TEST 2 REVIEW

MATH 309, SECTION 3

You should remember the definitions and have a working knowledge of the following concepts already covered: subspaces, linear independence, span, basis, how to solve linear systems, parameterize solution spaces, find a basis for vector spaces/subspaces.

You need to explicitly know: inner products, orthogonality, orthonormality, lengths and angles, orthogonal projection. Linear maps, image, kernel, one-to-one, onto, isomorphism, inverses, composition of maps, matrix of a linear function with respect to a basis.
(1) Let V be an inner product space and $W \subset V$ a finite-dimensional subspace. Show the orthogonal projection $V \rightarrow W$ is a linear map.
(2) Let $\langle\cdot, \cdot\rangle$ be the standard inner product (dot product) on \mathbb{R}^{3}. Let $W \subset \mathbb{R}^{3}$ be the subspace given by the orthonormal basis $\left\{\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right),(0,0,1)\right\}$. Let $P: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the orthogonal projection onto W.
(a) Compute $P(a, b, c)$.
(b) Find the matrix of $P: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ relative to the standard basis on \mathbb{R}^{3}.
(c) Find Ker P.
(d) Show $P^{2}=P$.
(3) Let $\mathbf{v}_{1}=(1,1), \mathbf{v}_{2}=(0,2)$. Then $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is a basis for \mathbb{R}^{2}. Let $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$ be the orthonormal basis of \mathbb{R}^{2} produced by applying the Grahm-Schmidt algorithm to $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$.
(a) Draw $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{e}_{1}, \mathbf{e}_{2}$.
(b) Calculate $\mathbf{e}_{1}, \mathbf{e}_{2}$ algebraically using Grahm-Schmidt.
(4) True or False:
(a) If $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ are non-zero orthogonal vectors, then they are linearly independent.
(b) If $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ are linearly independent vectors in V, then they are an orthonormal basis of V.
(c) If $T: V \rightarrow W$ is linear, then $\operatorname{Ker} T$ is a subspace of W.
(d) If T is not linear, then T is onto.
(e) Let A be a square matrix. If $A^{2}=\mathbf{0}$, then $A=\mathbf{0}$.
(f) If A is invertible, and $A B=\mathbf{0}$, then $B=\mathbf{0}$.
(5) Perform the following proofs:
(a) If $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ are linearly independent in V, and $T: V \rightarrow W$ is a one-to-one linear map, then $\left\{T\left(\mathbf{v}_{1}\right), \ldots, T\left(\mathbf{v}_{n}\right)\right\}$ is a linearly independent subset of W.
(b) Suppose $S: U \rightarrow V$ and $T: V \rightarrow W$ are linear maps which are both onto. Prove that $T \circ S$ is onto.
(c) Suppose $S: U \rightarrow V$ and $T: V \rightarrow W$ are linear maps. Show that $\operatorname{Ker} S \subset \operatorname{Ker}(T \circ S)$.
(d) Suppose $S: U \rightarrow V$ and $T: V \rightarrow W$ are linear maps. If Image $(S) \subset$ $\operatorname{Ker} T$, then $T \circ S=\mathbf{0}$.
(e) Suppose \langle,$\rangle is an inner product on the vector space V$. Suppose T : $V \rightarrow V$ is a linear map such that

$$
\left\langle\mathbf{v}_{1}, \mathbf{v}_{2}\right\rangle=\left\langle T\left(\mathbf{v}_{1}\right), T\left(\mathbf{v}_{2}\right)\right\rangle
$$

for all $\mathbf{v}_{1}, \mathbf{v}_{2} \in V$. Prove that $\operatorname{Ker} T=\mathbf{0}$.
(6) Calculate the angle between the functions 1 and x in the inner product space $\mathbb{C}[-1,1]$.
(7) Find a basis for the kernel and image of T, where $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ is the linear map whose matrix (relative to the standard basis) is

$$
\left[\begin{array}{ccc}
3 & 1 & -2 \\
1 & -1 & 0
\end{array}\right]
$$

(8) Let $S: \mathbb{P}_{2} \rightarrow \mathbb{P}_{3}$ be the linear maps given by $S(p)=p-2 x p$. Write the matrix of S relative to the bases $\left\{1, x, x^{2}\right\}$ and $\left\{1, x, x^{2}, x^{3}\right\}$. Find the kernel and the image of T.
(9) Suppose $T: \mathbb{P}_{2} \rightarrow \mathbb{P}_{2}$ is linear and satisfies

$$
T(1)=1+x, \quad T(1+x)=1+x+x^{2}, \quad T\left(1+x+x^{2}\right)=1
$$

(a) Write the matrix of T relative to the basis $\left\{1,1+x, 1+x+x^{2}\right\}$.
(b) Calculate the kernel and image of T.
(c) Calculate $T\left(a+b x+c x^{2}\right)$ and write the matrix of T relative to the basis $\left\{1, x, x^{2}\right\}$.
(d) Using the previous problem, calculate the matrix of $S \circ T$ relative to the bases standard bases $\left\{1, x, x^{2}\right\}$ and $\left\{1, x, x^{2}, x^{3}\right\}$.
(10) Show the following are linear maps: (Insert your own favorite linear map).

