Notes on Kernel/Image

0.1. Finding Kernel and Image of a matrix.

Let $A \in \mathbb{M}(m, n)$ be a matrix. The kernel of A (or nullspace)

$$
\operatorname{Ker} A=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid A \mathbf{x}=\mathbf{0}\right\}
$$

is just the solution set to the system of homogeneous equations associated to the matrix A. The Image (or range or column space) is

$$
\text { Image } A=\left\{A \mathbf{x} \mid \mathbf{x} \in \mathbb{R}^{n}\right\}=\left\{\mathbf{y} \in \mathbb{R}^{m} \mid \exists \mathbf{x} \text { satisfying } \mathbf{y}=A \mathbf{x}\right\}
$$

and it is easy to show this equals the span of the columns of A.
To find a basis for the kernel and image of a matrix A :
(1) Using row reduction, put A in reduced row echelon form (RREF).
(2) Once A is in RREF, write down the set of solutions to the linear system (as you did in Chapter 2). You will get a basis vector for each column with a free variable (however the basis vector is not the column vector!).
(3) Image A has a basis given by the columns of A which, after row reduction, contain a pivot.

You will always have $\operatorname{dim} \operatorname{Ker} A=$ the number of free variables, and $\operatorname{dim} \operatorname{Image} A=$ number of pivots.

0.2. Finding Kernel and Image of a linear map.

Ker $T=\{\mathbf{v} \in V \mid T(\mathbf{v})=\mathbf{0}\} \subseteq V, \quad$ Image $T=\{\mathbf{w} \in W \mid \mathbf{w}=T(\mathbf{v})$ for some $\mathbf{v} \in V\} \subseteq W$.
(1) If $\mu_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear map given by $\mu_{A}(\mathbf{x})=A \mathbf{x}$, then $\operatorname{Ker} \mu_{A}=\operatorname{Ker} A$, and Image $\mu_{A}=$ Image A. You are done.
(2) For a general linear map $T: V \rightarrow W$, choose a bases B, C of V, W. Determine the matrix $T_{C B}$, which represents the linear map relative to the bases B and C.
(3) Find a basis for kernel/image of the matrix $T_{C B}$.
(4) For each vector in the basis of $\operatorname{Ker} T_{C B} \subset \mathbb{R}^{n}$, map it to V by L_{B}. Here, $L_{B}\left(r_{1}, \ldots, r_{n}\right)=r_{1} \mathbf{v}_{1}+\cdots r_{n} \mathbf{v}_{n}$ where $B=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$.
(5) For each vector in the basis of Image $T_{C B} \subset \mathbb{R}^{m}$, map it to W by L_{C}.
(6) Note that $\operatorname{dim} \operatorname{Ker} T=\operatorname{dim} \operatorname{Ker} T_{C B}=\#$ free variables, and dim Image $T=\operatorname{dim}$ Image $T_{C B}=\#$ pivots.
Picture:

Remark 1. Equivalently, you can set up the equations

$$
T(\mathbf{v})=\mathbf{0}, \quad T(\mathbf{v})=\mathbf{w}
$$

and solve. Solutions \mathbf{v} to the first equation are elements of $\operatorname{Ker} T$. Vectors \mathbf{w}, such that there exists a solution to the second equation, are elements of Image T. In the process of solving, you will find yourself (maybe without realizing it) going through the process given above.

Theorem 1 (Rank-Nullity). If $T: V \rightarrow W$ is linear, and V is finite-dimensional, then

$$
\operatorname{dim} \operatorname{Ker} T+\operatorname{dim} \operatorname{Image} T=\operatorname{dim} V
$$

Corollary 1. If $T: V \rightarrow W$ is linear, and V is finite-dimensional, then
$\operatorname{dim} \operatorname{ker} T \geq \operatorname{dim} V-\operatorname{dim} W$,
dim Image $T \leq \operatorname{dim} V$.
If T is one-to-one, then $\operatorname{dim} V \leq \operatorname{dim} W$.
If T is onto, then $\operatorname{dim} V \geq \operatorname{dim} W$.

