TEST 2 REVIEW

MATH 309, SECTION 6

You should remember the definitions and have a working knowledge of the following concepts already covered: subspaces, linear independence, span, basis, how to solve linear systems, parameterize solution spaces, find a basis for vector spaces/subspaces.

You need to explicitly know: Linear maps, image, kernel, one-to-one, onto, isomorphism, inverses, composition of maps, coordinates, matrix of a linear function with respect to a basis, change of basis.
(1) True or False:
(a) If $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ is a basis of V, and the linear map $T: V \rightarrow W$ is an isomorphism, then $\left\{T\left(\mathbf{v}_{1}\right), \ldots, T\left(\mathbf{v}_{n}\right)\right\}$ then is a basis of W.
(b) If $T: V \rightarrow W$ is linear, then $\operatorname{Ker} T$ is a subspace of W.
(c) If T is not linear, then T is onto.
(d) Let A be a square matrix. If $A^{2}=\mathbf{0}$, then $A=\mathbf{0}$.
(e) If A is invertible, and $A B=\mathbf{0}$, then $B=\mathbf{0}$.
(f) Suppose $A \in \mathbb{M}(m, n), B \in \mathbb{M}(n, m)$, and $A B=I_{m}$. Then $B A=I_{n}$.
(2) Perform the following proofs:
(a) If $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ are linearly independent in V, and $T: V \rightarrow W$ is a one-to-one linear map, then $\left\{T\left(\mathbf{v}_{1}\right), \ldots, T\left(\mathbf{v}_{n}\right)\right\}$ is a linearly independent subset of W.
(b) Suppose $S: U \rightarrow V$ and $T: V \rightarrow W$ are linear maps which are both onto. Prove that $T \circ S$ is onto.
(c) Suppose $S: U \rightarrow V$ and $T: V \rightarrow W$ are linear maps. Show that $\operatorname{Ker} S \subset \operatorname{Ker}(T \circ S)$.
(d) Suppose $S: U \rightarrow V$ and $T: V \rightarrow W$ are linear maps. If Image $(S) \subset$ Ker T, then $T \circ S=\mathbf{0}$.
(3) Find a basis for the kernel and image of T, where $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ is the linear map whose matrix (relative to the standard basis) is

$$
\left[\begin{array}{ccc}
3 & 1 & -2 \\
1 & -1 & 0
\end{array}\right]
$$

(4) Let $S: \mathbb{P}_{2} \rightarrow \mathbb{P}_{3}$ be the map given by $S(p)=p-2 x p$. Show S is linear. Write the matrix of S relative to the bases $\left\{1, x, x^{2}\right\}$ and $\left\{1, x, x^{2}, x^{3}\right\}$. Find the kernel and the image of S.
(5) Suppose $T: \mathbb{P}_{2} \rightarrow \mathbb{P}_{2}$ is linear and satisfies

$$
T(1)=1+x, \quad T(1+x)=1+x+x^{2}, \quad T\left(1+x+x^{2}\right)=1
$$

(a) Write the matrix of T relative to the basis $\left\{1,1+x, 1+x+x^{2}\right\}$.
(b) Calculate the kernel and image of T.
(c) Find the matrix of T relative to the basis $\left\{1, x, x^{2}\right\}$. (You may leave your answer as a product of matrices and inverses.)
(d) Where S is the linear map from the previous problem, calculate the matrix of $S \circ T$ relative to the standard bases $\left\{1, x, x^{2}\right\}$ and $\left\{1, x, x^{2}, x^{3}\right\}$. (You may leave your answer as a product of matrices and inverses.)
(e) Is T an isomorphism? If so, find T^{-1}.
(6) Show the following are linear maps: (Insert your own favorite linear map).
(7) Let $B=\{(1,2,3),(2,-1,0),(3,1,-1)\}$ be a basis for \mathbb{R}^{3}. Find the B coordinates of $(9,8,3)$; i.e. find $[(9,8,3)]_{B}$.
(8) Suppose that $T: V \rightarrow W$ is a linear map, $\operatorname{dim} V=5$, and $\operatorname{dim} \operatorname{Ker} T=2$. Show there exists a 3-dimensional subspace $U \subseteq V$ such that $T(U)$ is a 3-dimensional subspace of W. (Hint: start with a basis for $\operatorname{Ker} T$ and form a basis for V.)

