Test 3 Review

1. Evaluate the following integrals (you may need to switch order of integration):

(a)
$$\int_{0}^{\pi} \int_{0}^{x} x \sin y \, dy \, dx$$

(b) $\int_{0}^{3} \int_{\sqrt{x/3}}^{1} e^{y^{3}} \, dy \, dx$
(c) $\int_{-1}^{1} \int_{-\sqrt{1-y^{2}}}^{\sqrt{1-y^{2}}} (x^{2} + y^{2}) \, dy \, dx$
(d) $\int_{0}^{2} \int_{0}^{\sqrt{1-(x-1)^{2}}} \frac{x+y}{x^{2}+y^{2}} \, dy \, dx$
(e) $\int_{0}^{1} \int_{0}^{2-x} \int_{0}^{2-x-y} dz \, dy \, dx$
(f) $\int_{-1}^{1} \int_{0}^{\sqrt{1-y^{2}}} \int_{0}^{x} (x^{2} + y^{2}) \, dz \, dx \, dy$

2. Set up integrals to integrate over the following regions:

- (a) the solid whose base is the region in the xy-plane that is bounded by the parabola $y = 4 x^2$ and the line y = 3x, while the top of the solid is bounded by the plane z = x + 4.
- (b) the (2-dimensional) region bounded by $y = e^x$ and the lines $y = 0, x = 0, x = \ln 2$.
- (c) the (2-dimensional) region bounded by the parabolas $x = y^2 1$ and $x = 2y^2 2$.
- (d) the region cut from the first quadrant by the cardiod $r = 1 + \sin \theta$.
- (e) the tetrahedron cut from the first octant by the plane 6x + 3y + 2z = 6.
- (f) the region bounded by the paraboloids $z = 8 x^2 y^2$ and $z = x^2 + y^2$.
- (g) the region bounded by the cylinder $z = y^2$, and the planes z = 0, x = 0, x = 1, y = -1, y = 1.
- (h) (using cyclindrical coordinates) region bounded by $z = \sqrt{x^2 + y^2}$, z = 0 and cylinder $(x-2)^2 + y^2 = 4$.
- (i) (using spherical coordinates) cone with $z \ge 0$ formed by $z^2 = 2(x^2 + y^2)$ and z = 5.
- (j) (using spherical coordinates) the portion of the sphere of radius 2, centered at the origin, satisfying $x \ge 0$.
- 3. Suppose the temperature at a point is given by the function f = y. Find the average temperature on the part of a ball of radius 2 in the first octant (x, y, z > 0).
- 4. Suppose the density at a point is given by the function $\delta = x^2 + y^2$. Find the total mass and the center of mass of a disc of radius 1 in the xy-plane.
- 5. Find $\iint_R xy \, dA$ where R is the region bounded by the lines y = x, y = 2x, and x + y = 2.