HOMEWORK DUE MONDAY 4/4

MATH 309, SECTION 6

(1) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear map given in standard coordinates by the matrix

$$\begin{bmatrix} -1 & 6\\ \frac{3}{2} & -1 \end{bmatrix}$$

Let $B = \{(1,0), (0,1)\}$ and $B' = \{(-2,1), (2,1)\}.$

- (a) Find the change of basis matrices $P_{BB'}$ and $P_{B'B}$ and use these to compute the matrix of T relative to B' (i.e. the above matrix is T_{BB} , and use $P_{BB'}$ and $P_{B'B}$ to find $T_{B'B'}$).
- (b) Use $T_{B'B'}$ to find the kernel and image of T.
- (2) Let $T: \mathbb{P}_2 \to \mathbb{R}^2$ be given by

$$T(p) = \begin{bmatrix} p(0)\\ p(2) \end{bmatrix}$$

- (e.g. if p = a + bx, then p(4) = a + b(4) = a + 4b.)
- (a) Find the matrix of T relative to the standard bases $B = \{1, x, x^2\}$ of \mathbb{P}_2 , and $C = \{\mathbf{e}_1, \mathbf{e}_2\}$ of \mathbb{R}^2 .
- (b) Find the matrix of T relative to the basis $A = \{1, 1+x, 1+x+x^2\}$ of \mathbb{P}_2 and $D = \{(1, 1), (1, -1)\}$ of \mathbb{R}^2 .
- (3) Suppose that $T : \mathbb{P}_2 \to \mathbb{P}_2$ satisfies

$$T(1+x) = 3(x+x^2), \quad T(x+x^2) = -(x^2+1), \quad T(x^2+1) = 2(x+x^2) + (x+x^2).$$

Calculate $\operatorname{Ker} T$ and $\operatorname{Im} T$.

(Hint: Find the matrix of T relative to the basis $\{1 + x, x + x^2, x^2 + 1\}$, calculate kernel and image relative to that basis, then rewrite the kernel and image as polynomials.)

(4) Suppose $T : \mathbb{R}^2 \to \mathbb{R}^2$ satisfies

$$T(3,1) = 5(3,1), \quad T(0,2) = -1(0,2).$$

Find the matrix of T relative to the standard basis of \mathbb{R}^2 .

- (5) Let $B = {\mathbf{v}_1, \dots, \mathbf{v}_n}$ be finite-set of vectors in V, and let $L_B : \mathbb{R}^n \to V$ be the linear map defined by $L(r_1, \dots, r_n) = \sum_{i=1}^n r_i \mathbf{v}_i$. Prove that L_B is one-to-one if and only if ${\mathbf{v}_1, \dots, \mathbf{v}_n}$ is linearly independent.
- (6) 6.7: 1,2
- (7) Let V, W be vector spaces with dim $V = \dim W = 4$. Suppose that $T : V \to W$ is a linear map, and dim(Image T) = 2. Show there exists a linear map $S : W \to \mathbb{R}^2$ which is onto and which also satisfies $S \circ T = \mathbf{0}$; i.e. $S \circ T(\mathbf{v}) = \mathbf{0}$ for all $\mathbf{v} \in V$. (Hint: start with a basis for Image T.)