TEST 2 REVIEW

MATH 309, SECTION 3

You should remember the definitions and have a working knowledge of the following concepts already covered: subspaces, linear independence, span, basis, how to solve linear systems, parameterize solution spaces, find a basis for vector spaces/subspaces.

You need to explicitly know: inner products, orthogonality, orthonormality, lengths and angles, orthogonal projection. Linear maps, image, kernel, one-to-one, onto, isomorphism, inverses, composition of maps, matrix of a linear function with respect to a basis.

- (1) Let V be an inner product space and $W \subset V$ a finite-dimensional subspace. Show the orthogonal projection $V \to W$ is a linear map.
- (2) Let $\langle \cdot, \cdot \rangle$ be the standard inner product (dot product) on \mathbb{R}^3 . Let $W \subset \mathbb{R}^3$ be the subspace given by the orthonormal basis $\{(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0), (0, 0, 1)\}$. Let $P: \mathbb{R}^3 \to \mathbb{R}^3$ be the orthogonal projection onto W.

 - (a) Compute P(a, b, c).
 - (b) Find the matrix of $P : \mathbb{R}^3 \to \mathbb{R}^3$ relative to the standard basis on \mathbb{R}^3 .
 - (c) Find $\operatorname{Ker} P$.
 - (d) Show $P^2 = P$.
- (3) Let $\mathbf{v}_1 = (1,1), \mathbf{v}_2 = (0,2)$. Then $\{\mathbf{v}_1, \mathbf{v}_2\}$ is a basis for \mathbb{R}^2 . Let $\{\mathbf{e}_1, \mathbf{e}_2\}$ be the orthonormal basis of \mathbb{R}^2 produced by applying the Grahm–Schmidt algorithm to $\{\mathbf{v}_1, \mathbf{v}_2\}$.
 - (a) Draw v_1, v_2, e_1, e_2 .
 - (b) Calculate $\mathbf{e}_1, \mathbf{e}_2$ algebraically using Grahm–Schmidt.
- (4) True or False:
 - (a) If $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ are non-zero orthogonal vectors, then they are linearly independent.
 - (b) If $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ are linearly independent vectors in V, then they are an orthonormal basis of V.
 - (c) If $T: V \to W$ is linear, then Ker T is a subspace of W.
 - (d) If T is not linear, then T is onto.
 - (e) Let A be a square matrix. If $A^2 = \mathbf{0}$, then $A = \mathbf{0}$.
 - (f) If A is invertible, and $AB = \mathbf{0}$, then $B = \mathbf{0}$.
- (5) Perform the following proofs:
 - (a) If $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ are linearly independent in V, and $T: V \to W$ is a oneto-one linear map, then $\{T(\mathbf{v}_1), \ldots, T(\mathbf{v}_n)\}$ is a linearly independent subset of W.
 - (b) Suppose $S: U \to V$ and $T: V \to W$ are linear maps which are both onto. Prove that $T \circ S$ is onto.

MATH 309, SECTION 3

- (c) Suppose $S: U \to V$ and $T: V \to W$ are linear maps. Show that $\operatorname{Ker} S \subset \operatorname{Ker}(T \circ S)$.
- (d) Suppose $S: U \to V$ and $T: V \to W$ are linear maps. If $\text{Image}(S) \subset \text{Ker } T$, then $T \circ S = \mathbf{0}$.
- (e) Suppose \langle , \rangle is an inner product on the vector space V. Suppose $T: V \to V$ is a linear map such that

$$\langle \mathbf{v}_1, \mathbf{v}_2 \rangle = \langle T(\mathbf{v}_1), T(\mathbf{v}_2) \rangle$$

for all $\mathbf{v}_1, \mathbf{v}_2 \in V$. Prove that Ker $T = \mathbf{0}$.

- (6) Calculate the angle between the functions 1 and x in the inner product space $\mathbb{C}[-1,1]$.
- (7) Find a basis for the kernel and image of T, where $T : \mathbb{R}^3 \to \mathbb{R}^2$ is the linear map whose matrix (relative to the standard basis) is

$$\begin{bmatrix} 3 & 1 & -2 \\ 1 & -1 & 0 \end{bmatrix}$$

- (8) Let $S : \mathbb{P}_2 \to \mathbb{P}_3$ be the linear maps given by S(p) = p 2xp. Write the matrix of S relative to the bases $\{1, x, x^2\}$ and $\{1, x, x^2, x^3\}$. Find the kernel and the image of T.
- (9) Suppose $T : \mathbb{P}_2 \to \mathbb{P}_2$ is linear and satisfies

T(1) = 1 + x, $T(1 + x) = 1 + x + x^2$, $T(1 + x + x^2) = 1$.

- (a) Write the matrix of T relative to the basis $\{1, 1 + x, 1 + x + x^2\}$.
- (b) Calculate the kernel and image of T.
- (c) Calculate $T(a + bx + cx^2)$ and write the matrix of T relative to the basis $\{1, x, x^2\}$.
- (d) Using the previous problem, calculate the matrix of $S \circ T$ relative to the bases standard bases $\{1, x, x^2\}$ and $\{1, x, x^2, x^3\}$.
- (10) Show the following are linear maps: (Insert your own favorite linear map).

 2