Test 3 Review

1. Evaluate the following integrals (you may need to switch order of integration):
(a) $\int_{0}^{\pi} \int_{0}^{x} x \sin y d y d x$
(b) $\int_{0}^{3} \int_{\sqrt{x / 3}}^{1} e^{y^{3}} d y d x$
(c) $\int_{-1}^{1} \int_{-\sqrt{1-y^{2}}}^{\sqrt{1-y^{2}}}\left(x^{2}+y^{2}\right) d y d x$
(d) $\int_{0}^{2} \int_{0}^{\sqrt{1-(x-1)^{2}}} \frac{x+y}{x^{2}+y^{2}} d y d x$
(e) $\int_{0}^{1} \int_{0}^{2-x} \int_{0}^{2-x-y} d z d y d x$
(f) $\int_{-1}^{1} \int_{0}^{\sqrt{1-y^{2}}} \int_{0}^{x}\left(x^{2}+y^{2}\right) d z d x d y$
2. Set up integrals to integrate over the following regions:
(a) the solid whose base is the region in the $x y$-plane that is bounded by the parabola $y=4-x^{2}$ and the line $y=3 x$, while the top of the solid is bounded by the plane $z=x+4$.
(b) the (2-dimensional) region bounded by $y=e^{x}$ and the lines $y=0, x=0, x=\ln 2$.
(c) the (2-dimensional) region bounded by the parabolas $x=y^{2}-1$ and $x=2 y^{2}-2$.
(d) the region cut from the first quadrant by the cardiod $r=1+\sin \theta$.
(e) the tetrahedron cut from the first octant by the plane $6 x+3 y+2 z=6$.
(f) the region bounded by the paraboloids $z=8-x^{2}-y^{2}$ and $z=x^{2}+y^{2}$.
(g) the region bounded by the cylinder $z=y^{2}$, and the planes $z=0, x=0, x=1, y=-1, y=1$.
(h) (using cyclindrical coordinates) region bounded by $z=\sqrt{x^{2}+y^{2}}, z=0$ and cylinder $(x-2)^{2}+y^{2}=$ 4.
(i) (using spherical coordinates) cone with $z \geq 0$ formed by $z^{2}=2\left(x^{2}+y^{2}\right)$ and $z=5$.
(j) (using spherical coordinates) the portion of the sphere of radius 2, centered at the origin, satisfying $x \geq 0$.
3. Suppose the temperature at a point is given by the function $f=y$. Find the average temperature on the part of a ball of radius 2 in the first octant $(x, y, z>0)$.
4. Suppose the density at a point is given by the function $\delta=x^{2}+y^{2}$. Find the total mass and the center of mass of a disc of radius 1 in the $x y$-plane.
5. Find $\iint_{R} x y d A$ where R is the region bounded by the lines $y=x, y=2 x$, and $x+y=2$.
