Tutorial Worksheet, 02/15/2016

Instructions: Please work in groups of 3 or 4 students. Please work with students who will attend the same recitation section. You do not turn this worksheet in at the end of class; instead, attendance will be recorded so that you get credit for participating in this activity.

02/15: Numerical Approximation of the Slope of the Tangent Line.
Run the following R code.

```
test_vector = c(1, 0.5, 0.25,0.1, 0.01, 0.001, 0.0001)
a = 1
b = a + test_vector
(b^2 - a^2)/(b-a)
```

The above code computes the slopes of several secant lines to the graph of a function $F(x)$ using the points $(a, F(a))$ and $(b, F(b))$.

1. What is $F(x)$? What is a secant line?
2. Use the table to guess the slope of the tangent line to the graph of $F(x)$ through the point $(a, F(a))$.
3. Re-execute the code to determine the slop of the tangent line to the graph of $F(x)$ when $a=2$ and when $a=3$. Hint: Use the up arrow as a shortcut rather than re-typing each of the lines of code.
4. Modify the above code to compute the slope of the tangent line to the graph of $F(x)=x^{3}$ at the point $(a, F(a))$ when $a \in\{1,2,3\}$.
