Tutorial Worksheet, 01/25/2016

Instructions: Please work in groups of 3 or 4 students. Please work with students who will attend the same recitation section. You do turn this worksheet in at the end of class; instead, attendance will be recorded so that you get credit for participating in this activity.

Solutions to 01/20 Worksheet:

01/20: A Mathematical Model of Sunlight Depletion

The following "explore" exercises are from our textbook. Please work on these with the other members of your group.

Explore 1.3.1

a Suppose the light intensity at the surface is I_{0} and that at a depth of 10 meters it is half of this. What do you expect the light intensity to be at a depth of 20 meters?
b Sketch a proposed graph of light intensity versus depth.
Solution: The light intensity should be one fourth of I_{0} at a depth of 20 meters. A graph of light intensity versus depth will have the shape of a decaying exponential, e.g. the graph of the equation $y=A B^{t}$, where A and B are constants and $0<B<1$.

Explore 1.3.2

Assume that at the surface I_{0} is 400 watts per square meter. And assume that 10% of the light is absorbed in each layer of water that is 2 meters thick, i.e. 2 meters deep. What is the intensity of light at depths of $2,4,6, \ldots, 20$ meters? Plot this data and compare this graph to the one you drew in part (b) of Explore 1.3.1 above.

Solution: Let I_{d} be the intensity at depth d. Then

$$
I_{d+1}=(0.10) I_{d}
$$

In other words, at depth 2 , the intensity is $0.10 \times 400=40$. And at depth 4 , the intensity is $0.10 \times 40=4$. At depth six the intensity is $0.10 \times 4=0.4$, etc. The units are watts per square meter. The intensity of light at a depth of 20 meters is $(0.10)^{10} \times 400=4 \times 10^{-8}$. A plot of this data verifies that the intensity decays exponentially as depth increases.

Exercise: Use a complete sentence to describe the meaning of the following dynamic equation

$$
I_{d}-I_{d+1}=f I_{d}
$$

where I_{d} is the intensity of light at depth d and f is the fraction of light absorbed in a layer of water of some fixed thickness.

Solution: The intensity of light from one layer, I_{d}, to the next, I_{d+1} decreases by a fraction, f, of the intensity of light at the given layer, I_{d}.

Note: We know that the intensity is decreasing because the change, $I_{d+1}-I_{d}$ is equal to $-f I_{d}$, where $0<f<1$. So, the change is negative.

Exercise: Solve the dynamic equation in the previous exercise.
Solution: Below are the steps.

1. Given $I_{d}-I_{d+1}=f I_{d}$.
2. Re-write: $(1-f) I_{d}=I_{d+1}$
3. The above equation holds for all integers $d>0$. So, $I_{d}=(1-f) I_{d-1}=$ $(1-f)^{2} I_{d-2}$ and so forth.
4. We conclude that

$$
I_{d}=(1-f)^{d} I_{0}
$$

Follow-up Question: Solve Exercise 1.4 .7 on p.20. I have added some additional instructions.

Exercise 1.4.7. Light intensities, I_{1} and I_{2}, are measured at depths d in meters in two lakes on two different days and found to be approximately

$$
I_{1}=2 \cdot 2^{-0.1 d} \quad \text { and } \quad I_{2}=4 \cdot 2^{-0.2 d}
$$

a What is the half-life of I_{1} ? In other words, at what depth is the intensity equal to half of its initial intensity.
b What is the half-life of I_{2} ?
c Find a depth at which the two light intensities are the same. How would you solve this problem using algebra?
d Which of the two lakes is the muddiest?

Reminder: Exam I: Our first exam is next Wednesday, 02/03/2016. You should solve all of the exercises in sections $1.1-1.8$ to prepare for this exam.

01/25: A Quadratic Model of Mold Growth

Exercise: Solve the following Explore exercises. Please use the handout. (It's a photocopy of pp.22-23 from the text.)

Explore 1.5.1. Using the photographs, measure the areas of the mold for the days 2 and 6 and enter the values into the table in Figure 1.15. The grid lines are at 2 mm intervals. Check your additional data points with points on the graph.

Explore 1.5.2. Find real numbers A and B so that $y=A B^{t}$ approximates the mold growth data in Figure 1.15. You should choose two data points and insist that these satisfy the equation; then solve for A and B. Similarly, find a parabola $y=a t^{2}+b t+c$ that approximates the mold data. Draw graphs of the mold data, the exponential function, and the parabola on a single set of axes.

