Test 4 Review

1. Find the length of the curve $\mathbf{r}(t)=\left(\cos ^{3} t\right) \mathbf{i}+\left(\sin ^{3} t\right) \mathbf{k}, 0 \leq t \leq \pi / 2$.
2. A wire is given by the straight-line segment connecting $(0,1,0)$ to $(1,0,0)$ and has density $\delta=x+y$. Find the mass of the wire.
3. Calculate the work done by the force $\mathbf{F}=\left\langle 3 x^{2}-3 x, 3 z, 1\right\rangle$ from $(0,0,0)$ to $(1,1,1)$ over the path $\mathbf{r}(t)=\left\langle t, t^{2}, t^{4}\right\rangle, 0 \leq t \leq 1$.
4. Let $\mathbf{F}=\sin y \cos x \mathbf{i}+\cos y \sin x \mathbf{j}+\mathbf{k}$. Show that \mathbf{F} is conservative and find a potential function. Calculate the integral

$$
\int_{C} \sin y \cos x d x+\cos y \sin x d y+d z
$$

where C is the straight-line from $(1,0,0)$ to $(0,1,1)$.
5. Use Green's Theorem to evaluate

$$
\oint(6 y+x) d x+(y+2 x) d y
$$

where C is the (counter-clockwise) circle $(x-2)^{2}+(y-3)^{2}=4$.
6. Find the area of the surface $x^{2}-2 y-2 z=0$ that lies above the triangle bounded by the lines $x=2, y=$ $0, y=3 x$ in the $x y$-plane.
7. Integrate $g(x, y, z)=x+y+z$ over the portion of the plane $2 x+2 y+z=2$ that lies in the first octant.
8. Find the flux of $\mathbf{F}=\langle x, y, z\rangle$ across the portion of the sphere $x^{2}+y^{2}+z^{2}=9$ in the first octant in the direction away from the origin.
9. Use Stokes' Theorem to calculate the work done by $\mathbf{F}=x^{2} \mathbf{i}+2 x \mathbf{j}+z^{2} \mathbf{j}$ around the ellipse $4 x^{2}+y^{2}=4$ in the $x y$-lane, counterclockwise when viewed from above.
10. Use Stokes' Theorem to calculate the work done by $\mathbf{F}=\langle y z, 2 x z, 0\rangle$ around the closed curve C given by the intersection of the cylinder $x^{2}+y^{2}=1$ with the plane $z=y+1$. The curve C is counter-clockwise when viewed from above.
11. Use Stokes' Theorem to evaluate $\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma$ where S is the hemisphere $x^{2}+y^{2}+z^{2}=4, z \geq 0$ oriented upward, and $\mathbf{F}=x^{2} e^{y z} \mathbf{i}+y^{2} e^{x z} \mathbf{j}+z^{2} e^{x y} \mathbf{k}$.
12. Use the Divergence Theorem to find the outward flux of $\mathbf{F}=\langle y, x y,-z\rangle$ across the boundary of the region inside the solid cylinder $x^{2}+y^{2} \leq 4$, between the plane $z=0$ and the paraboloid $z=x^{2}+y^{2}$.
13. Let $\mathbf{F}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ and suppose that the surface S and the region D satisfy the hypotheses of the Divergence Theorem. Show that the volume of D is given by the formula

$$
\text { Volume of } D=\frac{1}{3} \iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma
$$

