HW ASSIGNED 10/29 AND 11/1 DUE FRIDAY 11/5

MATH 309, SECTION 3

(1) Consider the linear operator $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ given by

$$
T(x, y, z)=(x+3 z, y+4 z)
$$

Calculate $\operatorname{Ker} T$ and find an orthonormal basis for $\operatorname{Ker} T$.
(2) Consider the linear operator $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$ given by

$$
T\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{llll}
x_{1} & +3 x_{2} & & +2 x_{4} \\
& & x_{3} & +3 x_{4}
\end{array}\right]
$$

Calculate $\operatorname{Ker} T$ and find an orthonormal basis for $\operatorname{Ker} T$.
(3) Consider the linear operator $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by

$$
T\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{ccc}
x_{1} & & +x_{3} \\
& x_{2} & +x_{3} \\
x_{1} & +2 x_{2} & +2 x_{3}
\end{array}\right]
$$

Calculate Image T and find a basis for Image T (it doesn't need to be orthonormal).
(4) Consider the linear operator $T: \mathbb{D}^{(2)}(\mathbb{R}) \rightarrow \mathbb{C}(\mathbb{R})$ given by

$$
T(y)=\frac{d^{2} y}{d x^{2}}+k^{2} y
$$

where $y=y(x) \in \mathbb{D}^{(2)}(\mathbb{R})$. One often uses the notation $T=\frac{d^{2}}{d x^{2}}+k^{2}$. Below, let n be a constant.
(a) Show that T is linear.
(b) Compute $T\left(x^{n}\right)$.
(c) Compute $T(\cos (n x))$ and $T(\sin (n x))$.
(d) Use part (c) to obtain a 2-dimensional subspace in $\operatorname{Ker} T$. You may use (without proving) the fact that $\cos (n x)$ and $\sin (n x)$ are linearly independent.
(In fact, this 2-dimensional subspace equals $\operatorname{Ker} T$, but you will have to take Differential Equations to find out why.)
(5) (6.7:4) Suppose $T: V \rightarrow W$ is linear and $\operatorname{Ker} T=\{\mathbf{0}\}$. Prove that if $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ is a linearly independent subset of V, then $\left\{T\left(\mathbf{v}_{1}\right), \ldots, T\left(\mathbf{v}_{n}\right)\right\}$ is a linearly independent subset of W.
(6) (6.7:5) Suppose $T: V \rightarrow W$ is linear and onto. Suppose $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ spans V. Show that $\left\{T\left(\mathbf{v}_{1}\right), \ldots, T\left(\mathbf{v}_{n}\right)\right\}$ spans W.
(7) (6.7:6) Suppose $T: V \rightarrow W$ is linear. Suppose $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are vectors in V such that $\left\{T\left(\mathbf{v}_{1}\right), \ldots, T\left(\mathbf{v}_{n}\right)\right\}$ is a linearly independent subset of W. Prove that $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ is a linearly independent subset of V.

Sample problem worked out: Consider the linear operator $\mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by

$$
T\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{ccc}
x & & +z \\
& y & +z \\
x & +y & +2 z
\end{array}\right]
$$

The kernel of T is all (x, y, z) such that $T(x, y, z)=(0,0,0)$; i.e. solutions to

$$
\left[\begin{array}{ccc}
x & & +z \\
& y & +z \\
x & +y & +2 z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

We easily solve this system using Gaussian elimination:

$$
\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 2
\end{array}\right] \rightsquigarrow\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

The third column represents a free variable, so we have the solution space is

$$
\begin{aligned}
\operatorname{Ker} T & =\{(-r,-r, r) \mid r \in \mathbb{R}\} \\
& =\left\{r(-1,-1,1) \in \mathbb{R}^{3} \mid r \in \mathbb{R}\right\} \\
& =\operatorname{span}\{(-1,-1,1)\}
\end{aligned}
$$

Therefore, $(-1,-1,1)$ is a basis for $\operatorname{Ker} T$, and $\left(\frac{-1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$ is an orthonormal basis for $\operatorname{Ker} T$.

To calculate the image, it is easiest to write it as a span of a finite set of vectors. Note that

$$
T\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{ccc}
x & & +z \\
& y & +z \\
x & +y & +2 z
\end{array}\right]=x\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]+y\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]+z\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right],
$$

so Image $T=\operatorname{span}\{(1,0,1),(0,1,1),(1,1,2)\}$. To write a basis for Image T, we need the vectors to be linearly independent. Checking linear independence of $\{(1,0,1),(0,1,1),(1,1,2)\}$ uses the same Gaussian elimination as above. We quickly see that $\{(1,0,1),(0,1,1),(1,1,2)\}$ is not linearly independent. The reduced row echelon form shows us $(1,0,1)$ and $(0,1,1)$ are linearly independent, and that $(1,1,2)$ is a linear combination of the other two. Therefore,

$$
\text { Image } T=\operatorname{span}\{(1,0,1),(0,1,1),(1,1,2)\}=\operatorname{span}\{(1,0,1),(0,1,1)\},
$$

and $\{(1,0,1),(0,1,1)\}$ are linearly independent, so $\{(1,0,1),(0,1,1)\}$ is a basis for Image T.

We can use Grahm-Schmidt to give an orthonormal basis if we wish. Applying Grahm-Schmidt to $\{(1,0,1),(0,1,1)\}$ gives the orthonormal basis

$$
\left\{\left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right),\left(\frac{-1}{\sqrt{6}}, \frac{4}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)\right\} .
$$

