HW DUE MONDAY 9/20

MATH 309, SECTION 3
(1) (a) For U, V, W sets, show $U \subset V \Rightarrow(U \cup W) \subset(V \cup W)$.
(b) Show the converse is not true, i.e. $U \subset V \nLeftarrow(U \cup W) \subset(V \cup W)$. (Give a counter-example.)
(2) 1.2:8ace. Prove or disprove the following subsets of \mathbb{R} are closed under ordinary multiplication: $[5, \infty),(-1,0)$, and $\{1,2,4,8,16, \ldots\}$. (See p. 11 Quick Example for examples.)
(3) (a) Finish proving that \mathbb{P}_{2}, polynomials of degree less than or equal to 2 , is a vector space by verifying the remaining axioms. (See p.22-23 for the example of verifying axioms for \mathbb{R}^{2}.)
(b) There is an obvious way to multiply polynomials. Is \mathbb{P}_{2} closed under multiplication? What about \mathbb{P}, the set of all polynomials? (You don't need to do a formal proof for this problem, just explain your answers.)

