HOMEWORK DUE MONDAY 4/4

MATH 309, SECTION 6

(1) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear map given in standard coordinates by the matrix

$$
\left[\begin{array}{cc}
-1 & 6 \\
\frac{3}{2} & -1
\end{array}\right]
$$

Let $B=\{(1,0),(0,1)\}$ and $B^{\prime}=\{(-2,1),(2,1)\}$.
(a) Find the change of basis matrices $P_{B B^{\prime}}$ and $P_{B^{\prime} B}$ and use these to compute the matrix of T relative to B^{\prime} (i.e. the above matrix is $T_{B B}$, and use $P_{B B^{\prime}}$ and $P_{B^{\prime} B}$ to find $T_{B^{\prime} B^{\prime}}$).
(b) Use $T_{B^{\prime} B^{\prime}}$ to find the kernel and image of T.
(2) Let $T: \mathbb{P}_{2} \rightarrow \mathbb{R}^{2}$ be given by

$$
T(p)=\left[\begin{array}{l}
p(0) \\
p(2)
\end{array}\right]
$$

(e.g. if $p=a+b x$, then $p(4)=a+b(4)=a+4 b$.)
(a) Find the matrix of T relative to the standard bases $B=\left\{1, x, x^{2}\right\}$ of \mathbb{P}_{2}, and $C=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$ of \mathbb{R}^{2}.
(b) Find the matrix of T relative to the basis $A=\left\{1,1+x, 1+x+x^{2}\right\}$ of \mathbb{P}_{2} and $D=\{(1,1),(1,-1)\}$ of \mathbb{R}^{2}.
(3) Suppose that $T: \mathbb{P}_{2} \rightarrow \mathbb{P}_{2}$ satisfies

$$
T(1+x)=3\left(x+x^{2}\right), \quad T\left(x+x^{2}\right)=-\left(x^{2}+1\right), \quad T\left(x^{2}+1\right)=2\left(x+x^{2}\right)+\left(x+x^{2}\right)
$$

Calculate $\operatorname{Ker} T$ and $\operatorname{Im} T$.
(Hint: Find the matrix of T relative to the basis $\left\{1+x, x+x^{2}, x^{2}+1\right\}$, calculate kernel and image relative to that basis, then rewrite the kernel and image as polynomials.)
(4) Suppose $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ satisfies

$$
T(3,1)=5(3,1), \quad T(0,2)=-1(0,2)
$$

Find the matrix of T relative to the standard basis of \mathbb{R}^{2}.
(5) Let $B=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ be finite-set of vectors in V, and let $L_{B}: \mathbb{R}^{n} \rightarrow V$ be the linear map defined by $L\left(r_{1}, \ldots, r_{n}\right)=\sum_{i=1}^{n} r_{i} \mathbf{v}_{i}$. Prove that L_{B} is one-to-one if and only if $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ is linearly independent.
(6) $6.7: 1,2$
(7) Let V, W be vector spaces with $\operatorname{dim} V=\operatorname{dim} W=4$. Suppose that $T: V \rightarrow W$ is a linear map, and $\operatorname{dim}(\operatorname{Image} T)=2$. Show there exists a linear map $S: W \rightarrow \mathbb{R}^{2}$ which is onto and which also satisfies $S \circ T=\mathbf{0}$; i.e. $S \circ T(\mathbf{v})=\mathbf{0}$ for all $\mathbf{v} \in V$. (Hint: start with a basis for Image T.)

