
SUPPLEMENT 1: LINEAR INDEPENDENCE AND BASES

1.1 Linear combinations and spanning sets

Consider the vector space R3 with the unit vectors e1 = (1, 0, 0), e2 = (0, 1, 0), e3 =
(0, 0, 1). Every vector v = (a, b, c) ∈ R3 can be expressed in terms of vectors
e1, e2, e3, namely:

v = (a, b, c) = ae1 + be2 + ce3 = a(1, 0, 0) + b(0, 1, 0) + c(0, 0, 1),

this means that every vector of R3 is a sum of (scalar) multiples of e1, e2, and e3.
In the following we want to study this property more closely. To do so we first need
a definition:

Definition. Let V be a vector space and {v1, . . . ,vn} ⊆ V a finite set of vectors in
V . A vector w ∈ V is called a linear combination of vectors v1, . . . ,vn if there are
scalars r1, . . . , rn ∈ R so that

w = r1v1 + . . . + rnvn.

The scalars r1, . . . , rn are called the coefficients of this linear combination.

We have just seen that every vector v ∈ R3 is a linear combination of the 3
vectors e1, e2, e3.

Given any set of n vectors {v1, . . . ,vn} in a vector space V we want to investigate
the set of all linear combinations of these n vectors. Thus we make the definition:

Definition. Let V be a vector space and C = {v1, . . . ,vn} ⊆ V a finite set of
vectors in V . The span of the set of vectors C = {v1, . . . ,vn} is the set of all linear
combinations of these n vectors:

S = span(C) = span{v1, . . . ,vn} = {r1v1 + . . . + rnvn | r1, . . . , rn ∈ R}.

We also say that the set S is spanned by the set of the vectors {v1, . . . ,vn}.

Whenever we define certain subsets of a vector space the first question which
arises is if these subsets are ’interesting’, that is, do they relate in some ways to
the vector space structure on the whole vector space? In case of spanning sets, this
means that to ask if these subsets are subspaces. Here is the answer:

Theorem S1.1. Let V be a vector space and {v1, . . . ,vn} ⊆ V a finite set of
vectors in V . The spanning set of {v1, . . . ,vn}

S = span{v1, . . . ,vn}

is a subspace of V .
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Proof. In order to prove this theorem remember that

S = span{v1, . . . ,vn} = {r1v1 + . . . + rnvn | r1, . . . , rn ∈ R}.

Obviously,
v1 = 1v1 + 0v2 + . . . + 0vn ∈ S,

and the set S is nonempty. Next we want to show that S is closed under vector
addition. So, let v,w ∈ S be vectors in S. Since S is the set of all linear combi-
nations of {v1, . . . ,vn}, each v and w is a linear combination of {v1, . . . ,vn}, that
is, there are scalars r1, . . . , rn ∈ R and s1, . . . , sn ∈ R with

v = r1v1 + . . . + rnvn and w = s1v1 + . . . + snvn.

Then

v + w = (r1v1 + . . . + rnvn) + (s1v1 + . . . + snvn)

= (r1 + s1)v1 + . . . + (rn + sn)vn

which is another linear combination of the vectors v1, . . . ,vn and therefore v+w ∈
S.

In order to show that S is closed under scalar multiplication, let v = r1v1 + . . .+
rnvn ∈ S where r1, . . . , rn ∈ R and c ∈ R. Then

cv = c(r1v1 + . . . + rnvn)

= (cr1)v1 + . . . + (crn)vn

which is again a linear combination of v1, . . . ,vn and cv ∈ S. This shows that S is
a subspace of V .

Our example R3 is the spanning set of the set of the unit vectors {e1, e2, e3},
that is,

R3 = span{e1, e2, e3}.

You can easily convince yourself that no fewer vectors than the 3 vectors e1, e2, e3

span R3, for example,
e3 = (0, 0, 1) /∈ span{e1, e2}.

Another obvious fact is that whenever any vector v = (a, b, c) is written as a linear
combination of the unit vectors e1, e2, e3:

v = (a, b, c) = ae1 + be2 + ce3,

then the scalars a, b, c are unique, which means that if

w = (a′, b′, c′) = a′e1 + b′e2 + c′e3

with a 6= a′ or b 6= b′ or c 6= c′ then v 6= w. On the other hand, the set
{e1, e2, e3,u = (2, 0, 1)} is another spanning set of R3 (why?). Here the vector
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v = (1, 0, 1) can be written as a linear combination of these 4 vectors in at least
two different ways:

v = 1e1 + 0e2 + 1e3 + 0u

= (−1)e1 + 0e2 + 0e3 + 1u.

More generally the following questions arise:
(1) Are there shortest spanning sets and when is a spanning set shortest?
(2) Suppose we can write a vector v as a linear combination of the set of vectors

{v1, . . . ,vn}, say:
v = r1v1 + . . . + rnvn

where ri ∈ R. When are the coefficients r1, . . . , rn unique?
In order to study these questions more closely we need the notion of linear

independence which will be discussed in the next section.

Linear independence

Definition. In a vector space V a finite set of vectors {v1, . . . ,vn} ⊆ V is called
linearly independent if and only if the equation

r1v1 + . . . + rnvn = 0

implies that r1 = r2 = . . . = rn = 0. If it is possible for the equation to hold when
one or more of the coefficients are nonzero, the set is linearly dependent.

Remark. For any set of vectors {v1, . . . ,vn} the zero vector can always be written
as

(∗) 0 = 0v1 + . . . + 0vn.

The definition states that the set {v1, . . . ,vn} is linearly independent if (∗) is the
one and only way the zero vector can be written as a linear combination of vectors
v1, . . . ,vn. So, the set of vectors is linearly independent if and only of the zero
vector can be written in a unique way (namely (∗)) as a linear combination of
the set {v1, . . . ,vn}. A natural question to ask here is if the set {v1, . . . ,vn} is
linearly independent implying that the zero vector can be written in a unique way
as a linear combination of those vectors, then what about the other vectors in
span{v1, . . . ,vn}, can they also be written as a linear combination with unique
coefficients? The answer is yes and even more can be shown:

Theorem S1.2. Let C = {v1, . . . ,vn} be a finite set of vectors in V . The following
are equivalent:

(1) C is linearly independent.
(2) Every vector in span(C) has a unique expression as a linear combination of

vectors in C.
(3) No vector in C is a linear combination of the other vectors in C.

Proof. (1) ⇒ (2) : Let v ∈ span(C) and assume that

v = r1v1 + . . . + rnvn = s1v1 + . . . + snvn



4 SUPPLEMENT 1: LINEAR INDEPENDENCE AND BASES

where ri, si ∈ R. Then

0 = v − v = (r1 − s1)v1 + . . . + (rn − sn)vn.

Since the set of vectors {v1, . . . ,vn} is linearly independent:

r1 − s1 = r2 − s2 = . . . rn − sn = 0 ⇒ r1 = s1, r2 = s2, . . . , rn = sn.

(2) ⇒ (3) : Suppose that vi ∈ span{v1, . . . ,vi−1,vi+1, . . . ,vn}. Then we can
write vi in two different ways as a linear combination of the vectors v1, . . . ,vn,
namely:

vi = r1v1 + . . . + ri−1vi−1 + ri+1vi+1 + . . . + rnvn

= r1v1 + . . . + ri−1vi−1 + 0vi + ri+1vi+1 + . . . + rnvn

and
vi = 0v1 + . . . + 0vi−1 + 1vi + 0vi+1 + . . . + 0vn,

a contradiction
(3) ⇒ (1) : Suppose that 0 = r1v1 + . . . + rnvn. If ri 6= 0 then

rivi = (−r1)v1 + . . . + (−ri−1)vi−1 + (−ri+1)vi+1 + . . . + (−rn)vn.

Thus

vi = (−r1/ri)v1 + . . . + (−ri−1/ri)vi−1 + (−ri+1/ri)vi+1 + . . . + (−rn/ri)vn

and vi ∈ span{v1, . . . ,vi−1,vi+1, . . . ,vn}, a contradiction

Example. The set of unit vectors {e1, e2, e3} in R3 is linearly independent, since

0 = (0, 0, 0) = ae1 + be2 + ce3 = (a, b, c)

implies that a = b = c = 0. On the other hand, the set

{e1, e2, e3,u = (2, 0, 1)}

is linearly dependent since

0 = (0, 0, 0) = 2e1 + 0e2 + 1e3 + (−1)u.

The following Lemma is very useful in the next section when we discuss bases of
vector spaces.

Linear Dependence Lemma. If {v1, . . . ,vn} ⊆ V is a set of linearly dependent
vectors in V with v1 6= 0, then there is a j ∈ {2, . . . , n} so that

(a) vj ∈ span{v1, . . . ,vj−1}
(b) span{v1, . . . ,vn} = span{v1, . . . ,vj−1,vj+1, . . . ,vn}.
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Proof. (a) By assumption the set {v1, . . . ,vn} is linearly dependent. Thus there
are r1, . . . , rn ∈ R, not all 0, so that:

0 = r1v1 + . . . + rnvn.

Since v1 6= 0, not all r2, . . . , rn are 0. Let j ≥ 2 be the largest integer with rj 6= 0.
Then

vj = (−r1/rj)v1 + . . . + (−rj−1/rj)vj−1.

This shows that vj ∈ span{v1, . . . ,vj−1}.
(b) As has been shown in (a) there is an integer j ∈ {2, . . . , n} so that vj ∈

span{v1, . . . ,vj−1}. Then, obviously, span{v1, . . . ,vj−1,vj+1, . . . ,vn} ⊆ span{v1, . . . ,vn}.
In order to show the other inclusion we use the fact that vj ∈ span{v1, . . . ,vj−1,vj+1, . . . ,vn}
and write

vj = r1v1 + . . . rj−1vj−1 + rj+1vj+1 + . . . + rnvn

for some ri ∈ R. Let v ∈ span{v1, . . . ,vn} then

v = t1v1 + . . . + tnvn

for some ti ∈ R. Substituting the first equation for vj into the second equation
yields:

v = (t1+tjr1)v1+. . .+(tj−1+tjrj−1)vj−1+(tj+1+tjrj+1)vj+1+. . .+(tn+tjrn)vn

and v ∈ span{v1, . . . ,vj−1,vj+1, . . . ,vn}.

Corollary S1.3. If {v1, . . . ,vn} is a set of vectors in V with v1 6= 0 and vj /∈
span{v1, . . . ,vj−1} for all 2 ≤ j ≤ n then {v1, . . . ,vn} is a set of linearly indepen-
dent vectors in V .

Bases

In the following we call a subset A a proper subset of a set B if A is a subset of
B (i.e. A ⊆ B) and A 6= B.

Definition. Let V be a vector space and B = {v1, . . . ,vn} ⊆ V a finite set of
vectors in V . B is called a basis of V if B is linearly independent and spans V , i.e.,
B is linearly independent and V = span(B) = span{v1, . . . ,vn}.

With this definition we see that the set of unit vectors B = {e1, e2, e3} is a basis
of R3 while the sets C = {e1, e2, e3,u = (2, 0, 1)} and D = {e1, e2} are not bases
of R3.

Theorem S1.4. Let S = {v1, . . . ,vn} be a set of vectors in V . The following are
equivalent:

(1) S is linearly independent and spans V .
(2) For every v ∈ V there are unique scalars r1, . . . , rn ∈ R so that v = r1v1 +

. . . + rnvn.
(3) S is a minimal spanning set, that is, S spans V and no proper subset of S

spans V .
(4) S is a maximal linear independent set, that is, S is linearly independent and

any subset T of V that properly contains S is linearly dependent.
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Proof. (1) ⇒ (2) : Let v ∈ V . Since S spans V , there are scalars r1, . . . , rn ∈ R so
that

v = r1v1 + . . . + rnvn.

If there is another list of scalars s1, . . . , sn ∈ R with

v = s1v1 + . . . + snvn

then
0 = v − v = (r1 − s1)v1 + . . . + (rn − sn)vn.

Since {v1, . . . ,vn} is linearly independent, r1 = s1, r2 = s2, . . . , rn = sn.
(2) ⇒ (3) : By contradiction: Suppose that A ⊆ S is a subset with A 6= S and

suppose that V = span(A). Since A is properly contained in S there is at least one
vi ∈ S with vi /∈ A. After renumbering the v′s - if necessary - we may assume that
v1 /∈ A. Since A spans V , any set containing A spans V . Thus we may assume that
A = {v2,v3, . . . ,vn}. Then V = span(A), v1 ∈ Span(A), and there are scalars
r2, . . . , rn ∈ R so that

v1 = r2v2 + . . . + rnvn = 0v1 + r2v2 + . . . + rnvn.

This is one way to write v1 as a linear combination of vectors v1, . . . ,vn. Another
is v1 = 1v1 + 0v2 + . . . + 0vn, a contradiction to assumption (2).

(3) ⇒ (4) : Let T ⊆ V be a subset with S ⊆ T and S 6= T and let v ∈ T − S.
We know by (3) that V = span(S). Thus there are scalars r1, . . . , rn ∈ R so that

v = r1v1 + . . . + rnvn.

This gives a nontrivial linear combination of 0:

0 = r1v1 + . . . + rnvn + (−1)v

and the set of vectors {v,v1, . . . ,vn} is linearly dependent. Thus T is linearly
dependent.

(4) ⇒ (1) : By assumption (4) the set S is linearly independent. We have to
show that S spans V . Let v ∈ V . If v ∈ S then v = vi for some i = 1, 2, . . . , n
and, in particular, v = vi ∈ span(S). Let v /∈ S. By assumption the set S ∪ {v} is
linearly dependent and there are scalars t, r1, . . . , rn ∈ R, not all 0, so that

0 = r1v1 + . . . + rnvn + tv.

If t = 0 then not all of the ri are 0 and 0 = r1v1 + . . . + rnvn, a contradiction to
S a linearly independent set. Thus t 6= 0 and

v = (−r1/t)v1 + . . . + (−rn/t)vn ∈ span(S).

In the following we call the set of unit vectors {e1, e2, e3} the standard basis of
R3. More generally, if n is any positive integer and 1 ≤ i ≤ n, then the ith standard
(basis) vector of Rn is the vector ei that has 0’s in all coordinate positions except
the ith, where it has 1. Thus

e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1).

The set {e1, . . . , en} is called the standard basis of Rn. (Note that {e1, . . . , en} is
a basis of Rn.)
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Dimension

It is not hard to show that every nonzero vector space with a basis has infinitely
many different bases. In this section we want to show that every vector space that
can be spanned by finite many vectors has a basis. Before we prove this theorem
we need another theorem which tells us something about the number of elements
in a basis of vector space. Let’s start by listing more bases for R3:

B1 = {(1, 1, 0), (1, 0, 1), (0, 1, 1)}
B2 = {(1, 2, 3), (4, 5, 6), (7, 8, 0)}
B3 = {(1, 2, 4), (1, 3, 9), (1, 4, 16)}

It turns out that which ever basis of R3 we choose to construct, every such basis has
exactly 3 elements. This is part of a general theorem which states that whenever a
vector space has a basis all the bases in this vector space have the same number of
vectors.

Theorem S1.5. Let V be a finite vector space with V = span{v1, . . . ,vn}. If
{u1, . . . ,um} is a set of linearly independent vectors then m ≤ n.

Proof. The idea of the proof is to show that we can replace j vectors in the set
{v1, . . . ,vn} by vectors u1, . . . ,uj , so that the new set of n vectors {u1, . . . ,uj ,vj+1, . . . ,vn}
is again a spanning set of V . Then we show that we must exhaust the set of the
u′s before we have exhausted the set of v′s, that is, m ≤ n. One difficulty in the
proof is that at every stage we need to renumber vectors v1, . . . ,vn in order to
avoid multiple index sets or renaming remaining vectors from {v1, . . . ,vn}.

We start by distinguishing two cases:
Case 1: u1 ∈ {v1, . . . ,vn} Then u1 = vi for some 1 ≤ i ≤ n. We renumber

vectors v1, . . . ,vn so that u1 = v1 to obtain that {u1,v2, . . . ,vn} = {v1, . . . ,vn}
is a spanning set with n elements.

Case 2: u1 /∈ {v1, . . . ,vn}
Since {v1, . . . ,vn} is a spanning set of V , by Theorem S1.2 the set of vectors

{u1,v1, . . . ,vn} is linearly dependent. Moreover, since {u1, . . . ,um} is linearly
independent, u1 6= 0, and by the Linear Dependence Lemma we can remove one
of the v′s, say vi, from the spanning set {u1,v1, . . . ,vn} of V . After renumbering
vectors v1, . . . ,vn so that vi becomes the first vector on the list, we obtain a new
spanning set with n vectors, namely, {u1,v2, . . . ,vn}.

Now we suppose that we have added u′s and removed v′s so that the set

(∗) {u1, . . . ,uj−1,vj , . . . ,vn}

is a spanning set of V of length n. In order to add uj and remove one of the vectors
vj , . . . ,vn we again need to distinguish two cases:

Case 1: uj ∈ {vj , . . . ,vn} If uj = vi for some j ≤ i ≤ n, we again renumber vec-
tors vj , . . . ,vn, so that uj = vj and obtain a spanning set {u1, . . . ,uj ,vj+1, . . . ,vn}
of n vectors.

Case 2: uj /∈ {vj , . . . ,vn}
In this case we repeat the argument from above. The set {u1, . . . ,uj−1,uj ,vj , . . . ,vn}

is a spanning set of V with n + 1 elements where uj is a linear combination
of vectors u1, . . . ,uj−1,vj , . . . ,vn. By Theorem S1.2 the set of n + 1 vectors
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{u1, . . . ,uj−1,uj ,vj , . . . ,vn} is linear independent with u1 6= 0. Since the set
{u1, . . . ,um} is linearly independent, by the Linear Dependence Lemma there is a
vector vi where j ≤ i ≤ n with vi ∈ span{u1, . . . ,uj ,uj ,vj , . . . ,vi−1}. Renumber-
ing the renaming vectors vj , . . . ,vn so that uj = vj the second part of the Linear
Dependence Lemma yields that the set of n vectors {u1, . . . ,uj ,vj+1, . . . ,vn} spans
V .

The process stops when there are no u′s or no v′s left. If there are no u′s left then
m ≤ n, as desired. If there are no v′s left then {u1, . . . ,un} is a linearly independent
spanning set of V . If m > n then un+1 ∈ span{u1, . . . ,un}, a contradiction to the
linear independence of the u′s. Thus in this case n = m.

Definition. A vector space V is called finite dimensional if there is a finite subset
S = {v1, . . . ,vn} ⊆ V so that V = span(S) = span{v1, . . . ,vn}.

Corollary S1.6. Every subspace of a finite dimensional vector space V is finite
dimensional.

Proof. Let U ⊆ V be a subspace of V . If U = {0} we are done. Suppose U 6= {0}
and take u1 ∈ U with u1 6= 0. If U = span{u1} we are done. If U 6= span{u1} take
u2 ∈ U − span{u1}. Again, if U = span{u1,u2) we are done. If U 6= span{u1,u2}
take u3 ∈ U−span{u1,u2} etc. This way we obtain a set of vectors {u1, . . . ,un} ⊆
U with uj /∈ span{u1, . . . ,uj−1}. Since u1 6= 0 by the Corollary S1.3 the set
{u1, . . . ,un} is linearly independent. Theorem S1.5 tells us that the process must
stop after finitely many steps. Thus U has a finite spanning set.

Theorem S1.7. Let V be a finite dimensional nonzero vector space. Then:

(a) Any linearly independent set in V is contained in a basis of V .
(b) Any spanning set of V contains a basis of V .

Proof. (a) Let {u1, . . . ,um} ⊆ V be a set of linearly independent vectors in V .
If V = span{u1, . . . ,um} we are done. If not we expand the list by a vector
um+1 ∈ V − span{u1, . . . ,um}. Again if V = span{u1, . . . ,um+1} we are done. If
not take um+2 ∈ V − span{u1, . . . ,um+1} etc. This way we create a set of vectors
{u1, . . . ,un} with uj /∈ span{u1, . . . ,uj−1} for 2 ≤ j ≤ n. By Corollary S1.3 this
set of vectors is linearly independent. The process must stop after finitely many
steps since any finite spanning set of V provides an upper bound to the length of a
linearly independent set of vectors of V .

(b) Let V = span{v1, . . . ,vn}. We may remove any vi = 0 from the span-
ning set and still have a spanning set. Thus we may assume that v1 6= 0. If
{v1, . . . ,vn} is a set of linearly independent vectors we are done. If not apply the
Linear Dependence Lemma and remove one of the vj where 2 ≤ j ≤ n so that
V = span{v1, . . . ,vj−1,vj+1, . . . ,vn}. Apply the same argument to the spanning
set of n−1 vectors {v1, . . . ,vj−1,vj+1, . . . ,vn} and so on. The process stops when
the reduced spanning set of vectors is linearly independent.

Theorem S1.8. Every finite dimensional vector space has a basis.

Proof. This is actually a corollary from Theorem S1.7. Let S = {v1, . . . ,vn} ⊆ V
be a spanning set of V . By Theorem S1.7(b) this set S contains a basis of V .

TheoremS1.9. Any two bases of a finite dimensional vector space contain the
same number of vectors.
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Proof. Let B1 = {v1, . . . ,vn} and B2 = {u1, . . . ,um} be two bases of V . Then
B1 is a linearly independent set of V while B2 is a spanning set of V . Thus by
Theorem S1.5 n ≤ m. Since B1 and B2 are each linearly independent spanning sets
of V we can switch the role of B1 and B2 in the above argument, that is, B2 is a
linearly independent set and B1 is a spanning set of V . Thus again by Theorem
S1.5 m ≤ n. Hence we have n ≤ m and m ≤ n which implies that n = m.

Definition. Let V be a finite dimensional vector space. If a basis of V consists
of n vectors we say that V is a vector space of dimension n which is denoted by
dimV = n.

Corollary S1.10. Let V be a vector space of dimension n. Then:
(a) Any linearly independent set of n vectors is a basis of V .
(b) Any spanning set of V with exactly n vectors is a basis of V .

Proof. (a) Let S = S = {v1, . . . ,vn} ⊆ V be a linearly independent subset of V .
By Theorem S1.7(a) this set can be extended to a basis of V . On the other hand
any basis of V contains exactly n vectors. Thus S must be a basis of V
(b) If T = {u1, . . . ,un} ⊆ V is a spanning set of V , by Theorem S.7(b) a subset of
T is a basis of V . Any proper subset of T has fewer than n vectors. Thus T is a
basis of V .


