
|dFk|dvol converge as measures.

Next fix δ ≤ 1 small enough so that the maps (2.10) are defined on the 2δ-
neighborhoods of the nodes. Because the energy densities converge as measures
we can, given any ε0 > 0, also assume that, for each node ni of C0, the energy in
each neck Bk,i(δ) of each Ck is at most ε0. But energy is conformally invariant
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so, as in (2.12) with p = 2, the pullback maps fk : T (δ)→ X satisfy the (J,ν)-
holomorphic map equation and

∫

T (δ)

∣∣dfk
∣∣2 =

∫

Bk,i(δ)

∣∣dfk
∣∣2 < ε0.(2.14)

Elliptic theory then gives a pointwise bound on |dfk|: by Lemma 5.1 of [IP2]
there are constants c1 and ε0 so that whenever (2.14) holds we have |dfk|< c1ρ1/3

on T (δ); both c1 and the maximum number of nodes depend only on g,n,A and
sup |ν|. Integrating as in (2.12) and (2.13) shows that for any p≥ 2 and λ< 1

6
∫

Bk,i(δ)
ρp−2−λ ∣∣dfk

∣∣p ≤ c2

∫

T (δ)
ρ−λ

∣∣dfk
∣∣p ≤ c2c

p
1

∫

T (δ)
ρ−λ+

p
3

≤ c3 δ
p
3−λ ≤ c3

√
δ.

(2.15)

This, together with the convergence on each C(δ), implies that Ep(fk)→ Ep(f0),
that E2(fk) → E2(f0), and that there is a bound E(f) ≤ E for all (J,ν)-
holomorphic maps f . Convergence in the λ-norm also follows: given ε > 0,
choose δ small enough that the bound (2.15) is less than (ε/4)p and less than
(ε/4)2 when p= 2. By the compactness of X ⊂RN the integral of |f |p over B(δ)
is bounded by c4 Area(B(δ)) ≤ c5δ2; we can also assume this is less than (ε/4)p.
Finally, for this δ, the restriction of the norm (2.5) to C(δ) is uniformly equivalent
to the unweighted L1,p norm, so we can choose K large enough so that, for all
k ≥K, we have |||fk− f0|||1,p;C(δ) < ε/4, and hence |||fk− f0|||1,p < ε. !

3. The virtual fundamental class. Gromov-Witten invariants of a closed
symplectic manifold X have been defined in several different ways. When X is a
smooth complex curve (the only case needed for this paper), all definitions apply
and yield the same GW invariants. Each definition involves compact moduli spaces
Mg,n(X,A) of (formal) dimension r = c1(X)(A)+ (dimX − 3)(1− g)+n and
the associated map

êv = st× ev : Mg,n(X,A) −→Mg,n×Xn(3.1)

defined as in (0.4). For our purposes, three different descriptions are relevant. One
is algebraic and the other two are analytic:

(1) When X is projective, the space of stable maps Mstable
g,n (X,A) is a projec-

tive variety and algebraic geometers (see [LT1, BF]) define the virtual fundamental
class [Mg,n(X,A)]virt as an element of its Chow cohomology:

[
Mg,n(X,A)

]virt ∈ Ar
(
Mstable

g,n (X,A)
)
.(3.2)

(2) When X is symplectic and semipositive, Ruan-Tian [RT2] showed that
for generic (J,ν) the space M(J,ν)

g,n (X,A) of all (J,ν)-holomorphic maps is the
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union of (i) a 2r-dimensional orbifold M consisting of maps from smooth domains
and (ii) a stratified “boundary” whose image under the map (3.1) lies in a set of
dimension at most 2r−2. Consequently, the image of the moduli space represents
a rational homology class

GWg,n(X,A) ∈H2r
(
Mg,n×Xn;Q

)
.(3.3)

This Ruan-Tian GW class is independent of the generic (J,ν) and is a symplec-
tic invariant of X. (“Semipositive” is a technical condition that is true whenever
dimX ≤ 6.)

(3) When X is symplectic, the construction of Li-Tian [LT2] defines a virtual
fundamental class

[
Mg,n(X,A)

]vir ∈H2r
(
Mapg,n(X,A);Q

)
(3.4)

in the homology of the infinite-dimensional space of maps Mapg,n(X,A). Be-
cause (3.1) extends to Mapg,n(X,A) one can then evaluate the class (3.4) on
classes in H∗(Mg,n×Xn).

Variations on construction 3 have been done by Fukaya-Ono [FO], Ruan [R]
and Siebert [S].

When X is projective, Li and Tian proved in [LT3] that the virtual class (3.4)
is the homology class underlying the Chow class (3.2) under the inclusion of the
space of stable maps into Mapg,n(X,A). When X is semipositive, one can show
that the pushforward of the virtual class (3.4) by êv∗ is the Ruan-Tian class (3.8);
we explicitly prove this for compact curves in Remark 10.2. Thus when X is a
smooth compact curve D, all three definitions apply and, after pushing forwards
by êv∗, define the same element in the homology of Mg,n×Xn.

Later, to prove the Main Theorem stated in the introduction, we will work with
the GW invariants defined by equation (3.3). In preparation, we now describe one
version of the construction in the relevant case: when the domains of all (J,ν)-
holomorphic maps have no non-trivial automorphisms (cf. Section 1). In this case,
for generic (J,ν), each stratum in the moduli space

M = M(J,ν)
g,n (X,A)(3.5)

(including the “top stratum” M) is a smooth oriented manifold, the boundary
∂M=M\M is compact, and êv restricts to a smooth map to the compact oriented
manifold Mg,n×Xn on each stratum. The Ruan-Tian invariant can be defined,
using arguments of Kronheimer and Mrowka, by deleting a neighborhood of the
boundary and considering the resulting relative homology class, as follows.

First, a simple compactness and transversality argument (see the first paragraph
of the proof of Proposition 4.2 in [KM]) shows that there is an open neighborhood
U of the image êv(∂M) satisfying:

(a) U is a smooth manifold with boundary and êv|M is transverse to ∂U , and
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(b) there is a (finite) basis for H)−2r(Mg,n×Xn;Q) represented by cycles
disjoint from U ; here - is the dimension of Mg,n×Xn.

Definition 3.1. Given a moduli space (3.5), choose a set U as above and let
MU ⊂M be the closed set

MU =M∩ êv−1(Mg,n×Xn\U
)
⊂M.(3.6)

It follows from (a) above that MU is a compact oriented manifold with bound-
ary, and thus carries a fundamental class in relative homology that we denote by
[MU ] ∈H2r(MU ,∂MU ;Q).

On the other hand, the inclusion of the pairs k : (Mg,n×Xn, /0)→ (Mg,n×
Xn,U ) induces a map in homology

k∗ : H2r
(
Mg,n×Xn;Q

)
−→H2r

(
Mg,n×Xn,U ;Q

)
.

Proposition 4.2 of [KM] then implies that there is a unique homology class [êv(M)]
with

k∗
[
êv(M)

]
= êv∗

[
MU

]
.(3.7)

In fact, [KM] showed that there is a rational singular smooth cycle B that represents
[êv(M)] and agrees with êv(MU ) outside of U . The uniqueness then follows from
property (b) above because the inclusion

H2r(U ;Q)−→H2r
(
Mg,n×Xn;Q

)

is trivial and hence k∗ is injective. The class [êv(M)] = [B] is the GW class:

LEMMA 3.2. With U and MU as above, the Ruan-Tian GW class is the unique
rational homology class satisfying (3.7), namely

GWg,n(X,A) =
[
êv(M)

]
∈H2r

(
Mg,n×Xn;Q

)
.(3.8)

In particular, [êv(M)] is independent of the choice of U and the generic (J,ν).

Proof. For each γ ∈H2r(Mg,n×Xn;Q), Ruan and Tian choose a represen-
tative Γ of the Poincaré dual of γ with Γ transversal to êv(M) and disjoint from
êv(∂M). They defined GWg,n(X,A)(γ) as êv(M)∩Γ and showed these num-
bers are independent of the various choices made. But by property (b) above,
we can assume that Γ is a linear combination of cycles that do not intersect U .
Then the geometric intersection êv(M)∩Γ is the same as B∩Γ, which represents
[B](γ) = [êv(M)](γ). !
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In our case, X =ND is the total space of the spin curve (D,N). By the Image
Localization Lemma 1.1, for small generic ν there is a ε-neighborhood ND(ε) of
the zero section D in ND such that every (Jα,ν)-holomorphic map has its image in
that neighborhood. Although ND(ε) is not compact, it is a manifold with boundary
and Lemma 3.2 still applies (again by Proposition 4.2 of [KM]). Thus the image of
the moduli space represents a rational homology class

GW loc
g,n

(
ND,d

)
:=
[
êv
(
M(Jα,ν)

g,n

(
ND,d[D]

))]
∈H2β+2n

(
Mg,n×Nn

D;Q
)
.(3.9)

Here the number β, which will occur frequently in our dimension counts, is given
in terms of the degree d of the map and the genus h of D by

β = d(1−h)+ g−1.(3.10)

The class (3.9) is the local GW class of the spin curve (D,N). As shown in [LP],
for given g,n,d and h, it depends only on the parity h0(N).

4. The linearization operator. We now return to the specific situation in
which the local GW invariants are defined. Thus, as described after Lemma 1.1, we
consider Jα-holomorphic maps into the total space ND of a spin bundle N → D
over a curve D. This section shows how the special form of the Jα-holomorphic
map equation implies vanishing theorems for the linearized operator. Along the
way we introduce a family of operators that extends the relevant component of the
linearization to general maps.

A neighborhood U of the zero section D ⊂ND can be identified with a neigh-
borhood of the zero section in the projectivization P(N⊕OD) by a fiber-preserving
biholomorphism. Since P(N ⊕OD) is Kähler we can use this identification to de-
fine a Kähler structure on U . With this Kähler structure, the exact sequence (1.5)
of the underlying complex vector bundle splits as TND = π∗TD⊕π∗N . We will
often write this simply as

TND = TD⊕N,(4.1)

leaving the pullbacks as understood; we will then call TD and N the “horizontal”
and “vertical” subbundles, respectively. In this and the following sections ∇ will
denote the covariant derivative on N induced by the Levi-Civita connection of the
Kähler manifold ND, that is, πN ◦∇LC where πN is the orthogonal projection onto
the vertical component of (4.1).

Let f : C → ND be a map from a smooth domain C . The linearization of the
left-hand side of (1.4) defines an operator

Df : Γ
(
f ∗TND

)
⊕H0,1(C,TC)−→ Γ

(
Λ0,1(f ∗TND

))

given by Df (ξ,k) = L̂fξ+
1
2(J −Kα)dfk. The operator L̂f arises from the vari-

ation in the map with the complex structure on C held fixed, and the second term
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arises from the variation k of the complex structure on C . Under the splitting (4.1),
L̂f decomposes as

L̂f =

(
∂
T
f A

B L̃f

)

: Ω0(f ∗TD
)
⊕Ω0(f ∗N

)
−→ Ω0,1(f ∗TD

)
⊕Ω0,1(f ∗N

)

where A and B are certain bundle maps. For ξ ∈ Γ(f ∗N) and v ∈ TC , the compo-
nent L̃f is given by

L̃fξ(v) =
1
2πN

[
∇vξ+J∇jvξ−∇ξKα

(
df(jv)+Jdf(v)

)
−Kα

(
∇jvξ+J∇vξ

)]
.

If the image of f lies in D then Kα vanishes and, by [LP, Lemma 8.2b], the ∇Kα

term lies in f ∗N . Thus this operator reduces to

L̃f = ∂f − 1
2∇Kα(df −Jdfj)j(4.2)

where ∂f is the ∂-operator on f ∗N .

Definition 4.1. To each map f :C→ND, we associate the “modified lineariza-
tion operator” Lf : Ω0(f ∗N)→ Ω0,1(f ∗N) given by

Lf = ∂f +Rα where Rα =− 1
2πN

[
∇Kα(df −Jdfj)j

]
.(4.3)

If f is a Jα-holomorphic map—or is any other map whose image lies in the
zero divisor—then Lf is the vertical-to-vertical component (4.2) of the linearized
Jα-holomorphic map equation. Furthermore, if f is Jα-holomorphic, Lemma 8.2
of [LP] shows that Rα : f ∗N → T ∗C⊗f ∗N is the complex anti-linear bundle map
defined by Rα(ξ) =−∇ξKα ◦df ◦ j. Thus

f "→ Lf is a family of operators parameterized by maps that
agrees with L̃f along the moduli space of Jα-holomorphic
maps.

Much of the rest of this paper will be devoted to understanding the analytic prop-
erties of this family of operators.

For a map f : C → ND whose domain C is a connected nodal curve, we will
regard Lf as an operator on a function space that can be described in terms of
the normalization π : C̃ → C . The inverse image of each node ni ∈ C is a pair
of points pi,qi ∈ C̃. For each component C̃k of the normalization, let Ek,f be the
space Ω0(C̃k,π∗f ∗N) of smooth sections of π∗f ∗N on C̃k, and similarly let Fk,f =
Ω0,1(C̃k,π∗f ∗N). Combine these by setting

Ef =
{
ξ ∈

⊕
k
Ek,f | ξ

(
pi
)
= ξ
(
qi
)

for all i
}

and Ff =
⊕
k
Fk,f .(4.4)
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Formula (4.3) then defines an operator

Lf : Ef −→ Ff(4.5)

whose restriction to each component C̃k gives operators Lk,f : Ek,f → Fk,f as in
(4.3). Using Riemann-Roch (cf. [FO, Lemma 12.2]) one obtains

indexLf =−2β(4.6)

where β is given by (3.10).
In general, as f varies over the space of stable maps, one expects the dimen-

sions of the kernels of these operators to jump, with compensating jumps in the
dimensions of the cokernels. But the following theorem shows that this does not
happen for the operators Lf as f varies over the space of Jα-holomorphic maps.
This second remarkable fact about the Jα-holomorphic map equation plays a cru-
cial role in our analysis. It implies, as we will show in Sections 5–8, that cokernels
of the operators Lf form vector bundles over Mg,n(D,d).

VANISHING THEOREM 4.2. For each Jα-holomorphic map f : C → D in
Mg,n(D,d) with d $= 0

kerLf = 0 and dimcokerLf = 2β.

Proof. Let dk be the degree the restriction of f to one component C̃k of the
normalization of C . If dk $= 0, Lk,f is injective by [LP, Proposition 8.6]. On the
other hand, when dk = 0, the operator Lk,f is the ∂-operator on the trivial bundle
whose kernel is the constant functions. Since any solution of Lfξ = 0 restricts to
a solution of Lk,fξ = 0 on C̃k, ξ vanishes on each component with dk $= 0 and
is constant on each component with dk = 0. But ξ is continuous at each node, so
ξ ≡ 0. This shows Lf is injective and hence the dimension of its cokernel is the
negative of its index (4.6). !

5. The bundles E and F . We now pass to the level of global analysis by
completing the spaces Ef and Ff in (4.5) in appropriate Sobolev norms. As f
varies, these define spaces E and F , each with a projection to the space of map
whose fibers are vector spaces and the modified linearization operator (4.5) defines
a map L : E → F that is linear on fibers. However, it is not clear whether E and
F are vector bundles—they may fail to be locally trivial over maps with nodal
domains. We will return to the issue of local triviality in the Section 8. Here, in
preparation, we define weighted Sobolev norms and show that Lf is a uniformly
bounded operator in this context.

Throughout this and the next three sections, we will fix λ with 0 < λ< 1
6 and

often omit it from the notation. All curves will be fibers of the universal G-twisted
curve Ug,n, but we will suppress g and n from the notation. In Section 2, we fixed
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a Riemannian metric on Ug,n and a defining function ρ for the nodal set. For each
p≥ 2 define a norm on sections of a vector bundle over a curve C by

‖η‖pp,λ =
∫

C
ρp−2−λ|η|p dvolC .(5.1)

The space Mapλ(X) of Definition 2.1 carries two natural vector bundles E
and F ; their fibers are described as follows.

• At a map (C,f), let Ef be the Banach space obtained as the completion of
the space Ef in (4.4) with respect to the norm

|||ξ|||1,p = ‖∇ξ‖2,λ+‖∇ξ‖p,λ+
(∫

C
|ξ|p
) 1

p

.(5.2)

• Similarly, let Ff be the completion of the space Ff in (4.4) with respect to
the weighted Lp norm

|||η|||p = ‖η‖2,λ+‖η‖p,λ.(5.3)

On each component Bi(δ) of B(δ), we can choose coordinates and use the
parameterizations (2.9) and (2.10) to rewrite each part of (5.2) as an integral over
a cylinder T (δ). In particular, as in (2.12)

∫

Bi(δ)
ρp−2−λ |∇ξ|p ∼=

∫

T (δ)
ρ−λ |∇ξ|p and

∫

Bi(δ)
|ξ|p ∼=

∫

T (δ)
ρ−2 |ξ|p.(5.4)

The first equivalence also holds when ∇ξ is replaced by any bundle-valued 1-form
η.

On the other hand, on any C(δ) ⊂ C with δ > 0, the function ρ−λ is bounded
above and below by positive constants, so the norms (5.2) and (5.3) are equivalent
to the standard unweighted L1,p and Lp norms respectively. This is true, in partic-
ular, on any smooth domain C (because then C = C(δ) for small δ). However, the
norms in these equivalences depend on δ.

Remark 5.1. Our norms are closely related to those in [LT2], especially if one
takes λ= p−2 with 2 < p < 13/6. They are chosen with two points in mind:

(i) When transferred to the cylinder by (5.4), the norm should include an expo-
nential weight ρ−λ ≈ eλ|t| in order to obtain the Poincaré inequalities of Section 6.
In terms of the original domain, this gives the awkward-looking weighting factor
ρp−2−λ in (2.5) and (5.2).

(ii) Weighted Lp norms give decay estimates like Lemma 2.3 and (5.7) below,
while weighted L2 norms are well-adapted for integration by parts arguments, as
we will see in Section 6. The sum of weighted Lp and L2 norms, as in (2.5), (5.2)
and (5.3), has both advantages.
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Definition 5.2. Fix p > 2, topologize the space

E =
{
(C,f,ξ) | (C,f) ∈Mapλ(X), ξ ∈ Ef

}

by saying that a sequence (Cn,fn,ξn) converges to (C,f,ξ) if
(a) (Cn,fn)→ (C,f) as in Definition 2.2,
(b) |||ξn|||1,p→ |||ξ|||1,p,
(c) ξn → ξ in the norm (5.2) on C(δ) for every δ > 0 after identifying the

domains by a trivialization (2.4).
The topological space F is defined similarly, using triples (C,f,η) with η ∈ Ff

and using the norm (5.3) instead of (5.2).

Corollary 5.5 below shows that the matching condition (4.4) is preserved un-
der convergence in this topology. In preparation, we prove two lemmas about the
Sobolev norms (5.2) and (5.3). Recall that in dimension 2, there is a Sobolev em-
bedding L1,p ⊂ L∞ for p > 2. For the weighted norm (5.2) there is a similar em-
bedding with a constant that is uniform even as necks pinch to become nodes:

LEMMA 5.3. For each p > 2 there is a constant c, depending on p but uniform
for domains C in the universal curve and the map f ∈MapEλ (X), such that

‖ξ‖∞ ≤ c |||ξ|||1,p for all ξ ∈ Ef .(5.5)

In particular, convergence in the norm (5.2) implies convergence in C0.

Proof. Set δ = 1
4 . Then each fiber C = Cz of the universal curve decomposes

as C(δ)∪B(δ) as in (2.2) (we include the case with B(δ) empty and C(δ) = C)
and the diffeomorphisms (2.10) are defined on the 4δ-neighborhoods of the nodes.
The domains C(δ) have uniform geometry, so the norm of the Sobolev embedding
L1,p ↪→ L∞ on C(δ) is bounded independent of z. This, and the fact that 1

4 ≤ ρ≤ 2
on C(δ), implies that ‖ξ‖∞ ≤ c(p)

(
‖d|ξ|‖p,λ+‖ξ‖p

)
on C(δ). Also, on each com-

ponent of B(2δ), the proof of Lemma 2.3 shows that osc |ξ|≤ c‖d|ξ|‖p,λ. On both
domains, we have ‖d|ξ|‖p,λ ≤ c‖∇ξ‖p,λ by “Kato’s inequality”: for each smooth
section ξ and each connection ∇ compatible with the metric one has |d|ξ|| ≤ |∇ξ|
almost everywhere. The lemma follows because ‖ξ‖∞ is bounded by the sup of |ξ|
on C(δ) plus the oscillation of |ξ| on B(2δ). !

The next result improves Lemma 5.3 by bounding the oscillation of ξ—not just
|ξ|—in the necks B(δ). This requires replacing Kato’s inequality with bounds on
the connection. Recall from Section 2 that we have fixed an isometric embedding
of X into RN . Hence any ξ ∈ Γ(f ∗TX) can be written as an RN -valued function
ξ = (ξ1, . . . ,ξN ) on C and

∇ξ = dξ+
(
f ∗A

)
ξ(5.6)
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where ∇ is the pullback connection and f ∗A is the pullback of the second funda-
mental form, which satisfies |f ∗A|≤ |A| |df |.

LEMMA 5.4. For each p > 2 there are constants c and δ0 and a neighborhood
N of the space of Jα-holomorphic maps in the λ-topology such that for each f :
C→ND in N

(a) the image f(C) lies in the unit disk bundle ND(1),
(b) for each δ < δ0 the oscillation of each ξ ∈ Ef on each component of B(δ)

satisfies

oscB(δ) ξ ≤ cδ
λ
p |||ξ|||1,p .(5.7)

Proof. By Lemma 1.1 the image of each Jα-holomorphic map lies in D. Tak-
ing ε = 1 in Lemma 2.4 then shows that there is a neighborhood N1 of the space
of Jα-holomorphic maps such that the images of all maps in N1 lie in ND(1).

Bounding the oscillation of each ξ exactly as in Lemma 2.3, we have

oscB(δ) ξ ≤ cδ
λ
p

(∫

T
ρ−λ |dξ|p

) 1
p

.

We can use (5.6) to replace dξ by ∇ξ −Af df ξ. Part (a) above insures that the
image of f lies in ND(1), and by compactness the second fundamental form A is
uniformly bounded on ND(1). Also using Lemma 5.3, we therefore have

‖dξ‖p,λ ≤ ‖∇ξ‖p,λ+ c‖ξ‖∞ ‖df‖p,λ ≤
(

1+ c
√
Ep(f)

)
· |||ξ|||1,p

where Ep is the p-energy (2.6). Finally, set N = N1 ∩Map2E(ND) where E
is the constant in Theorem 2.5. Then N is a neighborhood of the space of Jα-
holomorphic maps and each f ∈N satisfies Ep(f)≤ 2E. The lemma follows from
the two displayed equations above. !

One consequence of Lemma 5.4 is that each ξ ∈ Ef has a well-defined value
ξ(pi) at each node pi of the normalization of C , and these values satisfy the match-
ing condition in the definition (4.4) of Ef . This matching condition is not men-
tioned in Definition 5.2. The following corollary shows that the convergence in
Definition 5.2 preserves the matching condition.

COROLLARY 5.5. If a sequence {(Cn,fn,ξn)} in E converges in the sense
of Definition 5.2 to a limit (C,f,ξ), then the limit (C,f,ξ) satisfies the matching
condition (4.4), so lies in Ef .

Proof. As in (4.4), the limit ξ is a section of the pullback of the bundle N to
the normalization C̃. Fix a node n of C and let p and q be the two points of C̃
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corresponding to the node n. By Lemma 5.4 for each ε> 0 we can fix a δ > 0 such
that

oscD(p,δ) ξ ≤ ε oscD(q,δ) ξ ≤ ε oscB(δ) ξn ≤ ε ∀n

where D(p,δ) and D(p,δ) are disks in C̃ centered at p and q. For this δ, we can
identify Cn(δ) with C(δ) and then ξn→ ξ on C(δ) as in Definition 5.2(c). Then
∂B(δ) consists of two disjoint circles, one identified with ∂D(p,δ) and the other
with ∂D(q,δ). Choose points x ∈ ∂D(p,δ) and y ∈ ∂D(q,δ). Then by (5.5)

∣∣ξn(x)− ξ(x)
∣∣≤ c |||ξn− ξ|||1,p ≤ ε

for all large n. The same inequality holds with x replaced by y. Altogether, |ξ(p)−
ξ(q)| is bounded by the sum of five terms
∣∣ξ(p)− ξ(x)

∣∣+
∣∣ξ(x)− ξn(x)

∣∣+
∣∣ξn(x)− ξn(y)

∣∣+
∣∣ξn(y)− ξ(y)

∣∣+
∣∣ξ(y)− ξ(q)

∣∣

with each term bounded by ε. Thus
∣∣ξ(p)− ξ(q)

∣∣ ≤ 5ε for all ε> 0, so the limit ξ
satisfies the matching condition ξ(p) = ξ(q). !

We next show that Lf is a bounded operator with the norms (5.2) and (5.3).
For our purposes it is important to have bounds that are uniform for all maps f is
some neighborhood of the space of Jα-holomorphic maps.

PROPOSITION 5.6. (Uniform boundedness of Lf ) For each p > 2 there is
a constant c = c(p) such that for each f : C → ND in the neighborhood N of
Lemma 5.4 and each ξ ∈ Ef

∣∣∣∣∣∣Lf ξ
∣∣∣∣∣∣

p ≤ c(1+
√
E) |||ξ|||1,p

where E is the constant of Theorem 2.5.

Proof. From (4.3) we have the pointwise bound |Lf ξ| ≤ |∇ξ|+ |∇α||ξ||df |.
By Lemma 5.4 the image of f lies in a compact set in ND where |∇α| < c1 for
some c1. Integrating using norms (5.2) and (5.3) and definition (2.6), we have

∣∣∣∣∣∣Lfξ
∣∣∣∣∣∣

p
≤ |||ξ|||1,p+ c1‖ξ‖∞

√
E(f)

with ‖ξ‖∞ bounded as in (5.5) and E(f) ≤ 2E as at the end of the proof of
Lemma 5.4. The proposition follows. !

6. Poincaré inequalities on weighted spaces. For each Jα-holomorphic
map f : C → ND, the modified linearization operator (4.5) is an elliptic operator
whose kernel is 0 by Theorem 4.2. Consequently, there is a Poincaré inequality of
the form ‖ξ‖ ≤ c‖Lf ξ‖ for a variety of norms. The constant c in this inequality
need not be uniform in a family of maps whose domains pinch to a nodal curve.
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For the weighted Sobolev norms introduced in Section 5, however, there is such an
inequality with uniform constant. This will be proven in Theorem 7.7 based on the
results in this section.

Because Lf is the ∂-operator plus lower order terms, the key step is establish-
ing Poincaré inequalities for ∂ on the cylinders that parameterize the thin part of the
domain curves as described in Section 2. Thus we continue to use the norms (5.1)–
(5.3), but now will work on the T (δ) side of (5.4) with the p = 2 norms. These
cylinders are of two types: half-infinite cylinders, which parameterize neighbor-
hoods of nodes of C , and finite cylinders that parameterize necks in a nearly-nodal
domain C . In both cases we will consider complex-valued functions φ : T → C
satisfying

‖∂φ‖2
2,λ =

∫

T
ρ−λ |∂φ|2 < ∞ and

∫

T
|dφ|2 < ∞(6.1)

and seek Poincaré inequalities with constants independent of the length of the
cylinder.

We begin by observing that if φ satisfies (6.1) then the weighted L2 norm of
dφ is finite. This is immediately true for smooth domains because ρ−λ is bounded
on the domain. The following lemma shows that it is also true in the nodal case.

LEMMA 6.1. (Nodes) Let T = [0,∞)×S1 with coordinates (t,θ). If φ : T →C
is a smooth function satisfying (6.1), then ‖dφ‖2,λ < ∞ and for 0 < λ< 1

6

∫

T ′
eλt |dφ|2 ≤ 6

∫

T
eλt |∂φ|2 +3

∫

E
eλt |dφ|2

where T ′ = [1
2 ,∞)×S1 and E denotes the end [0, 1

2 ]×S1.

Proof. Writing φ= u+ iv, we have

|dφ|2 dtdθ = 4|∂φ|2 dtdθ + 2d(udv).

Multiplying by eλt and noting that d
(
eλtudv

)
= eλtd(udv)+λeλtuvθ dtdθ gives

eλt|dφ|2 dtdθ = 4eλt|∂φ|2 dtdθ + 2d
(
eλtudv

)
−λeλtuvθ dtdθ.

Integrating over any circle St = {t}×S1 and integrating by parts, one also sees
that

∫

St

uvθ =

∫

St

i
2

(
φφθ

)
≤ 1

2

∫

St

|dφ|2

(this last inequality can be checked by Fourier expansions). Fixing s ≥ 0 and in-
tegrating over the annulus Ast = [s,t]×S1 ⊂ T using the above equations and
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Stokes’ Theorem then gives
∫

Ast

eλt|dφ|2 ≤ 4
∫

T
eλt|∂φ|2 +2

∫

St

eλt|dφ|2 +2
∫

Ss

eλs|dφ|2 + λ
2

∫

Ast

eλt|dφ|2.

Setting

Φ(t) =

∫

Ast

eλt|dφ|2−6
∫

T
eλt|∂φ|2−3

∫

Ss

eλs|dφ|2,(6.2)

rearranging, and using the fact that 0 < λ< 1
6 , we obtain the inequality

Φ(t)≤ 3Φ′(t).(6.3)

Now suppose Φ(t0)> 0 for some t0 > s. Then Φ(t)> 0 for all t > t0. Integrat-
ing (6.3) over the interval [t,L] shows that

Φ(t)≤ e
t−L

3 E(L)

for t0 ≤ t < L. In particular,

0 < Φ
(
t0
)
≤ c
(
t0
)
e
−L

3

∫ 2π

0

∫ L

0
eλt|dφ|2 ≤ c

(
t0
)
e(λ−

1
3 )L ‖dφ‖2

2.

Since λ< 1
6 we have a contradiction for large L. Therefore, Φ(t)≤ 0 for all t and

all s. With this, the lemma follows by integrating both sides of (6.2) over the s
variable from 0 to 1

2 . !

LEMMA 6.2. (Nodes) For each smooth function φ : T → C satisfying (6.1),
there exists a unique constant φ ∈C such that the integrals over the sets T ′, T and
E of Lemma 6.1 satisfy

∫

T ′
ρ−λ |φ−φ|2 ≤ c(λ)

∫

T
ρ−λ |∂φ|2 +8

∫

E
ρ−λ |dφ|2(6.4)

where c(λ) = 4+8λ−2.

Proof. First define a function g(t) by averaging over circles St = {t}×S1

g(t) =
1

2π

∫

St

φ.(6.5)

The oscillation of g(t) on [L,∞) can be estimated by using the fundamental theo-
rem of calculus and applying Holder’s inequality to g′ = ρλ/2 ·ρ−λ/2g′:

osc[L,∞) g ≤
∫ ∞

L
|g′|≤

(∫ ∞

L
e−λtdt

) 1
2
(∫ ∞

L
ρ−λ|g′|2 dt

) 1
2

≤ 1√
λ
e−

λL
2 ‖dφ‖2,λ;[L,∞)

(6.6)
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(observe that ‖dφ‖2,λ is finite by Lemma 6.1). It follows that g(t) approaches a
constant φ∈C as t→∞, and |g(t)−φ| is bounded for t≥L by the right-hand side
of (6.6). Writing λeλt dt= d(eλt) and integrating by parts gives

λ

∫ L

0
eλt|g−φ|2dt≤ eλt |g−φ|2

∣∣∣∣
L

0
+

∫ L

0
eλt
(
ε|g−φ|2 + ε−1|g′|2

)
dt

for any ε> 0. The lower boundary term is negative, so can be dropped. The upper
boundary term is dominated by eλL times the square of the right-hand side of (6.6),
so vanishes in the limit L→ ∞. Taking ε= 1

2λ and rearranging gives
∫ ∞

0
eλt |g−φ|2 dt ≤ 4λ−2

∫ ∞

0
eλt |g′|2 dt.(6.7)

Next, write the Fourier expansion of φ in the form

φ(t,θ)−φ = f(t) +
∑

n $=0

an(t)e
inθ(6.8)

with f(t) = g(t)−φ. Integrating over the circles St, we have

1
2π

∫

St

|φ−φ|2 = |f(t)|2 +
∑

n $=0

|an(t)|2(6.9)

and

1
π

∫

St

|∂φ|2 = |f ′|2 +
∑

n $=0

∣∣bn(t)
∣∣2 where bn = a′n−nan.(6.10)

Let β = βL(t) be a smooth positive cutoff function equal to 1 on [1
2 ,L], with

support in [0,L+ 1
2 ] and satisfying β ≤ 1 and |dβ| ≤ 4. Integrating βeλt |bn|2 by

parts and observing that |bn|2 ≥−n(|an|2)′+n2|an|2 yields
∫ ∞

0
β eλt

∑

n $=0

∣∣bn
∣∣2 ≥ 1

2

∫ ∞

0
β eλt

∑

n $=0

∣∣an
∣∣2− 4

2π

∫

E∪TL

eλt |dφ|2,

where TL = [L,∞)×S1 and where we have used the inequalities n2− |n|λ ≥ 1
2

and n|an|2 ≤ n2|an|2 for n $= 0. Now take L→ ∞. Because ‖dφ‖2,λ is finite by
Lemma 6.1, the part of the last integral over TL vanishes in the limit, leaving

2π
∫ ∞

1
2

eλt
∑

n $=0

|an|2 ≤ 4π
∫ ∞

0
eλt
∑

n $=0

|bn(t)|2 +8
∫

E
eλt |dφ|2.

On the other hand, multiplying (6.9) by eλt, integrating over t, and using (6.7) gives
∫

T ′
eλt |φ−φ|2 ≤ 8π

λ2

∫ ∞

0
eλt |f ′(t)|2 +2π

∫ ∞

1
2

eλt
∑

|an|2.
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The desired inequality (6.4) follows by combining the last two displayed equations
and observing that each term on the right-hand side of (6.10) is less than the left-
hand side of (6.10).

Finally, to prove the uniqueness of φ, suppose that (6.4) holds for two constants
φ1 and φ2. Then by the triangle inequality

∫ L

0

∫ 2π

0
eλt |φ1−φ2|2 = 2πλ−1

(
eλL−1

)
|φ1−φ2|2

is bounded, uniformly in L. Taking L→ ∞ then shows that φ1 = φ2. !

LEMMA 6.3. (Necks) Let T = [−L,L]×S1 with coordinates (t,θ) and ρ2 =
2|µ|cosh(2t). Then for each smooth function φ : T → C, there exists a constant
φ ∈ C such that

∫

T ′
ρ−λ |φ−φ|2 ≤ c(λ)

∫

T
ρ−λ |∂φ|2 +8

∫

E
ρ−λ |dφ|2(6.11)

where T ′ = [−L+ 1
2 ,L−

1
2 ]×S1, E is the end E = T \T ′ and c(λ) = 4+16λ−2.

Proof. Define φ ∈ C be the average value of φ over the center circle S0 =
{0}×S1:

φ=
1

2π

∫

S0

φ.(6.12)

Then φ−φ has the Fourier expansion (6.8) with f(0) = 0. For t≥ 0 write ρ−λ = σ′

on [−L,L] where σ(t) =−
∫ L
t ρ
−λ(r)dr. Integrating by parts, we obtain

∫ L

0
ρ−λ |f |2dt= σ|f |2

∣∣∣∣
L

0
−
∫ L

0
σ2Refdf ≤ 0+

∫ L

0
|σ|
(
ε|f |2 + ε−1|f ′|2

)
dt

for any ε> 0. Because ρ2 ≤ 2|µ|e2t ≤ 2ρ2 we also have |σ|≤ 2ρ−λ/λ. After again
taking ε= 1

4λ and rearranging, we are left with the inequality

∫ L

0
ρ−λ |f |2dt≤ 16λ−2

∫ L

0
ρ−λ|f ′|2 dt.(6.13)

Because ρ is an even function, (6.13) also holds on the interval [−L,0] and hence
on [L,L].

Now repeat the end of the proof of Lemma 6.2. Integrating the Fourier expan-
sion (6.8) over the circles St again gives (6.9) and (6.10). This time, relate f and
f ′ by (6.13) and choose a smooth positive cutoff function β that is equal to 1 on
[−L+ 1

2 ,L−
1
2 ], with support in [−L,L] and satisfying β ≤ 1 and |dβ| ≤ 4. Mul-

tiply the term linear in n by βρ−λ, integrate over t, and integrate by parts, noting
that |d logρ|= | tanh(2t)|≤ 1 from (2.11). The lemma follows. !
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Remark. While the constant φ in Lemma 6.3 is not unique, the end of the proof
of Lemma 6.2 shows that the range of possibilities for φ shrinks exponentially as
the neck T becomes longer.

Together, Lemmas 6.2 and 6.3 give a Poincaré inequality for functions on the
thin part B(δ) of a curve C . As in Section 2, each component of the thin part
is parameterized by a set T (δ) that is either a finite cylinder or two half-infinite
cylinders. In both cases we use the weighted norm (2.12) on functions.

PROPOSITION 6.4. There is a constant δ0 such that for each δ < δ0 and each
L1,2
loc function φ : T (2δ)→ C satisfying (6.1), there exists a φ ∈C with

∫

T (δ)
ρ−λ |φ−φ|2 ≤ 32λ−2

∫

T (2δ)
ρ−λ |∂φ|2 +8

∫

B(2δ)\B(δ)
ρ−λ |dφ|2.(6.14)

Proof. In the chart (2.8), the metric and the distance function on B(δ) induced
by the metric on the universal curve are, for small δ, uniformly close to the metric
and the distance function induced on the curve xy = µ by the Euclidean metric
on C2. Thus it suffices to show (6.14) for the Euclidean metric, taking ρ2 to be
|x|2 + |y|2. Because smooth functions are dense in L1,2 it also suffices to assume
that φ is smooth.

Each component of B(2δ) corresponds, under the parameterization φ of (2.9)
or (2.10), to a cylinder T (2δ) isometric to either the cylinder T in Lemma 6.2 or
the T in Lemma 6.3. In both cases, the image φ(E) lies in the annulus B(2δ)\B(δ)
(note

√
e < 2). Thus (6.14) follows from Lemmas 6.2 and 6.3. !

7. Estimates on the linearization Lf . This section contains the essential
elliptic estimates for the modified linearization operator Lf defined by (4.3). Such
estimates are standard for unweighted Sobolev spaces, but we need them for the
weighted spaces Ef and Ff , and we need them to be locally uniform on the space
of maps Mapλ(X) of Definition 2.2. Care is needed because on weighted Sobolev
spaces the Rellich compactness lemma may fail and because elliptic operators need
not be Fredholm (cf. [L]).

7.1. The interior estimate. The first step is to parlay the Poincaré inequal-
ity (6.14) into an estimate on the thin region B(δ). This step is possible only be-
cause we are working with weighted norms.

LEMMA 7.1. (Interior estimate) Fix p > 2 and a Jα-holomorphic map f . Then
there is a neighborhood Nf of f in Mapλ(ND) and constants δ1, c1 and c2 = c2(δ)
such that if g ∈Nf , δ < δ1, ξ ∈ L1,p and Lgξ ∈ Fg, then ξ ∈ Eg and

|||ξ|||1,p;B(δ) ≤ c1 |||Lgξ|||p;B(4δ) + c2 |||ξ|||1,p;B(4δ)\B(δ) .(7.1)
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Proof. By Lemma 1.1 the image of f lies in the set where α = 0, and by
Lemma 2.3 we can choose Nf and δ small enough that the image of each compo-
nent of B(4δ) lies in a holomorphic coordinate chart for the bundle N → ND. In
such a chart, we can regard g ∈Nf and any ξ ∈ Eg as complex-valued functions on
B(2δ) or, equivalently, on T (2δ) via (2.9) and (2.10). To obtain uniform estimates,
we will work on T (2δ), and return to B(2δ) at the end of the proof.

Using formula (4.3) we can write Lg as the standard ∂-operator on functions
plus additional terms:

Lgξ = ∂ξ+(Agξ)
0,1 where Ag has the form Agξ = g∗Γξ+∇ξKα ◦dg ◦ j.

(7.2)

Here j is the complex structure on C , Γ is a term built from the Christoffel symbols
satisfying |g∗Γ|≤ c3 diam(f(B(δ)))|dg| ≤ c4|dg|, |∇Kα ◦dg|≤ c5 |dg|. Similarly,
∇ξ = dξ+Γξ with the same bounds on Γ. Hence

∣∣|Lgξ|− |∂ξ|
∣∣ +

∣∣|∇ξ|− |dξ|
∣∣≤ c6 |dg| |ξ|.(7.3)

By the definition of Mapλ(ND), the weighted p-norm |||dg|||p is finite. Further-
more, |ξ| is bounded because of the hypothesis ξ ∈L1,p and the Sobolev embedding
L1,p ⊂ C0. These facts insure that both the operator Ag in (7.2) and the right-hand
side of (7.3) are in Fg . We then see that both conditions in equation (6.1) hold:

• Using the hypothesis Lgξ ∈ Fg, (7.3) implies that ∂ξ ∈Fg .
• By the hypothesis ξ ∈ L1,p, the L2 norm of ∇ξ on B(δ) is finite. But then

∇ξ ∈ L2(T (δ)) (take p = 2 and λ = 0 in (5.4)), and hence (7.3) shows that dξ ∈
L2(T (δ)).
Thus the lemmas of Section 6 apply to ξ.

Now restrict attention to one component of B(δ) and set ζ = ξ−ξ where ξ ∈C
is the constant provided by Proposition 6.4. For each integer n let A(n) ⊂ T be
the annulus with n ≤ t ≤ n+ 1 and let A+(n) be the annulus with n− 1 ≤ t ≤
n+ 2. Since ζ ∈ L1,p on An, standard elliptic theory (Lemma 1.2.2 of [IS1] or
Lemma C.2.1 of [MS] and interpolation) shows that

‖ζ‖1,p;A(n) ≤ c7

(
‖∂ζ‖p;A+(n) +‖ζ‖2;A+(n)

)
(7.4)

where these are unweighted Lp norms. The constant c7 is independent of n because
the A+(n) are isometric to one another. Holder’s inequality shows that (7.4) also
holds when the p on the left side is replaced by 2 (retaining the p on the right side).

Recall from (2.11) that ρ is equal to e−t on the half-infinite cylinders and sat-
isfies |µ|e2|t| ≤ ρ2 ≤ 2|µ|e2|t| on the finite cylinders. In both cases, the ratio of the
maximum to the minimum value of ρ−λ across A+(n) is bounded uniformly in
n. Therefore (7.4) remains valid (with a modified constant) when the norms are
weighted by ρ−λ; taking the p-power of both sides gives the factor of δ below.
Note that the union of the A+(n) lies in T (2δ) and that each point on T (δ) lies in
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three of the A+(n). Summing (7.4) on n and using the inequality ρ≤ 2δ on T (δ),
one therefore obtains

∫

T (δ)
ρ−λ |dζ|p ≤ c8

∫

T (2δ)
ρ−λ |∂ζ|p+ c8(2δ)

p−2
p λ
(∫

T (2δ)
ρ−λ |ζ|2

) p
2

.

Here we have used the fact that ∂ζ = ∂ξ ∈ Fg which, by Lemma 6.2, insures
that the two integrals on the right-hand side—and therefore all three integrals—are
finite. It also insures that the |ζ|2 term is bounded as in the Poincaré inequality
(6.14) on T (4δ). Consequently,

‖dζ‖p,λ;T (δ) ≤ c9

(
‖∂ζ‖p,λ;T (4δ) +‖∂ζ‖2,λ;T (4δ) +‖dζ‖2,λ;T (4δ)\T (δ)

)
.

But ζ = ξ− ξ satisfies dζ = dξ and ∂ζ = ∂ξ. After applying (7.3) we obtain

‖∇ξ‖p,λ;T (δ) ≤ c10

(
‖Lgξ‖p,λ;T +‖Lgξ‖2,λ;T +‖dg ξ‖p,λ;T

+‖dg ξ‖2,λ;T +‖∇ζ‖2,λ;T\T (δ)

)

where T denotes T (4δ). This inequality holds in particular for p= 2. Adding the p
and p= 2 cases yields

|||∇ξ|||p;T (δ) ≤ c11

(
|||Lgξ|||p;T +‖ξ‖∞,T |||dg|||p;T

)
+ c12 |||ξ|||1,p;T\T (δ) .(7.5)

Now Lemmas 7.2 and 7.3 below show that there is a constant c13, independent of
δ, such that

‖ξ‖∞,T |||dg|||p;T ≤ c13

(
δ

λ
p |||∇ξ|||p;T (δ) + δ

− 2
p |||ξ|||1,p;T\T (δ)

)
· δ

1
3−

λ
2 .

Hence after taking δ sufficiently small, the middle term on the right-hand side of
(7.5) can be absorbed partly on the other side of the equation and partly into the
last term in (7.5). Returning to B(δ) and noting the equivalence at the beginning
of the proof of Proposition 6.4, we then have

|||∇ξ|||p;B(δ) ≤ c14 |||Lgξ|||p;B(4δ) + c15(δ) |||ξ|||1,p;B(4δ)\B(δ) .(7.6)

Finally, the last term in the norm (5.2) on B(δ) can be bounded using (7.7) below:

(∫

B(δ)
|ξ|p
) 1

p

≤
[
Area(B(δ))

] 1
p ‖ξ‖∞≤c16 δ

2
p

(
|||∇ξ|||p;B(δ)+|||ξ|||1,p;B(4δ)\B(δ)

)
.

The inequality of the lemma follows by combining this with (7.6) and taking δ
sufficiently small. Since we have shown these integrals are finite, we also conclude
that ξ ∈ Eg. !

The above proof made use of the following two technical lemmas.
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LEMMA 7.2. Fix p > 2. There is a constant c = c(p), independent of δ ≤ 1,
such that for each g : T (4δ)→X with finite p-energy, each ξ ∈ Eg satisfies

‖ξ‖∞,T (4δ) ≤ c
(
δ

λ
p |||∇ξ|||p;T (δ) + δ

− 2
p |||ξ|||1,p;T (4δ)\T (δ)

)
.(7.7)

Proof. As in Lemmas 6.1 and 6.3, let E be the end of T = T (4δ) isometric
to one or two copies of [0, 1

2 ]×S1. We can bound the oscillation of |ξ| as in the
proofs of Lemmas 2.3 and 5.3, and bound |ξ| on E using the Sobolev embedding
L1,p ⊂ L∞:

‖ξ‖p∞,T ≤ (oscT |ξ|)p+‖ξ‖p∞;E ≤ c1 δ
λ |||∇ξ|||p;T +

∫

E
|d|ξ||p+ |ξ|p.

But |d|ξ||p ≤ δλρ−λ|∇ξ|p by Kato’s inequality, so we obtain

‖ξ‖p∞,T ≤ c1 δ
λ
(
|||∇ξ|||pp;T (δ) + |||∇ξ|||pp;T\T (δ)

)
+ δλ

∫

E
ρ−λ|∇ξ|p + δ−2

∫

E
ρ2|ξ|p.

Translating the norm (5.2) to T using (5.4), one sees that this gives (7.7) for δ ≤ 1
because E ⊂ T (4δ)\T (δ) under the transformations (2.9) and (2.10). !

LEMMA 7.3. Fix p > 2 and a Jα-holomorphic map f . There are positive con-
stants δ0 and c such that for each δ < δ0 there is a neighborhood Nf (δ) of f
such that, for each (C,g) ∈Nf (δ), the function |dg| satisfies |||dg|||p ≤ cδ

1
3−

λ
2 on

B(δ)⊂ C .

Proof. The energy bound (2.15) on the Jα-holomorphic map f shows that
|||df |||p;B0(δ)

≤ c1 δ
1
3−

λ
2 where B0(δ) is the thin part of the domain C0 of f . Also,

by the triangle inequality,

|||dg|||p;B(δ) ≤ |||df |||p;B0(δ)
+
∣∣∣
√

Ep(g,δ)−
√
Ep(f,δ)

∣∣∣

+
∣∣∣
√

E2(g,δ)−
√
E2(f,δ)

∣∣∣
(7.8)

where Ep(g,δ) is the p-energy integral (2.6) on the thin part B(δ) of the domain
C of g. The last two terms in (7.8) vanish as g→ f in the λ-topology because, by
parts (b) and (c) of Definition 2.2,

E2(g,δ) =E2(g)−‖dg‖2
2,λ;C(δ) −→E2(f)−‖df‖2

2,λ;C0(δ)
= E2(f,δ).

One similarly sees that Ep(g,δ)→Ep(f,δ). Thus |||dg|||p ≤ cδ
1
3−

λ
2 whenever g is

close to f . !
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7.2. The exterior estimate. For a fixed map f : C→ND, standard theory
gives a elliptic estimate on the thick part C(δ) of the form

‖ξ‖1,p,C(2δ) ≤ c
(
‖Lf ξ‖p,C(δ) +‖ξ‖p,C(δ)

)
(7.9)

where these are unweighted L1,p and Lp norms. The next lemma shows that the
corresponding inequality holds for the weighted norms, uniformly for maps near
f . In fact, because the weighting function ρ is bounded above and below on C(δ),
the extension to weighted norms, with a constant depending on δ, is immediate.
The issue, then, is whether the weighted version of (7.9) holds with a constant that
is locally constant on the space of maps with the λ-topology of Definition 2.2.

LEMMA 7.4. (Uniform exterior estimate) Fix p > 2 and a Jα-holomorphic
map (C0,f). Then for each δ, 0 < δ < 1, and each ε> 0, there is a neighborhood
Nf of f in Mapλ(ND) and a constant c = c(p,δ) such that for all g ∈ Nf , each
ξ ∈ L1,p(C(δ)) satisfies

|||ξ|||1,p;C(2δ) ≤ c
(
|||Lgξ|||1,p;C(δ) + |||ξ|||p;C(δ)

)
+ ε |||ξ|||1,p;C(δ) .(7.10)

Proof. First, by Definition 2.2(a), there is a neighborhood Nf ⊂N so that the
domains of all maps (C,g) in Nf lie in a single chart in the universal curve of
the form (2.3) or (2.4). This chart gives an identification C(δ) = C0(δ) that is C1

close to an isometry. We can regard each map g : C(δ)→ ND in Nf as a map
g : C0(δ)→ND; by the proof of Lemma 2.4 these satisfy

sup
x∈C0(δ)

dist(f(x),g(x)) ≤ c1 |||f − g|||1,p;C0(δ)
.(7.11)

Recall that the Jα-holomorphic map f is smooth and, by Lemma 1.1, has image in
the zero section D of ND. Thus (7.11) implies that the images of all g ∈Nf lie in
a neighborhood of the zero section where there is a uniform bound on |∇Kα|.

Now fix x∈C0(2δ) and choose a disk D(x,2r)⊂C0(δ). From Definition 4.1,
the operator Lf has the form Lf = ∂+Rα where |Rα|≤ 2|∇Kα||df | is bounded.
Thus Rα ∈Lp. Elliptic theory for such operators, as in [MS, Appendix C.2], yields
an estimate

‖ξ‖1,p,D(x,r) ≤ c3

(
‖Lfξ‖p,D(x,2r) +‖ξ‖p,D(x,2r)

)

with c3 depending on (C0,f) and r. We can add ‖ξ‖1,2,D(x,r) to the left-hand side
by Holder’s inequality. We can also insert the weighting function ρ into each of the
integrals, noting that δ ≤ ρ≤ 2 on D(x,2r)⊂ C(δ). The result is

|||ξ|||1,p;D(x,r) ≤ c4

(∣∣∣∣∣∣Lfξ
∣∣∣∣∣∣

p;D(x,2r) + |||ξ|||p;D(x,2r)

)
(7.12)

for all ξ ∈ Ef .
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We next estimate |Lf−Lg|, first on a small disk, then on C(2δ). Fix x∈C(2δ).
After making r smaller, we may assume that f(D(x,2r)) lies in a holomorphic
coordinate chart U ⊂ND with coordinates {xi}. In this chart, J is constant. In light
of (7.11) there is a neighborhood Nf (x) of f such that the images g(D(x,2r))
for all g ∈ Nf (x) lie in U . As in the proof of Lemma 7.1 we can then regard
g ∈Nf (x) and any ξ ∈ Eg as complex-valued functions on D(x,2r). Since the Jα-
holomorphic map f has its image in D, we can further assume that the images of
g for all g ∈Nf (x) lies in the 1

2 -neighborhood of the D in ND.
As in (7.2), write Lg as the standard ∂-operator on functions plus additional

terms:

Lgξ = ∂Cξ+π
0,1
C,g

(
g∗Γξ+∇ξKαdgj

)
(7.13)

where ∂Cξ = 1
2 (dξ + Jdξj) and the projection onto g∗N -valued (0,1) forms is

defined in terms of the complex structure j on C by

π0,1
C,g(η)(v) =

1
2

(
η(v)+Jη(jv)

)
.

Let j0 be the complex structure on C0. Note that (i) we may assume |j| is bounded
on C0(δ) by making Nf smaller since |j0|= 1 on C0 and (ii) the smooth quantities
Γ, J and ∇Kα are bounded. Thus (7.3) and (7.13) give the pointwise inequality:

∣∣(Lg−Lf)ξ
∣∣≤ c5

(
|f − g|+ |df −dg|+ |j− j0|

)
‖ξ‖∞ + |j0− j| |∇ξ|(7.14)

where c5 depends only on (C0,f) and δ.
Now, fix ε> 0. After making Nf smaller, we may assume that

∥∥j0− j
∥∥

∞;C0(δ)
+ |||f − g|||1,p;C0(δ)

< ε

for all g ∈Nf (x) (cf. Definition 2.2). Consequently, (7.14) and Lemma 5.3 give
∣∣∣∣∣∣(Lg−Lf )ξ

∣∣∣∣∣∣
p;D(x,2r) ≤ c7ε |||ξ|||1,p;D(x,2r) .(7.15)

Combining (7.12) and (7.15) then yields

|||ξ|||1,p;D(x,r) ≤ c8

(
|||Lgξ|||p;D(x,2r) + |||ξ|||p;D(x,2r) + ε |||ξ|||1,p;D(x,2r)

)
(7.16)

for all g ∈ Nf (x). Finally, the compact curve C(δ) is covered by disks D =
D(x,2r) on which (7.16) holds. Let 2r0 be the Lebesgue number of this cover.
Then (7.16) holds on each disk with center in C(2δ) and radius less than 2r0.
Choose a finite cover of C(2δ) by such disks D(xi,2r0) so that each point of C(δ)
lies in at most 20 disks. Summing the integrals in the estimate (7.16) and inter-
secting the corresponding neighborhoods Nf (xi), one sees that (7.16) holds with
D(x,r) replaced by C(2δ) and D(x,2r) replaced by C(δ), as required. !
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7.3. Global Poincaré inequalities. We can now combine the interior and
exterior estimates to obtain a global Poincaré inequality. We do this first for a fixed
Jα-holomorphic map f , and then use the Compactness Theorem 2.5 to obtain a
Poincaré equality valid for all maps in a neighborhood of the moduli space.

PROPOSITION 7.5. Fix p > 2 and a Jα-holomorphic map (C,f). Then there is
a neighborhood Nf of (C,f) in Mapλ(ND) and a constant c= c(p,f) such that
the following holds: for each (C ′,g) ∈ Nf , every section ξ of g∗N with (i) finite
(unweighted) L1,p norm and (ii) Lgξ ∈ Fg, satisfies ξ ∈ Eg and

|||ξ|||1,p ≤ c |||Lgξ|||p .(7.17)

Proof. If this statement is false, there is a sequence of maps (Cn,gn)→ (C,f)
and ξn ∈ L1,p(g∗nN) with |||ξn|||1,p = 1 for all n and |||Lgnξn|||p → 0. Fix δ > 0.
As in the proof of Lemma 7.10, we can identify each Cn(δ) with C(δ). Under
this identification the complex structures on Cn(δ) converge in C1 to that of C(δ)
as n→ ∞ and the norms (5.2) and (5.3) are uniformly equivalent to the standard
Sobolev L1,p∩L1,2 and Lp∩L2 norms.

By the compactness of the Sobolev embedding L1,p ⊂ C0 there is a subse-
quence, still denoted {ξn}, that converges weakly in L1,p and strongly in C0 to
some ξ0 ∈ Ef

∣∣
C(δ). Hence Lfξ0 = 0. After replacing δ by δ/2, then δ/4, etc., re-

peatedly taking subsequences, and passing to a diagonal subsequence we obtain a
continuous solution of Lfξ0 = 0 on C \{nodes}, and this ξ0 is bounded because
the numbers ‖ξn‖∞ are uniformly bounded by our hypothesis and Lemma 5.3.
Lemma 7.6 below then shows that ξ0 extends across the nodes to a smooth global
solution of Lfξ0 = 0 on C0. But kerLf = 0 by Vanishing Theorem 4.2, so in fact
ξ0 = 0. Thus ξn→ 0 in C0 and consequently for each δ > 0 we have

|||ξn|||p;C(δ) −→ 0.(7.18)

On the other hand, for a fixed small δ and all large n, the maps gn lie in the
neighborhoods Nf of Lemmas 7.1 and 7.4. Applying the interior estimate (7.1) on
B(2δ), we have

1 = |||ξn|||1,p ≤ |||ξn|||1,p;B(2δ) + |||ξn|||1,p;C(2δ)

≤ c1 |||Lgnξn|||p;B(8δ) + c2 |||ξn|||1,p;B(8δ)\B(2δ) + |||ξn|||1,p;C(2δ)

≤ c1 |||Lgnξn|||p+ c3 |||ξn|||1,p;C(2δ) .

After bounding the last term by the exterior estimate (7.10) with ε = 1/2c3, this
becomes

1≤ c4 |||Lgnξn|||p+ c5 |||ξn|||p;C(δ) +
1
2 |||ξn|||1,p;C(δ) .
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This inequality, together with (7.18) and the normalization |||ξn|||1,p = 1, contra-
dicts the assumption that |||Lgnξn|||p→ 0. !

LEMMA 7.6. Let f : D→X be a smooth map from a disk D with Riemannian
metric g. Then any bounded weak solution of Lfξ = 0 on D \{0} extends to a
smooth solution of Lfξ = 0 on D.

Proof. Fix a smooth non-increasing function β(t) of t∈R with β = 1 for t≤ 1
2

and β = 0 for t≥ 1. For δ> 0, set βδ = β(r/δ) using polar coordinates on D. Write
Lf as L and ξ as βδξ+(1−βδ)ξ. Noting that dβ has support on the disk D(δ) and
that |L((1−βδ)ξ)| ≤ |dβδ ||ξ| ≤ cδ−1|ξ|, we have the following bounds on the L2

inner product:

|〈L∗Lη,ξ〉|= |〈L∗Lη,βδξ〉|+ |〈Lη,L(1−βδ)ξ〉|

≤
(
‖L∗Lη‖2;D + cδ−1‖Lη‖2;D(δ)

)
‖ξ‖∞

√
vol(D(δ)).

The right-hand side vanishes as δ → 0. Thus ξ is a bounded weak solution of
L∗Lξ = 0 on D.

After a conformal change of metric, we can choose coordinates around the
origin in which L has the form ∂ +A where A is a zeroth-order operator and
L∗L=∆+B where B is a first order operator. Standard elliptic theory then implies
that ξ extends across the origin to a smooth solution of L∗Lξ = 0 on D. Taking the
inner product with βδξ and integrating by parts then shows that Lξ = 0 on D. !

THEOREM 7.7. For each p with 2 < p ≤ 2+λ, there is a constant c(p) and
a neighborhood N of the space of stable Jα-holomorphic maps in Mapλ(ND,d)
such that, for every f ∈N ,

Lf : Ef → Ff(7.19)

is a uniformly bounded Fredholm map with indexLf =−2β as in (3.10) and with

|||ξ|||1,p ≤ c(p)
∣∣∣∣∣∣Lf ξ

∣∣∣∣∣∣
p ∀ξ ∈ Ef .(7.20)

Proof. By Proposition 7.5, each stable Jα-holomorphic map f has a neighbor-
hood Nf and an associated constant c(p,f) so that (7.17) holds for all g ∈ Nf .
These sets {Nf} cover the space of stable maps, so (7.20) follows by the Com-
pactness Theorem 2.5.

We know from Proposition 5.6 that Lf is uniformly bounded for f ∈ N , and
kerLf = 0 by (7.20). Inequality (7.20) also implies that the range of Lf is closed:
if Lf ξk→ η then applying (7.20) to ξk− ξ) shows that {ξk} is Cauchy, so ξk→ ξ0

in Ef with Lf ξ0 = limLf ξk = η, so η ∈ ImLf . The proof is completed by noting
that dimcokerLf = 2β by Lemma 7.8 below. !
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LEMMA 7.8. For each p with 2 < p ≤ 2+ λ and each (C,f) in the neigh-
borhood N of Theorem 7.7, we can choose a 2β-dimensional subspace Wf ⊂ Ff ,
consisting of smooth forms that vanish in a neighborhood of the nodes, that is
complementary to the image of Lf : Ef → Ff . Hence dimcokerLf = 2β.

Proof. Fix f ∈ N and let L1,p(Ef ) and Lp(Ff ) be the completions of Ef

and Ff defined by (4.4) in the usual, unweighted L1,p and Lp norms. By [FO,
Lemma 12.2] (see also [MS, Theorem C.1.10]) the modified linearization (4.5)
extends to a bounded Fredholm map

Lf : L1,p(Ef

)
−→ Lp

(
Ff

)

whose index is −2β and whose kernel vanishes by Theorem 4.2. Hence we can
choose linearly independent (0,1) forms {wj | j = 1, . . . ,2β} in Lp(Ff ) so that
Wf = span{wj} is complementary to ImLf . We can assume that each wj is smooth
and vanishes in a neighborhood of all nodes because such forms are dense in Lp.
Then each η ∈ Lp(Ff ) can be uniquely written as

η = Lfξ+w(7.21)

for some ξ ∈ L1,p(Ef ) and w ∈Wf . Also observe that, because ρ is bounded and
p≤ 2+λ, each η ∈ Ff satisfies

∫

C
|η|p ≤ c

∫

C
ρp−2−λ |η|p.

Thus Ff ⊂ Lp(Ff ). The same inequality for the weighted norm (5.2) shows that
Ef ⊂ L1,p(Ef ). We also have Wf ⊂ Ff because ρ−1 is bounded outside the set
where all w ∈Wf vanish.

The lemma follows easily: each η ∈ Ff lies in Lp(Ff ), so can be written in
the form (7.21) for some unique ξ ∈ L1,p(Ef ) and w ∈Wf . We can then apply
Proposition 7.5 to Lfξ = η−w ∈ Ff to conclude that ξ ∈ Ef . Thus each η ∈ Ff

can be written as the sum of an element in LfEf and a w ∈Wf , and uniqueness
holds because Ef ⊂L1,p(Ef ). We conclude that dimcokerLf = dimWf = 2β. !

8. Obstruction bundle Ob. Abstractly, Ob is the topological vector bundle
whose fiber at a Jα-holomorphic map f : C →ND is cokerLf . Thus it is defined
by the exact sequence

0−→ E L−→ F ρ−→Ob−→ 0

of topological vector bundles over Mapλ(X). The goal of this section is to give a
concrete realization of Ob and show that it is a locally trivial bundle on the space
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of maps. For this, we will split the sequence

0−→ Ef
Lf−→ Ff

ρ−→ cokerLf −→ 0(8.1)

by regarding cokerLf as a subspace of Ff for each map f . The key issue is con-
structing a splitting that is locally trivial around maps with nodal domains.

Consider the space Mapg,n(ND,d) of maps into the open complex surface
ND that represent the class d[D]. The following theorem is the main application of
the analysis done in previous sections.

THEOREM 8.1. There is a locally trivial real vector bundle Ob defined in a
λ-topology neighborhood N of Mg,n(D,d) in Mapg,n(ND,d) such that the fiber
of Ob at each f ∈N lies in Ff , is complementary to the image of Lf , and has the
same dimension as cokerLf . This bundle Ob has a canonical orientation.

The remainder of this section proves Theorem 8.1 in four steps. The first step
adopts the method of Fukaya and Ono [FO]. Steps 2 and 3 show that the cokernel
bundle is a locally trivial vector bundle; this is the key feature of our situation that
does not occur in [FO]. Step 4 constructs an embedding of the cokernel bundle into
the bundle F . In these steps and in the subsequent sections we assume that p lies
in the range 2 < p≤ 2+λ in which Theorem 7.7 and Lemma 7.8 are valid.

Step 1. The fiber Obf at a map f : C → ND. For a fixed f ∈Mg,n(D,d)
the subspace Wf of Lemma 7.8 specifies a (non-canonical) splitting of (8.1). As in
Lemma 7.8, write Wf as the space of linearly independent (0,1) forms {wj | j =
1, . . . ,2β} in Ff . Also consider the subspace

P0 = Ω0,1
0 (T ∗U"N)(8.2)

of the space (1.9) of Ruan-Tian perturbations that have values in the subspace
N ⊂ TND and which vanish in some open set containing all nodes. For each
v ∈ P0 the restriction of v to the graph of f , defined as in (1.10), is an element
vf ∈ Ω0,1

0 (C,f ∗N) that vanishes near all nodes. The following lemma shows that,
conversely, all such elements of Ω0,1

0 (C,f ∗N) arise as restrictions of elements of
P0.

LEMMA 8.2. For each w ∈ Ω0,1
0 (C,f ∗N), there is a v ∈ P0 with vf =w.

Proof. Fix δ small enough that the support of w lies in C(2δ). The graph
Gf = {(x,f(x)) |x ∈ C(δ)} is a submanifold of C(δ)×ND , so has a 2ε-tubular
neighborhood O consisting of points (x,y) such that there is a unique minimal
geodesic in ND from y to f(x). Parallel transporting the fibers of N along these
geodesics trivializes N over O. Fix a cutoff function β ∈ C∞(C(δ)×ND) with
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support on O and with β ≡ 1 on the ε-tubular neighborhood of Gf . Then, regard-
ing w as a form on Gf , we can extend to O by parallel transport, multiply by β,
and extend by zero to obtain a section βw of T ∗C(δ)"N over C(δ)×ND.

Now fix a local trivialization φ :C(δ)×V →U of the universal curve U around
C as in (2.4) and write φ−1 = (τ1,τ2). Choose a smooth cutoff function βU on U
with support on π−1(U) and with βU ≡ 1 on a smaller neighborhood π−1(U ′) of
C . The section ṽ = βUτ ∗1 (βw) then extends by zero to a section of T ∗U "N over
U ×ND. The Jj-antilinear component v = 1

2(ṽ+ J ◦ ṽ ◦ j) is the desired (0,1)
form. !

Step 2. Charts for the cokernel bundle. Fix (C,f) ∈Mg,n(D,d) and Wf =
span{wj} as in Step 1. In light of Lemma 8.2, we can extend the forms in Wf to
obtain a vector space

Vf = span{vj }⊂ P0.

Given a neighborhood Nf of (C,f) in the space of maps, we can regard Vf as a
trivial vector bundle Vf ×Nf over Nf . For each map g ∈ Nf the composition of
the restriction (1.10) and the projection ρ in (8.1) gives a linear map R defined by
R(v,g) = ρ(vg) and a diagram

Vf ×Nf

!!!
!!

!!
!

R "" cokerL

##""
""

""

Nf

(8.3)

where cokerL is the topological vector bundle whose fiber at g is cokerLg.

LEMMA 8.3. Each Jα-holomorphic map f has a neighborhood Nf in
Mapg,n(ND,d) for which the map R in (8.3) is injective.

Proof. By Theorem 7.7 there is a neighborhood N of Mg,n(D,d) such that
for every g ∈N we have kerLg = 0 and dimcokerLg = 2β. In particular, for each
g ∈ N , cokerLg has the same dimension as Vf . It suffices to find a neighborhood
of f on which R is injective on fibers.

Let Sf denote the unit sphere in the finite-dimensional vector space Vf defined
by the condition ‖v‖∞ = 1. Because Sf is compact and imLg is closed, the infimum

εg = inf
{
|||Lgξ− vg|||p : ξ ∈ Eg and v ∈ Sf

}
(8.4)

is realized for each g and is equal to 0 if and only if R(·,g) is not injective. Thus,
by our choice Vf , we have εf > 0, and we must show that εg > 0 for all g near f .
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Suppose not. Then there is a sequence (Cn,gn) converging to (C,f) in the
λ-topology and corresponding sections ξn ∈ Egn and vn ∈ Sf satisfying

Lgnξn =
(
vn
)
gn
.(8.5)

Fix any δ > 0 small enough that the support of each (vn)gn is contained in C(δ)
and, as in the proof of Lemma 7.4, identify the domains Cn(δ) with C(δ) for all
large n. We then have the following three facts.

(a) Convergence in the λ-topology implies C0 convergence. Hence, after iden-
tifying the domains by a trivialization (2.4), |||vgn− vg|||p→ 0 because the weight
ρ in the norm (5.3) is bounded on the union of the supports of the vgn . The triangle
inequality then shows that |||(vn)gn− vg|||p→ 0.

(b) Lemma 5.3, Theorem 7.7, and the compactness of Sf yield a sup bound on
ξn:

‖ξn‖∞ ≤ c1 |||ξn|||1,p ≤ c2 |||Lgnξn|||p = c2 |||(vn)gn |||p < c3(8.6)

where the constants c1, c2 and c3 are independent of gn and these norms are on all
of Cn.

(c) Covering C(δ) by disks on which (7.15) holds shows that there is a c4 such
that for each ε> 0 there is an N so that

∣∣∣∣∣∣Lfξn− (vn)gn
∣∣∣∣∣∣

p;C(δ) =
∣∣∣∣∣∣(Lf −Lgn)ξn

∣∣∣∣∣∣
p;C(δ) ≤ c4ε |||ξn|||1,p ∀n≥N.

Using Theorem 7.7 and writing Lfξn = (Lf ξn− (vn)gn)+ (vn)gn , we see that

|||ξn− ξm|||1,p;C(δ) ≤ c5
∣∣∣∣∣∣Lf (ξn− ξm)

∣∣∣∣∣∣
p;C(δ)

is bounded by

c5

(∣∣∣∣∣∣Lfξn− (vn)gn
∣∣∣∣∣∣

p;C(δ) +
∣∣∣∣∣∣Lfξm− (vm)gm

∣∣∣∣∣∣
p;C(δ)

+ |||(vn)gn− (vm)gm |||p;C(δ)

)

for all large m and n. This, together with facts (a)–(c), shows that {ξn} is Cauchy in
the norm (5.2) on C(δ) and converges on C(δ) to a limit ξ that satisfies Lfξ = vf .

Now replace δ by δ/2 and repeat to obtain a further subsequence that converges
on C(δ/2) to a limit that extends the previous ξ. Repeat with δ/4, etc. Then the
diagonal sequence converges on Cf \{nodes} to a limit ξ that satisfies Lf ξ = vf .
Because vf ≡ 0 near each node, Lemma 7.6 shows that ξ extends to a solution
of Lfξ = vf on all of C . Then Proposition 7.5 shows that |||ξ|||1,p is finite, and
Corollary 5.5 shows that ξ satisfies the matching condition (4.4) at the nodes. Thus
ξ ∈ Ef , contradicting the assumption that εf > 0. !
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Step 3. The transition maps for the cokernel bundle. In order to show
cokerL is a vector bundle, it suffices to show that for any two maps f1 and f2

with Nf1 ∩Nf2 $= /0 and for each fixed v ∈ Vf1 the map

Nf1 ∩Nf2 −→ Vf2 defined by g −→R−1
2 ◦R1(v,g)(8.7)

is continuous where Ri : Vfi ×Nfi → cokerL is a linear map defined in (8.3) and
Nf1 and Nf2 are neighborhoods as in Lemma 8.3.

LEMMA 8.4. The map (8.7) is continuous. Consequently, cokerL is a locally
trivial vector bundle.

Proof. With the above notation, for each g ∈ Nf1 ∩Nf2 , Lemma 8.3 shows
that {ug|u ∈ Vf2} is complementary to the image of Lg. Hence, as in the proof of
Lemma 7.8, for each vg there exist unique ξ ∈ Eg and u ∈ Vf2 with vg = Lgξ+ug.
Therefore

Lgξ = vg − ug and R−1
2 ◦R1(v,g) = u.(8.8)

We claim that u depends continuously on g. To that end, consider sequences gn→
g, un ∈ Vf2 and ξn such that

Lgn

(
ξn
)
= vgn−

(
un
)
gn
.(8.9)

First consider the case where there is a uniform bound on the norms ‖un‖∞.
Because Vf2 is finite-dimensional, we can assume, after passing to a subsequence,
that un converges to an element u0 ∈ Vf2 in the C0 norm. Then (8.9) is the same
as (8.5) with v and vn replaced by z = v−u0 and zn = v−un respectively. As
in statement (a) in the proof of Lemma 8.3, the convergence gn→ g implies that
|||(zn)gn− zg|||p→ 0. We can therefore repeat the argument of Lemma 8.3 to con-
clude that {ξn} converge on compact sets away from the nodes of C to a limit
ξ0 that satisfies Lg(ξ0) = vg − (u0)g. The uniqueness of u in (8.8) then implies
u = u0. As a result, the sequence un—not just a subsequence—converges to u.
Thus u depends continuously on g.

In the remaining case, un is not bounded. After passing to a subsequence, we
can assume that ‖un‖∞ > n for all n. Note that |||(un)gn |||p ≤ c‖un‖∞ for some
uniform constant c. Now, dividing equation (8.9) by ‖un‖∞, we have

Lgn

(
ηn
)
= αgn−

(
βn
)
gn

with |||αgn |||p ≤
1
n limsup |||vgn |||p → 0 and with ‖βn‖∞ = 1 and |||(βn)gn |||p ≤ c

for all n. Again repeating the convergence argument of Lemma 8.3 we obtain, in
the limit, a ζ that satisfies Lgζ =−βg where β $= 0 is the limit of the sequence βn
in Vf2 . But this means that R2(β,g) = 0, contradicting Lemma 8.3. Therefore, the
map (8.7) is continuous. The lemma follows. !
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Step 4. Definition of Ob. The procedure of Step 2 can be applied to each
Jα-holomorphic map f to obtain a pair (Vf ,Nf ). By compactness, we can choose a
finite set {fi} of Jα-holomorphic maps so that {Nfi} covers Mg,n(D,d). The vec-
tor spaces Vfi consist of (0,1) forms and together define a single finite-dimensional
vector space span{Vfi}. Let V denote the trivial vector bundleV =N × span{Vfi}
over N = ∪Nfi . We then have an exact sequence of locally trivial vector bundles
over N :

0−→ kerσ −→ V σ−→ cokerL−→ 0

where σ is the composition of the restriction map (1.10) with the projection to
cokerL. Now, using a metric on the vector bundle V induced from metrics on U and
ND, we define the obstruction bundle Ob over N to be the orthogonal complement
of kerσ in V. Then σ restricts to a vector bundle isomorphism Ob

∼=→ cokerL over
N . Lastly, the fact Ob has a canonical orientation is proved in Lemma 11.1 below.
This completes the proof of Theorem 8.1.

9. A generalized Image Localization Lemma. In this section we gener-
alize the Image Localization Lemma of Section 1, showing that it applies not just
to solutions of (1.4) but, more generally, to maps f : C→ND that satisfy the per-
turbed Jα-holomorphic map equation (1.8) provided that ν is small and its vertical
component lies in the fiber of the obstruction bundle. The proof uses a renormal-
ization argument similar to those in [IP1, Sections 6 and 7]. In the statement of the
theorem, and throughout this section, we will use the decomposition (4.1) to write
the perturbation ν as the sum νT +νN of horizontal and vertical components. The
conclusion is the same as in the original localization lemma: the images of the
maps lie in the divisor of α, which is the zero section of the bundle N →D.

THEOREM 9.1. (Image Localization with Perturbations) Fix E > 0 and a
neighborhood U of the zero section in ND. Then there is a δ0 > 0 such that
if ν = νT + νN with ‖ν‖C1 ≤ δ0, then the image of every map f : C → ND in
MapEλ (U) satisfying

∂Jf −Kα
(
∂Jf

)
j = νTf +Pf

(
νNf
)

(9.1)

lies in D where Pf is the L2-orthogonal projection onto the fiber Obf .

Proof. If this statement is false, there is a sequence {νn} of the stated form
with νn→ 0 in C1, and a sequence of maps fn : Cn→ND in MapEλ (U) satisfying
the equation (9.1), each with at least one point not mapped into D. By Gromov
compactness and Theorem 2.5 we may assume, after passing to a subsequence, that
the fn converge, in C0∩L1,2 and in C∞ away from the nodes, to a Jα-holomorphic
map f0 : C0→ND. By Lemma 1.1 the image of f0 lies in D ⊂ND.
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We can now renormalize. Let φn be the projection of fn into D and let Rn :
ND→ND be dilation in the fibers by a factor of 1/tn, where each tn is chosen so
that the image of renormalized map Fn = Rn ◦fn lies in the unit disk bundle, but
not in any smaller disk bundle. Because the images of the fn converge pointwise
to the zero section we have tn→ 0.

Next, write Fn as the graph (φn,ξn) in ND where ξn is a section of φ∗nN .
Then the original maps are given by fn = (φn, tnξn) and φn→ f0 as n→ ∞. For
each map f , write Φ(f) = ∂Jf −Kα∂fj for the left-hand side of (9.1). After
trivializing the pullback π∗N by parallel transport T along the fibers of π : ND→
D, we can compare the vertical components ΦN of Φ(φn) and Φ(fn) by writing
fn = expφn(tnξn) and applying the first variation formula on Cn:

TΦN
(
fn
)
= ΦN

(
φn
)
+Lφn

(
tnξn

)
+O

(∣∣tnξn
∣∣2
)
.(9.2)

Here Lφn is given by equation (4.3) along the image of φn and ΦN (φn) = 0 since
the image of φn lies in D. We also have

TPfn

(
νNfn
)
= Pφn

(
νNφn
)
+∇tnξn

(
Pφn

(
νNφn
))

+O
(∣∣tnξn

∣∣2
)

(9.3)

where we have simplified notation by writing (νn)φn as νφn . Since ΦN(fn) =
Pfn(ν

N
fn
) by equation (9.1) and ‖ξn‖∞ = 1, it follows from (9.2) and (9.3) that

t−1
n Pφn

(
νNφn
)
−Lφn

(
ξn
)
=−

(
∇ξnPφn

)(
νNφn
)
−Pφn

(
∇ξnν

N
φn

)
+O

(
tn
)
.(9.4)

By definition, P is the L2 projection onto a subspace spanned by smooth forms
with support away from the nodes, where φn→ f0 in C∞. Writing that projection
as an integral, one sees that Pφn and ∇Pφn are bounded, uniformly in n. The as-
sumption that νn→ 0 in C1 then implies that the right-hand side of (9.4) vanishes
in the limit n→ ∞

Recall that Obφn is a complementary subspace to the image of Lφn . In fact, the
proof of Lemma 8.3 shows that the quantity εg defined by (8.4), which measures
the angle between these subspaces, satisfies εφn > c for some positive constant c
and all sufficiently large n. We therefore conclude that

∣∣t−1
n Pφn

(
νNφn
)∣∣−→ 0 and Lφn

(
ξn
)
−→ 0

as n→∞. Dividing (9.3) by tn and using these limits (noting that parallel transport
preserves norms) yields the stronger statement that

∣∣t−1
n Pfn

(
νNfn
)∣∣−→ 0 and Lφn

(
ξn
)
−→ 0 as n−→ ∞.(9.5)

Now return to the equation Fn = Rn ◦ fn. Note that dFn = (Rn)∗dfn and,
since Rn is a holomorphic diffeomorphism of the total space of ND, J com-
mutes with (Rn)∗. Letting Kn denote the pullback endomorphism (R−1

n )∗Kα =
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(Rn)∗Kα(R−1
n )∗, equation (9.1) can be rewritten as

∂JFn−Kn∂JFnj =
(
Rn
)
∗
[
νTfn +Pfn

(
νNfn
)]
.(9.6)

Consider the limit as n→ ∞ of each term in (9.6). Under the splitting (4.1), (Rn)∗
is bounded on horizontal vectors and is multiplication by 1/tn on vertical vectors,
so by (9.5)

∣∣(Rn
)
∗
[
νTfn +Pf

(
νNfn
)]∣∣≤ c |νTfn |+

∣∣t−1
n Pfn

(
νNfn
)∣∣−→ 0.(9.7)

Because Kα is smooth and vanishes along the zero section, there is an en-
domorphism K ′ depending smoothly on the projection of x into D such that
Kα(tx) = tK ′α+O(t2) as t→ 0. Hence the pullback Kn satisfies

Kn =
(
Rn
)
∗
(
tnK

′
α+O

(
t2
n

))(
R−1

n

)
∗

= tn




a 0

b
1
tn




(
k′hh k′vh
k′hv k′vv

)(
a−1 0

−tnba−1 tn

)
+O

(
tn
)

=

(
0 0

k′hva
−1 0

)
+O

(
tn
)

as tn → 0. Thus {Kn} converges to an endomorphism K̂ whose only non-zero
components take horizontal vectors to vertical vectors.

We can now reexpress (9.6) as a Jn-holomorphic map equation. As in (1.2),
Kn anti-commutes with J and satisfies K2

n = −|αn|2Id where αn is the (0,2)
form whose value at x is αtnx. It follows that Id+ JKn has a bounded inverse,
namely (1 + |αn|2)−1 (Id− JKn), that Jn = (Id+ JKn)−1J(Id+ JKn) is an
almost complex structure, and that Fn satisfies the equation

∂JnFn =
1
2

(
dFn+JndFnj

)
=
(
Id+JKn

)−1(
Rn
)
∗
(
νTfn +Pfnν

N
fn

)
.(9.8)

The convergence Kn → K̂ then implies that {Jn} converges in C0 to the almost
complex structure Ĵ = (Id+JK̂)−1J(Id+JK̂), and (9.7) implies that the right-
hand side of (9.8) converges to 0 in C0.

At this point we have established that the maps Fn : Cn→ND satisfy the Jn-
holomorphic equation with a perturbation term that goes to 0 in C0. By Gromov
compactness (cf. [IP1, Theorem 1.6]) there is a connected curve C0 and smooth
map F0 : C0→ ND such that, after passing to a subsequence, Fn converges to F0

in C0 ∩L1,2 and in C∞ away from the nodes of C0. It follows that π ◦F0 = f0

and hence F0 defines a section ξ0 of the pullback bundle f ∗0N by the formula
F0 = (f0,ξ0).
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If C0 is smooth, we have φn → f0 and ξn → ξ0 in C∞. Then (9.5) and the
normalization ‖ξn‖∞ = 1 imply that ξ0 is a non-trivial solution of

Lf0

(
ξ0
)
= 0.

This contradicts the Vanishing Theorem 4.2.
When C0 is nodal we get a similar contradiction on some irreducible compo-

nent of C0, as follows. Note that, because F0 is Ĵ-holomorphic, the image F0(Ci)
of each irreducible component Ci is either a single point or represents a non-trivial
homology class. If all components that carry a non-trivial homology class were
mapped into D then, since C0 is connected and F0 is continuous, the entire im-
age would lie in D, contradicting our choice of renormalization. Thus there exists
a component C of C0 with F0(C) ! D. On this component, ξ0 is not zero. The
argument in the proof of Proposition 7.5 then shows that ξn→ ξ0 in C∞ on each
compact subset of C \{nodes} and that Lf0ξ0 = 0. This again contradicts Theo-
rem 4.2. !

10. The proof of the Main Theorem. We now turn to the proof of the
Main Theorem stated in the introduction: the local GW invariants of a spin curve
(D,N) are given by the cap product

GW loc
g,n

(
ND,d

)
= êv∗

([
Mg,n(D,d)

]vir∩ e(Ob)
)

(10.1)

where Ob is the obstruction bundle defined in Section 8. The basic idea is to turn on
a generic Ruan-Tian perturbation of the type described in Theorem 9.1. The pertur-
bation defines a section of Ob whose zero set represents the Euler class e(Ob), and
on the other hand is cobordant to a cycle representing the local GW invariant. The
proof consists of the three steps done in this section, together with the discussion
of orientations in Section 11.

To simplify notation, we set

MapD =Mapg,n(D,d), YD =Mg,n×Dn

Map =Mapg,n
(
ND,d

)
, Y =Mg,n×Nn

D.

Let F̂ →Map be the topological vector bundle whose fiber at f is Ω0,1(f ∗TND).
This bundle has a section Φ given by the Jα-holomorphic map equation Φ(f) =
∂Jf −Kα(∂Jf)j. For each perturbation ν in P defined in (1.9), one can perturb Φ
to obtain a section

Φν(f) =Φ(f)−νf(10.2)

where νf is the restriction of ν to the graph of f as in (1.10). The zero set Mν
=

Φ−1
ν (0) is the moduli space of (Jα,ν)-holomorphic maps into ND.
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By Theorem 8.1, the bundle Ob is defined on a neighborhood N of the moduli
space of Jα-holomorphic maps inside Map. Following [RT2], one can decompose
N into strata NB indexed by a finite collection of sets B that specify: (i) a home-
omorphism type of the domain as a curve with marked points and (ii) a degree of
map associated to each component of the domain.

Step 1. As in Section 9, we can decompose ν according to the splitting of
f ∗TND into horizontal and vertical subspaces. Fix a C1-small perturbation νT
that is generic in the subspace PT ⊂ P of perturbations that lie in the horizontal
subspace and consider the section ΦνT defined by (10.2).

By the Image Localization Theorem 9.1 the images of all (Jα,νT )-
holomorphic maps lie in D. The transversality arguments of Section 3 in [RT2],
applied to maps into D, imply that the moduli space

M= Φ−1
νT (0)⊂N ∩MapD

has a stratification such that each stratum MB = M∩NB is a smooth oriented
manifold of dimension 4β+2n−2kB where β = d(1−h)+g−1 as in (3.10) and
kB is the number of nodes of the domains of maps in NB.

Let M be the top stratum consisting of maps with smooth domains. Now apply
the construction described at the end of Section 3: fix a neighborhood U of the
image êv(∂M) of the boundary ∂M = M\M and consider the manifold with
boundary MU ⊂M as in Definition 3.1. The following lemma shows that space
MU represents the Li-Tian virtual fundamental class (3.4) for (X,A) = (D,d)
modulo small neighborhoods of its boundary.

LEMMA 10.1. Let Û = êv−1(U) be the preimage of U under the evaluation
map (0.4) on MapD. Then

j∗
[
Mg,n(D,d)

]vir
= i∗

[
MU

]
∈H4β+2n

(
MapD, Û

)

where j : MapD→ (MapD, Û) and i : (MU ,∂MU )→ (MapD, Û) are inclusion
maps.

Proof. Let F̂D→MapD be the bundle whose fiber at f is Ω0,1(f ∗TD). Since
Kα ≡ 0 on D, we can regard ΦνT as a section of F̂D. The arguments used to prove
[LT2, Proposition 3.4] then show how the section ΦνT gives rise to a cover of the
moduli space M = Φ−1

νT (0) by finitely many smooth approximations {(Wk,Fk)}.
This means that

• each Wk is open in MapD and M⊂
⋃
Wk, and

• each Fk is a subbundle of F̂D over Wk with finite rank such that Φ−1
νT (Fk)⊂

Wk is smooth and Fk restricts to a smooth bundle over Φ−1
νT (Fk) with smooth

section ΦνT .
Observe that, because the top stratum M is already smooth, we can assume that
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• W1 consists of all maps with smooth domains (so W1 ∩M = M) and F1

has rank zero.
The proofs of [LT2, Proposition 2.2 and Theorem 1.2] describe how one can

perturb the moduli space M inside the union of the smooth manifolds Φ−1(Fk) to
obtain a cycle that represents the virtual fundamental class [Mg,n(D,d)]vir.

Now choose a neighborhood V of the image êv(∂M) in YD with V ⊂ U .
Set V̂ = êv−1(V ) and replace each Wi with i ≥ 2 with Wi ∩ V̂ . Then the open
set W =

⋃
k>1Wk lies in V̂ . Following [LT2] we can then perturb M∩W while

keeping M fixed outside of V̂ —hence on MU—to produce a cycle representing
[Mg,n(D,A)]vir. Passing to homology proves the statement of the lemma. !

Remark 10.2. The virtual fundamental class that appears in Lemma 10.1
is the Li-Tian class (3.4). We can verify that it is also the Ruan-Tian class: let
k : YD → (YD,U) be an inclusion map. Since êv ◦ j = k ◦ êv, Lemma 10.1 gives
k∗ ◦ êv∗[Mg,n(D,d)]vir = êv∗[MU ]. The uniqueness statement in Lemma 3.2 then
shows that

êv∗
[
Mg,n(D,d)

]vir
=GWg,n(D,d) ∈H4β+2n

(
Mg,n×Dn;Q

)
.

Step 2. We now further perturb the section ΦνT by adding a section of the ob-
struction bundle Ob induced from a Ruan-Tian perturbation µ. Each µ ∈P defines
a section ŝµ of the obstruction bundle Ob over N by

ŝµ(f) = Pf

(
µf

)
(10.3)

where Pf is the L2-orthogonal projection onto the fiber Obf . Let sµ denote the
restriction of ŝµ to the moduli space M. Whenever µ has small C1 norm, the
Image Localization Theorem 9.1 implies that

(
ΦνT − ŝµ

)−1
(0) =M∩ ŝ−1

µ (0) = s−1
µ (0).(10.4)

LEMMA 10.3. For generic µ in P, the space (10.4) has a stratification indexed
by B such that each stratum MB ∩ s−1

µ (0) is a smooth manifold of dimension
2β+2n−2kB.

Proof. The proof is a transversality argument using the universal moduli space
over the space of perturbations P (cf. [RT2, Theorem 3.1]). The smooth bundle

Ob−→MB×P

has rank 2β and has a section σB defined by σB(f,µ) = sµ(f) whose zero set is
the universal moduli space associated with B. The differential of σB at (f,µ) is

(
DσB

)
(f,µ)(ξ,χ) =

(
Dsµ

)
f (ξ)−Pf

(
χf
)

for ξ ∈ TfMB , χ ∈ TµP
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where Dsµ is the differential of the restriction of sµ to MB and χf is the restriction
of χ to the graph of f as in (1.10). Since the map χ → Pf (χf ) is onto, so is
the differential (DσB)(f,µ). The universal moduli space U = σ−1

B (0) is therefore
smooth. Now, consider the projection

πB : U −→ P

given by πB(f,µ) = µ. Since πB is Fredholm, the Sard-Smale Theorem implies
that for generic µ the fiber π−1

B (µ) =MB∩s−1
µ (0) is a smooth manifold of dimen-

sion dimMB− rankOb, which is 2β+2n−2kB. !

Fix a generic µ ∈ P as in Lemma 10.3 and set

Z̄ = s−1
µ (0) =

(
ΦνT − ŝµ

)−1
(0).(10.5)

By Lemma 10.3 and the discussion above Lemma 3.2, applied to some neighbor-
hood of êv(∂Z̄) where ∂Z̄ = Z̄ ∩∂M, the image êv(Z) defines a homology class

[
êv(Z̄)

]
∈H2β+2n

(
YD;Q

)∼=H2β+2n(Y ;Q).(10.6)

On the other hand, the local GW invariant class is determined by the image of the
moduli space Mν

= Φ−1
ν (0) for a generic ν ∈ P as in (3.9):

GW loc
g,n

(
ND,d

)
=
[
êv
(
Mν)] ∈H2β+2n(Y ;Q).(10.7)

Thus the local invariant is defined in terms of the zero set of Φν for a fixed generic
ν ∈ P, while the class (10.6) is defined in terms of the zero set of ΦνT − ŝµ. To
show these are equal we introduce, for each pair (ν,υ) in P ×P , a section of the
bundle F̂ →Map defined by

Φν,υ(f) =Φ(f)−νf − ŝυ(f).

The transversality argument of Lemma 10.3, now applied to the universal moduli
space over the parameter space P×P, shows that, for generic small (ν,υ) in P×
P , Φ−1

ν,υ(0) has a stratification indexed by B such that each stratum NB ∩Φ−1
ν,υ(0)

is a smooth manifold of dimension 2β+2n−2kB . Standard cobordism arguments
(cf. [RT2, Theorem 3.3]) then give

GW loc
g,n

(
ND,d

)
=
[
êv
(
Φ−1
ν,0(0)

)]
=
[
êv
(
Φ−1
νT ,µ(0)

)]
=
[
êv(Z̄)

]
.(10.8)

Step 3. It remains to show that [êv(Z̄)] equals to the right-hand side of (10.1).
Again, to avoid issues of smoothness near ∂M, we work in relative homology. The
following lemma is, in essence, the statement that the zero set of a generic section
of a vector bundle is Poincaré dual (in relative homology) to the Euler class.
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LEMMA 10.4. Let Z̄U =MU ∩ Z̄. Then

j∗
([
Mg,n(D,d)

]vir∩ e(Ob)
)
= i∗

[
Z̄U
]
∈H2β+2n

(
MapD, Û

)
(10.9)

where j :MapD→ (MapD, Û ) and i : (MU ,∂MU )→ (MapD, Û ) are inclusion
maps.

Proof. The obstruction bundle Ob restricts to a smooth bundle ObU over MU .
Let sU be the restriction of the section ŝµ in (10.3) to MU . Without loss of gen-
erality, we can assume sU is transverse to the zero section, so Z̄U = s−1

U (0) is a
compact smooth manifold with boundary.

Define a double M̃U of MU by identifying two copies of MU along ∂MU .
Similarly, define a vector bundle ÕbU → M̃U and its section s̃U that are doubles
of ObU and sU respectively. Since M̃U is a closed manifold, we have

[
M̃U

]
∩ e
(
ÕbU

)
=
[
Z̃U
]

(10.10)

where Z̃U = s̃−1
U (0). Consider the following commutative diagram:

H4β+2n(M̃U )
κ∗ ""

∩e(ÕbU )
$$

H4β+2n(M̃U ,M̃U \M◦
U )

∩e(ÕbU )
$$

H4β+2n(MU ,∂MU )
ι∗
:
%%

∩e(ObU )
$$

H2β+2n(M̃U )
κ∗ "" H2β+2n(M̃U ,M̃U \M◦

U ) H2β+2n(MU ,∂MU )
ι∗
:
%%

(10.11)

where M◦
U =MU \∂MU , κ and ι are inclusion maps, each rectangle commutes by

the naturality of the cap product, and the horizontal isomorphisms follow by exci-
sion. Consequently, (10.10), (10.11) and the facts κ∗[M̃U ] = ι∗[MU ] and κ∗[Z̃U ] =
ι∗[Z̄U ] show

[
MU

]
∩ e
(
ObU

)
=
[
Z̄U
]
∈H2β+2n

(
MU ,∂MU

)
.

Now, (10.9) follows from this equality, Lemma 10.1 and the naturality of cap prod-
uct. !

Proof of Main Theorem. Recall that M and Z̄ are decomposed into smooth
strata indexed by sets B such that dimMB = 4β+2n−2kB and dimZB = 2β+
2n−2kB where ZB = Z̄ ∩MB . Because YD is a compact manifold, any class in
H∗(YD;Q) can be represented by an embedded submanifold by Thom’s Theorem
[Th]. We can thus choose a basis for Hm−2β(YD;Q), where m+2n= dimYD, rep-
resented by submanifolds Di in general position with respect to all the restriction
maps êv|MB

and êv|ZB
. Counting dimensions, one sees that

• each Di is disjoint from the image êv(∂Z̄)⊂ êv(∂M), and
• we can choose a submanifold D representing the class êv∗([Mg,n(D,d)]vir∩

e(Ob)) that is disjoint from Di∩ êv(∂M) for all i.



500 J. LEE AND T. H. PARKER

Hence, by shrinking the neighborhood U of êv(∂M) if necessary, we can assume
that

U ∩ êv(Z̄)∩Di = /0 and U ∩D∩Di = /0(10.12)

for all i. Now, consider the commutative diagram:

H2β+2n(MapD)
j∗ ""

êv∗
$$

H2β+2n(MapD, Û )

êv∗
$$

H2β+2n(MU ,∂MU )
i∗%%

H2β+2n(YD)
k∗ "" H2β+2n(YD, Ū).

(10.13)

Observe that (10.12) implies that for all i

(a)
[
D] ·

[
Di
]
=k∗[D] ·k∗

[
Di
]

and (b)
[
êv(Z̄)

]
·
[
Di
]
= êv∗ ◦ i∗

([
Z̄U
])

·k∗
[
Di
](10.14)

where, in both of these equations, the dot on the right-hand side is the intersection
pairing in H2β+2n(YD, Ū)∼=H2β+2n(YD/U,∂U). By the definition of D, (10.14a)
states that

êv∗
([
Mg,n(D,d)

]vir∩e(Ob)
)
·
[
Di
]
=k∗ ◦ êv∗

([
Mg,n(D,d)

]vir∩e(Ob)
)
·k∗
[
Di
]
.

But the intersection on the right is, by the commutativity of the diagram, (10.9) and
(10.14b),

êv∗ ◦ j∗
([
Mg,n(D,d)

]vir∩ e(Ob)
)
·k∗
[
Di
]
= êv∗ ◦ i∗

([
Z̄U
])

·k∗
[
Di
]

=
[
êv(Z̄)

]
·
[
Di
]
.

This shows êv∗([Mg,n(D,d)]vir ∩ e(Ob)) = [êv(Z̄)] and hence, together with
(10.8), completes the proof of the Main Theorem (10.1). !

11. Secondary index invariants. This section puts the obstruction bundle
in a general context and explains why Euler class e(Ob) cannot in general be com-
puted using Grothendieck-Riemann-Roch or the Families Index theorems.

Let E and F be Banach vector bundles over a compact parameter space X. We
can consider the vector bundle

Fred)(E,F )
'

X
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whose fiber over x ∈X is the space of real linear Fredholm maps from Ex to Fx

with index −-≤ 0. A section L of Fred)(E,F ) then defines a family-index class

indL ∈KR(X)

obtained by pulling back the class of the virtual bundle [kerL]− [cokerL] on
Fred)(E,F ). The index theorem for families [AS] gives formulas for the Pontrya-
gin classes pi(indL). But the Euler class does not factor through K-theory, and
hence e(indL) is not computable in the same way and in fact is not even defined in
general.

In this context, for each k > 0, the set Ak,) of all L ∈ Fred)(E,F ) with
dimkerL = k and dimcokerL = k + - is a submanifold of real codimension
k(k + -). As shown in [K], the closures Ak,) of these submanifolds define
“Koschorke classes”

κk,) ∈Hk(k+))
(
Fred)(E,F )

)
.(11.1)

A section L of Fred)(E,F ) then defines cohomology classes L∗κk,) ∈Hk(k+))(X).
The classes {L∗κk+i,) | i > 0} are the obstructions to deforming L within its ho-
motopy class to a family {Lx} of operators with dimkerLx ≤ k for all x ∈X. In
particular, when all Koschorke classes {L∗κk,)} vanish, L can be deformed to a
section L̃ with ker L̃x = 0 for all x∈X; coker L̃ is then a rank - vector bundle over
X that represents indL ∈ KR(X). In this sense, the Koschorke classes are the
obstruction to realizing the family index—which is defined as a formal difference
of bundles—as an actual vector bundle. Furthermore, when the Koschorke classes
vanish this bundle is well-defined up to homotopy and hence, assuming indL is an
oriented bundle, the Euler class

e(indL) ∈H)(X)

is defined. This is a “secondary class” in the sense that it exists only for families
with vanishing Koschorke classes.

Now consider the situation at hand, where X=Mg,n(D,d)⊂Mapg,n(ND,d),
E and F are the bundles E and F defined in Section 5, and L is the linearization
map f "→ Lf with index −- = −2β. Then (except for the complication described
below)

• L∗κk,2β = 0 for all k > 0 by the Vanishing Theorem 4.2.
This gives a global perspective on the role of Theorem 4.2: it ensures that all
Koschorke classes vanish. In fact, it shows that after perturbing the Kähler structure
J to Jα, the space of Jα-holomorphic maps is mapped by Ψ(f) =Lf into a region
in Fred)(E ,F) where the index bundle is an actual bundle. The pullback Ψ∗(indL)
is the obstruction bundle Ob of the Main Theorem.

Now the complication: while the above paragraph provides valuable intuition,
it is not rigorous until one prove that E and F are locally trivial bundles, or that the
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map L : E→F is homotopy equivalent to a map L′ : E ′ →F ′ between vector bun-
dles with isomorphisms kerL∼= kerL′ and cokerL∼= cokerL′ for each map in the
moduli space. It would be interesting to directly establish this general Koschorke
picture.

Our proof of the Main Theorem in Section 10 used the fact that the obstruction
bundle carries a canonical orientation. The proof, which we give now, fits into
the above discussion of the space of Fredholm operators. Below, we write M for
Mg,n(D,d).

LEMMA 11.1. The bundle Ob is orientable and has a canonical orientation.

Proof. The linearization f "→ Lf defines a map L : M→ Fred whose image
lies in the set of Fredholm operators with trivial kernel. Over this set, Ob—whose
fiber is the cokernel—is isomorphic to the dual of the index bundle. The obstruction
to orientability is therefore the pullback w=L∗w1(detL)∈H2(M,Z2) of the first
Stiefel-Whitney class of the real determinant of the index bundle. But the map L
extends canonically to a homotopy M× [0,1]→ Fred by writing Lf = ∂ +Rα

and setting Lt(f) = ∂ + tRα. Because detL is defined over the entire space of
Fredholm operators, we have w = L∗0w1(detL). This is zero because the image
of L0 consists of complex Fredholm operators, whose kernel and cokernels have
canonical complex orientations.

This shows, in fact, that the orientation bundle ΛtopOb is trivial over M× [0,1].
There are therefore two orientation classes (nowhere-vanishing sections modulo
multiplication by positive functions). The one that agrees with the complex orien-
tation along M×{0} will be called the “canonical” orientation on Ob. !

Finally, we must specify the orientation on Ob for which the Main Theorem
holds. Let Z̄ be the zero set of a transverse section Ob→M. At each (C,f) ∈
Z̄, the standard orientations of M and Z̄ used in GW theory are given by the
determinant bundles det(∂

T ⊕Jdf) and det(∂
T ⊕ ∂⊕ Jdf) respectively. Thus in

the equality (0.5) in the Main Theorem, the cycles representing the two sides are
consistently oriented provided

det
(
∂
T ⊕Jdf

)
= det

(
∂
T ⊕∂⊕Jdf

)
⊗ΛtopOb

This equality holds since the canonical orientation defined in the proof of
Lemma 11.1 is

ΛtopOb= det(∂)∗.

12. Remarks on calculating Euler classes. We conclude with some re-
marks on calculating the Euler class of the obstruction bundle. Algebraic geome-
ters have a standard procedure for calculating the Euler class of the index bundles
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of families of ∂ operators by using the Grothendieck-Riemann-Roch formula, of-
ten in conjunction with localization by a group action. This procedure is not, in
general, applicable to finding the Euler class of the real bundle Ob. But it is worth
noting that the GRR formula yields some information in the following two cases.

(1) Since the square of the Euler class is the top Pontryagin class, we have
e2(Ob) = pβ(Ob) = (−1)βc2β(Ob⊗RC). But Ob⊗RC is the complex index bun-
dle indCL because kerL vanishes for all operators in the family. Thus the GRR
formula is applicable for finding e2(Ob), but not for finding e(Ob) itself.

(2) Recall Givental’s notion of twisted GW invariants: each bundle E over X,
determines a virtual bundle E→Mg,n(X,A) over the space of stable maps whose
fiber over a map f : C → X is H0(C,f ∗E);H1(C,f ∗E). The corresponding
twisted invariants are obtained by evaluating Chern classes of E , together with τ
classes, on the virtual fundamental class. In some especially simple situations, the
Euler class of the obstruction bundle can be expressed in terms of twisted GW
invariants, and these can be calculated.

LEMMA 12.1. Over the space of Jα-holomorphic maps into ND there is a
locally trivial complex vector bundle Q that is isomorphic to the obstruction bundle
Ob as an unoriented real vector bundle, such that for each Jα-holomorphic map f
the fiber Qf of Q fits into the split exact sequence of complex vector spaces

0−→ ker∂f
Rα−−−→ coker∂f −→Qf −→ 0(12.1)

where Rα is as in (4.3) and where ∂f is an operator on f ∗N between the un-
weighted Sobolev spaces L1,2(Ef ) and L2(Ff ) defined in Lemma 7.8.

Proof. We will repeatedly use the facts that Rα satisfies JRα =−RαJ and
〈
∂ξ1,Rαξ2

〉
=−

〈
Rαξ1,∂ξ2

〉
(12.2)

where 〈·, ·〉 denote the standard, unweighted, L2 inner product (cf. [LP, Section 8]).
Fix a Jα-holomorphic map f : C → ND and write ∂f as ∂. Regard coker∂ as the
L2 orthogonal complement to the image of ∂. First note that if ξ ∈ ker∂ then by
(12.2)

〈∂ξ′,Rαξ〉=−〈Rαξ
′,∂ξ〉= 0

for all ξ′ ∈ Ω0(f ∗N). Hence Rαξ lies in coker∂. Defining Q to be the L2 perpen-
dicular

Q=
(
Rα(ker∂)

)⊥ ⊂ coker∂

gives the exact sequence (12.1) of complex vector spaces. Note that Rα, originally
complex anti-linear, becomes complex linear when we reverse the complex struc-
ture on ker∂ and that this definition of Q splits the sequence.



504 J. LEE AND T. H. PARKER

Next, regard coker(∂ +Rα) as the L2 orthogonal complement to the image
of ∂+Rα and let q : coker(∂+Rα)→ coker∂ be the L2 orthogonal projection.
Observe:

• q is injective: any η ∈ coker(∂+Rα) with q(η) = 0 has the form η = ∂ξ for
some ξ, and hence vanishes because, by (12.2),

0 =
〈
∂ξ,
(
∂+Rα

)
ξ
〉
= ‖∂ξ‖2 = ‖η‖2.

• The image of q lies in Q: for any η ∈ coker(∂+Rα) and ξ ∈ ker∂ we have

0 = 〈η,
(
∂+Rα

)
ξ
〉
=
〈
η,Rαξ

〉
=
〈
q(η),Rαξ

〉

(the last equality holds because Rαξ ∈ coker∂ as above). Thus q(η) is L2 perpen-
dicular to the image of Rα.

Now count dimensions. From (12.1) we have dimQf = − index∂ =
− index(∂ +Rα) = −2β. But ker(∂ +Rα) = 0 by Theorem 4.2, so dimQf =
dimcoker(∂+Rα). Thus q is an isomorphism between coker(∂+Rα) and Q.

Finally, to relate Q to the (locally trivial) obstruction bundle, consider the L2

perpendicular projection π : Ob→ coker(∂+Rα)∼=Q. Suppose that v ∈Ob satis-
fies π(v) = 0. Then there is an ξ ∈L1,2(Ef ) with (∂+Rα)ξ = v. Since v and f are
smooth, elliptic regularity implies that ξ is smooth, so lies in the weighted space
Ef for any p ≥ 2. This contradicts Theorem 8.1 unless v = 0. Thus π is injective,
and therefore an isomorphism because both have dimension 2β. !

As f varies across the space M=Mg,n(D,d) of Jα-holomorphic maps, one
obtains families

ker∂ −→M and coker∂ −→M
whose fibers are the complex vector spaces ker∂f = H0(f ∗N) and coker∂f =
H1(f ∗N). In general, the dimensions of these fibers are not constant: the dimen-
sion of the kernel and the cokernel jumps up (by equal amounts) along a “jumping
locus” in M. But away from the jumping locus Lemma 12.1 gives a formula, due
to Kiem and Li [KL], for the Euler class of the obstruction bundle:

PROPOSITION 12.2. Suppose ker∂ and coker∂ are locally trivial vector bun-
dles over a set Z ⊂M. Then there is an isomorphism of oriented real vector bun-
dles

Ob: (−1)hi Q(12.3)

over each component Zi of Z where hi is h0(f ∗N) on Zi. Consequently, e(Ob) ∈
H2β(Z) is

e(Ob) =
∑

(−1)hi cβ
([

coker∂
∣∣
Zi

]
−
[
ker∂

∣∣
Zi

])
(12.4)

where 2β =− index∂ and the sum is over all connected components Zi of Z .
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Proof. Q has a complex orientation from (12.1) and the orientation of
coker(∂+Rα) =Ob is given by det(∂)∗ as in Lemma 11.1. These are related by

det(∂)∗ = ∧top coker∂⊗∧top ker∂

= (−1)h
0 ∧top coker∂⊗∧topker∂

= (−1)h
0
detQ,

(12.5)

which gives (12.3). Taking Euler classes and noting that Q is a complex bun-
dle, we have e(Ob) = (−1)hicβ(Q) and (12.4) follows from the exact sequence
of Lemma 12.1. !

Example 12.3. Suppose that D is an elliptic curve with odd theta characteristic.
Because the local GW invariants depend only on the parity of the theta character-
istic, we can take N to be a trivial bundle. Then ker∂ is the trivial line bundle C
over M. In this case, we have

e(Ob) =−cβ
(
[coker∂]− [C]

)
=−cβ(coker∂) = cβ

(
indC ∂

)
(12.6)

where 2β =− index∂ and where indC∂ is the complex index bundle.

The formula (12.6) shows that, in this case, the local GW invariants are special
cases of Giventhal’s twisted GW invariants of curves. These can be explicitly com-
puted using the result of Proposition 2 in the paper of Faber and Pandharipande
[FP].
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