Tutorial Worksheet, 02/23/2016

Instructions: Please work in groups of 3 or 4 students. Please work with students who will attend the same recitation section. You do not turn this worksheet in at the end of class; instead, attendance will be recorded so that you get credit for participating in this activity.

02/23: Properties of Limits and Derivatives

Review: Computation of Limits and Rates of Change.

1. Compute $\lim _{x \rightarrow-1} \frac{(2 x+1)^{2}-1}{x+1}$.
2. Suppose that $y=(2 x+1)^{2}$. Write a limit which expresses the rate of change of y with respect to x at the point $(-1,1)$. What is the value of this limit?
3. Suppose that $F(x)=5-2 x+x^{2}$ if $x \neq 0$ and that $F(x)=3$ if $x=0$. What is the limit of $F(x)$ as x approaches zero?
4. Suppose that $G(x)=x^{2}$ if $x>0$ and $G(x)=x+1$ if $x<0$. What is the limit of $G(x)$ as x approaches zero?

Review: The Definition of the Derivative. The derivative of the function $F(x)$ is the function $F^{\prime}(x)$ defined as follows:

$$
F^{\prime}(x)=\lim _{b \rightarrow x} \frac{F(b)-F(x)}{b-x}
$$

Exercise: Use the definition of the derivative to compute $F^{\prime}(x)$ where $F(x)=\sqrt{x}-x^{-1}$. The answer is $F^{\prime}(x)=\frac{1}{2 \sqrt{x}}+x^{-2}$.

Hint: Keep the terms which come from the square root function separate from those which come from the function x^{-1}. You can separate a fraction as follows:

$$
\frac{A+B}{C}=\frac{A}{C}+\frac{B}{C}
$$

effectively "unadding" the two fractions.
If you want to try an easier exercise first, compute $G^{\prime}(x)$ and $H^{\prime}(x)$ where $G(x)=\sqrt{x}$ and $H(x)=-x^{-1}$.

