
REVIEW OF INTEGRATION: MATH 234

CORBETT REDDEN

Warning: This is summary is only intended to help people who understand most of integration but get
confused by the various kinds of integrals. If you do not yet know how to perform the integrals from chapters
15 and 16, this document will not help you. It is also not a comprehensive review. Memorizing formulas
without understanding how to apply them will not help you.

1. Ordinary Integrals

In Calculus I, you learned how to integrate over 1-dimensional subsets of R, usually given by a closed
interval [a, b]. In Chapter 15, you learned how to integrate over 2-dimensional subsets of R2 and 3-dimensional
subsets of R3. More concisely, you learned how to integrate functions over n-dimensional subsets of Rn, where
n = 1, 2, 3. Note that we write one integral sign

∫
for every dimension of the region of integration, hence

the notations
∫
,
∫∫
, and

∫∫∫
.

The key to performing these integrals is to find bounds of integration. For single integrals, this is simple.
For double integrals, you must think about your region having a “shadow” [a, b] in the x- or y-axis. For every
point in the shadow, you find the bounds of integration in the perpendicular direction; these will usually
depend on the point in the shadow. In the table below, these bounds are g1(x) and g2(x).

Finding the bounds of integration for a triple integral is the same process, but you have one extra dimension
to deal with. Your 3-dimensional region has a shadow, which we call D, in the xy, xz, or yz plane. You then
find the bounds of integration perpendicular to every point in the shadow. The shadow D is a 2-dimensional
region, so you can use the previous paragraph to find its bounds.

The function being integrated has no relationship with the functions used to give the bounds
of integration. The following table summarizes all this:

Integrals over n-dimensional subspaces of Rn

n Sample Region Integral Sample iterated integral

n = 1
∫

I

f(x) dx
∫ x=b

x=a

f(x) dx

n = 2
∫∫

D

f(x, y) dA
∫ x=b

x=a

∫ y=g2(x)

y=g1(x)

f(x, y) dy dx

n = 3
∫∫∫

E

f(x, y, z) dV
∫∫

D

[∫ z=u2(x,y)

z=u1(x,y)

f(x, y, z) dz

]
dA



2. Line and Surface Integrals

A line integral is any integral where the region of integration is a 1-dimensional subspace of R3. This
is different than Calculus I, where we only considered 1-dimensional subspaces of R. A surface integral is
any integral where the region of integration is a 2-dimensional subspace of R3; double integrals from Chapter
15 only involved 2-dimensional subspaces of R2.

A 1-dimensional subspace in R3 is a curve in space, so we call it C. Any curve C can be described as the
image of a vector-valued function r(t), a ≤ t ≤ b. Such a function r(t) is called a parameterization. Any
2-dimensional subspace of R3, or surface S, can be given (at least locally) as the solution to an equation
g(x, y, z) = 0. To perform a line integral, you first need to parameterize your curve via r(t). To
perform a surface integral, you must first find g(x, y, z).

Once you have your r or g, you use this to reduce the line/surface integral to an ordinary single/double
integral. We just described how to compute ordinary single or double integrals in the previous section. For
a line integral, the ordinary single integral will occur over the 1-dimensional subspace [a, b] of R. For a
surface integral, the double integral will occur over the “shadow” of the surface S in either the xy, xz, or
yz plane; this is a 2-dimensional subspace of R2. The integrand is transformed according to the equations
below. Below, the function f and vector field F are not related to the curve C or surface S;
they are independent from r and g.

Integrals over n-dimensional subspaces of R3

n Sample Region Algebraic description of region Integral Integral rewritten

n = 1
r(t) = 〈x(t), y(t), z(t)〉

a ≤ t ≤ b

∫
C

f ds

∫ t=b

t=a

f
∣∣∣dr
dt

∣∣∣ dt
∫

C

F · dr
∫ t=b

t=a

(
F · dr

dt

)
dt

n = 2
g(x, y, z) = c

S has shadow R in plane ⊥ p

∫∫
S

f dσ

∫∫
R

f
|∇g|
|∇g · p|

dA

∫∫
S

(
F · n

)
dσ

∫∫
R

F · ±∇g
|∇g · p|

dA

When you reduce a line integral to an ordinary single integral, make sure you use your parameterization to
rewrite all variables x, y, z in terms of t. When you reduce a surface integral to an ordinary double integral,
use your equation g(x, y, z) = c to rewrite one of the variables in terms of the other two; e.g. if R is in the
xy-plane, z should be written in terms of x and y.
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The arclength and surface area correspond to
∫

C
ds and

∫∫
S
dσ respectively. Calculating work or circu-

lation of a vector field F along a curve C is
∫

C
F·dr. The flux of F on a surface S is

∫∫
S

(F · n) dσ. In the
preceding two integrands, the dot product will change two vectors into a function, which is then integrated.
Finally, the following two integrals are equal:∫

C

M dx+N dy + P dz =
∫

C

〈M,N,P 〉 · dr.

It is just a notational difference. (You can also directly use the form on the left and substitute dx → dx
dt dt

when writing everything in terms of t.)

3. FTC, Green, Stokes, Divergence

The Fundamental Theorem of Calculus for Line Integrals, Green’s Theorem, Stokes’ Theorem, and the
Divergence Theorem all say that two integrals are equal. In one integral, the integrand involves a sort of
“derivative” and the region is an arbitrary n-dimensional region in R3. The region of integration for the
other integral is the boundary of the previous region (so is n − 1-dimensional); the integrand involves the
original function or vector field before the “derivative.” Note that we can think of evaluating f at two points
as integrating over a 0-dimensional region.

In order to use any of these theorems, you must first understand what integral the problem wants you
to figure out. Then, you use the theorem to transform the problem into a completely different integration
problem. Once you have your new integral, use existing techniques to set it up and compute it.

Important Theorems

Regions Integral 1 Integral 2

C is curve going from A to B
∫

C

(∇f) · dr = f
∣∣∣B
A

= f(B)− f(A)

D is region in R2 with boundary C
∫∫

D

(∂N
∂x
− ∂M

∂y

)
dA =

∫
C

M dx+N dy

S is surface with boundary curve C
∫∫

S

(∇× F) · n dσ =
∫

C

F · dr

E is region with boundary surface S
∫∫∫

E

(∇ · F) dV =
∫∫

S

F · n dσ

In theory, you could always compute the integral on either side of the equals sign. In
practice, one of the integrals is often much simpler than the other. Each of these integrals is
something that was discussed in Section 1 or 2 of this document.
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