HOMEWORK DUE MONDAY, FEBRUARY 21

MATH 309, SECTION 6
(1) Find a basis for $V=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4} \mid x_{1}+3 x_{2}-2 x_{3}+x_{4}=0\right.$ and $\left.x_{1}+2 x_{2}-2 x_{3}=0\right\}$.
(2) Is $\left\{p_{1}, p_{2}\right\}$ a basis for \mathbb{P}_{2}, where $p_{1}(x)=x^{2}+1$ and $p_{2}(x)=x^{2}+x+2$? If not, add or remove polynomials to form a basis.
(3) Show $\{(2,4,-2),(3,2,0),(1,-2,-2)\}$ is a basis for \mathbb{R}^{3}.
(4) Find a basis for

$$
V=\left\{\left.\left[\begin{array}{cc}
2 a & 2 a-b \\
b+c & c-a
\end{array}\right] \in \mathbb{M}(2,2) \right\rvert\, a, b, c \in \mathbb{R}\right\} .
$$

(5) Let $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ be a set of linearly independent vectors in the vector space V. Show that $\left\{\mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ cannot span V.
(6) $3.5: 5,6,17$

