HW DUE MONDAY 9/20

MATH 309, SECTION 3

- (1) (a) For U, V, W sets, show $U \subset V \Rightarrow (U \cup W) \subset (V \cup W)$.
 - (b) Show the converse is not true, i.e. $U \subset V \not\leftarrow (U \cup W) \subset (V \cup W)$. (*Give a counter-example.*)
- (2) 1.2:8ace. Prove or disprove the following subsets of \mathbb{R} are closed under ordinary multiplication: $[5,\infty)$, (-1,0), and $\{1,2,4,8,16,\ldots\}$. (See p.11 Quick Example for examples.)
- (3) (a) Finish proving that P₂, polynomials of degree less than or equal to 2, is a vector space by verifying the remaining axioms. (See p.22-23 for the example of verifying axioms for R².)
 - (b) There is an obvious way to multiply polynomials. Is \mathbb{P}_2 closed under multiplication? What about \mathbb{P} , the set of all polynomials? (You don't need to do a formal proof for this problem, just explain your answers.)