
Homework for MTH 419H Honors Algebra II
Spring Semester 2016 Section 001

Homework due 01/15/2016: Ch. 8 # 1.1, 2.1, 2.2, 3.1, 3.2, 3.3

Homework due 01/22/2016: Ch. 8 # 3.4, 3.5, 4.1, 4.2, 4.3, 4.4

Homework due 01/29/2016: Ch. 8 # 4.5, 4.6, 4.7, 4.8 , 4.9, 4.10, 4.11,
4.12

Homework due 02/05/2016: Ch. 8 # 4.20, 4.21, 5.2, 5.3, 6.1, 6.2

Homework due 02/12/2016: Ch. 8 # 6.3, 6.4, 6.5, 6.6, 6.12, 6.13

Suggested problems: Ch. 9: # 3.2, 3.3, 3.4

Homework due 02/26/2016: Ch. 11 # 1.1, 1.3, 1.6, 1.8, 2.2 and The
Freshman’s Dream (see below).

The Freshman’s Dream: Prove that in the ring R = Z/nZ that
(a+ b)n = an + bn for each a, b ∈ R provided that n is a prime. Is the
dream true if n is not prime? What if n is a power of a prime?

Homework due 03/14/2016: Ch. 11 # 3.3 (a,b,c), 3.4, 3.8, 4.1, 4.2, 4.3
(a,b,c)

Homework due 03/18/2016: Ch. 11 # 5.1, 5.4, 5.5, 5.7, 7.1 (try to
prove this without assuming that 1 ∈ R), 7.3

Homework due 03/30/2016: Ch. 12 # 1.2, 1.3, 1.4, 2.1, 2.2, 2.3, 2.5,
2.6

Homework due 04/11/2016: Ch. 12 #2.7, 2.8, 3.1, 3.2, 3.3, 4.1, 4.2, 4.3

***EXAM II is on Thursday, 04/14/2016 at 5:30 p.m.***
(This is a change from the original date of 04/072016.)

Homework due 04/20/2016: Ch. 12 # 4.4, 4.9, 4.15, 4.16; Ch. 15 #
2.2, 3.1, 3.3, 3.6

Homework due 04/27/2016: Ch. 15 # 3.7, 3.10, 5.2, 5.3, 6.1, 7.4, 7.8,
10.1

Additional Problems (not collected): Ch. 16 #3.1, 3.2, 4.1, 6.1, 6.2,
7.4, 7.6
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Solutions

8.1.1 Show that a bilinear form 〈, 〉 on a real vector space V is a sum of a
symmetric form and a skew-symmetric form.

Solution:

〈v, w〉 =
1

2
(〈v, w〉+ 〈w, v〉) +

1

2
(〈v, w〉 − 〈w, v〉)

8.2.1 Prove that the maximal entries of a positive definite, symmetric, real
matrix are on the diagonal.

Solution: Let A be a positive definite symmetric, real matrix. Let
e1, . . . , en be the standard basis vectors. In general,
etiAej = etiAj = aij , where Aj is the j-th column of A, i.e.
Aj = (a1j , . . . , ajn)t. Since a 1× 1 matrix has only one entry, we may
assume that n ≥ 2. For each 1 ≤ i 6= j ≤ n,

0 < (ei − ej)tA(ei − ej) = aii + ajj − 2aij

since aij = aji. Therefore,

aij <
1

2
(aii + ajj) ≤ max{aii, ajj}.

For any finite sets of real numbers S ⊆ T ⊂ R, maxS ≤ maxT ;
therefore, aij is less than the maximum value of the diagonal entries.

If A was a positive definite, Hermitian matrix, then the diagonal
entries are real and aij + aji = aij + aij = 2<(aij), i.e. twice the real
part of aij . We conclude that the real part of a positive definite,
Hermitian matrix has the same property: the maximal entries occur
on the diagonal. This suggests the following question: if A = B + iC
is the decomposition of a positive definite, Hermitian matrix into its
real and imaginary parts, is B symmetric and positive definite?
What about C? See exercise 3.2.

8.2.2 Let A and A′ be symmetric matrices related by A′ = P tAP for some
invertible matrix P . Are the ranks of A and A′ equal?

Solution: Yes. As a linear map P tAP : Rn → Rn. Since P is
invertible, it is an isomorphism. Since P t is also invertible (with
inverse equal to the transpose of P−1), it too is an isomorphism. The
rank of a linear map is the dimension of its image. It follows that the
rank of P tAP is the rank of A.
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8.3.1 Is a complex n× n matrix A such that X∗AX is real for all X
Hermitian?

Solution: Yes. As in exercise 2.1, we choose values of X using
standard basis vectors. Since etiAei = aii ∈ R, we have, in particular,
that aii is real. Since

(ei + ej)
tA(ei + ej) = aii + aij + aji + ajj ∈ R

and aii + ajj is real, we have that aij + aji is real. In particular,
=(aij +aij) = 0, i.e. the imaginary part of aij +aji is zero. Therefore,

=(aij) = −=(aji) = =(aji).

Since

(ei + i ej)
tA(ei + i ej) = aii + i aij − i aji + ajj ∈ R

and aii + ajj is real, we have that i(aij − aji) is real. Therefore,
<(aij − aji) = 0. And so,

<(aij) = <(aji) = <(aji).

Since both the real and imaginary parts are equal, aij = aji. Hence
A = A∗.

8.3.2 Let 〈, 〉 be a positive definite Hermitian form on a complex vector
space V . Restrict scalars to R so that V is a real vector space. Prove
that the real part {, } and the imaginary part [, ] of 〈, 〉 define a
symmetric, positive definite form and a skew-symmetric form,
respectively, on V as a real vector space.

Solution: The restriction of scalars is defined formally as follows. Let
φ : R→ C be the inclusion φ(c) = c+ i 0 ∈ C. The set V is given the
structure of a real vector space using the addition defined by its
complex vector space structure and by using the following rule to
multiply a vector v ∈ V by a scalar c ∈ R: c.v = φ(c)v.

This above sounds more complicated than it needs to be; but it’s
challenging to say precisely what one means. In particular, one can
ask if V becomes an n-dimensional or a 2n-dimensional real vector
space given that V is an n-dimensional complex vector space. In fact,
V is a 2n-dimensional real vector space. Here’s a sketch: let V = C,
a one dimensional complex vector space. Let a, b ∈ R. The linear
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combination a.1 + b.i = φ(a)1 + φ(b)i is zero if and only if φ(a) = 0
and φ(b) = 0. Therefore, 1 and i are linearly independent.

Let’s now solve the exercise. Let u, v, w ∈ V and a, b ∈ R. If
z = x+ y i is a complex number with real part x and imaginary part
y, then we write <z = x and =z = y to express this.

By definition, {u, v} = <〈u, v〉 and [u, v] = =〈u, v〉. We first prove
that {, } is a bilinear form on V with scalars restricted to R:

{u+v, w} = <〈u+v, w〉 = <(〈u,w〉+〈v, w〉) = <〈u,w〉+<〈v, w〉 = {u,w}+{v, w}

and

{a.v, w} = <〈φ(a)v, w〉 = <(φ(a)〈v, w〉) = <(φ(a)〈v, w〉) = φ(a){v, w} = a.{v, w}.

Verifying linearity in the second coordinate is similar, except one
does not need to worry about the conjugation of the scalar. Verifying
that [, ] is bilinear is similar, but nontrivial. I omit the proof, but you
should try to write out an argument if you did not even address
whether or not these forms are bilinear in your solution to this
problem.

To prove it is symmetric, we compute as follows:

{v, w} = <〈v, w〉 = <〈w, v〉 = <〈w, v〉 = {w, v}.

Finally, as
{v, v} = <〈v, v〉 = 〈v, v〉 ≥ 0,

with equality if and only if v = 0, we have that {, } is positive
definite.

As,
[v, w] = =〈v, w〉 = =〈w, v〉 = −=〈w, v〉 = −[w, v],

we have that [, ] is skew-symmetric.

8.3.3 The set of n× n Hermitian matrices forms a real vector space. Find
a basis for this space.

Solution: First, let’s prove that this is a vector space. If A and B are
Hermitian and c is a real number, then (cA+B)∗ = cA∗ +B∗, which
proves that the set is closed under addition and scalar multiplication.
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Since this set is a subset of the real vector space of all complex n× n
matrices, these are the only two axioms of a vector space that we
need to check.

To find a basis, let eij denote the n× n matrix with a one in the i, j
entry and zeroes in every other entry. Let

• D = {eii | 1 ≤ i ≤ n} (Diagonal),

• O = {eij + eji | 1 ≤ i < j ≤ n} (Off-diagonal), and

• IO = {i · eij − i · eji | 1 ≤ i < j ≤ n} (Imaginary Off-diagonal).

The claim is that D ∪O ∪ IO is a basis. It is easy to verify that each
element of this set is Hermitian.

Suppose that A = (aij) is a Hermitian matrix. Let xij = <aij and
yij = =aij so that aij = xij + i · yij . Then, A∗ = A implies that
xij = xji, yij = −yji and yii = 0 for all 1 ≤ i, j ≤ n. We have that

A =
∑

1≤i,j≤n
aijeij =

∑
1≤i,j≤n

xijeij
∑

1≤i,j≤n
yij(i · eij)

=
∑
eii∈D

xiieii +
∑

eij+eji∈O
xij(eij + eji) +

∑
i·eij−i·eji∈IO

yij(i · eij − i · eji)

Therefore, D ∪O ∪ IO spans this vector space. To see these vectors
are linearly independent, suppose we have a linear combination which
sums to the zero matrix. Then aij = 0 for all i and j. This implies
that the real and imaginary parts of aij are both zero. And therefore,
all of the coefficients in the above linear combination are zero.

8.3.4 Prove that if A ∈ GLn(C), then A∗A is Hermitian and positive
definite.

Solution: Since (A∗A)∗ = A∗(A∗)∗ = A∗A, we have that A∗A is
Hermitian. Let X be a non-zero column vector. Let Y = AX. Since
A is invertible, Y is nonzero. A direct computation shows that

X∗A∗AX = (AX)∗AX = Y ∗Y =

n∑
i=1

|yi|2 > 0.

Therefore, A∗A is positive definite.
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8.3.5 Let A and B be positive definite Hermitian matrices. Decide which
of the following are necessarily positive definite Hermitian:

A2, A−1, AB, A+B.

Solution: We first decide whether each of these matrices is
Hermitian. (This approach to the problem is less direct, but we will
learn more information.) Assume that A and B are Hermitian (but
not necessarily positive definite).

(a) We have that (A2)∗ = (AA)∗ = A∗A∗ = AA = A2 is Hermitian.

(b) I = I∗ = (A−1A)∗ = A∗(A−1)∗ = A(A−1)∗ implies that (A−1) is
a (right) inverse of A. Therefore, (A−1)∗ = A−1 is Hermitian.

(c) We see that AB is Hermitian if and only if A and B commute:
AB = (AB)∗ = B∗A∗ = BA. To find a counterexample the
question at hand, let P = ((1, 0)t, (1, 1)t) and
Q = ((2, 0)t, (0, 1)t). Since P and Q have nonzero determinants,
we can use the previous exercise (Ch. 8, 3.4) to conclude that
A = P ∗P = ((1, 1)t, (1, 2)t) and B = Q∗Q = ((4, 0)t, (0, 2)t) are
positive definite Hermitian matrices. A direct computation
shows that AB 6= BA.

(d) We have that (A+B)∗ = A∗ +B∗ = A+B is Hermitian.

Now, we assume that A and B are Hermitian and positive definite.

(a) Using exercise 3.4, we see that A2 = AA = A∗A is Hermitian
and positive definite.

(b) As A is positive definite, A is invertible (since AX 6= 0 for all
X 6= 0). Suppose that X 6= 0. Let Y = A−1X, so that X = AY .
Since Y 6= 0 and A = A∗, we have that

X∗A−1X = (AY )∗A−1(AY ) = Y ∗A∗Y = Y ∗AY > 0.

Therefore, A−1 is also positive definite (and Hermitian by the
analysis above).

(c) As above, AB is not necessarily Hermitian.

(d) Since X∗(A+B)X = X∗AX +X∗BX > 0 if X 6= 0, we see that
A+B is positive definite (and Hermitian by the analysis above).
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8.4.1 What is the inverse of a matrix whose columns are orthogonal?

Solution: Suppose that P = (v1, . . . , vn) is a matrix whose column
vectors v1, . . . , vn are orthogonal. Consider P tP . Since vtivj = 0 if
i 6= j and vtivi = ‖vi‖2, the length squared, we see that P tP is
diagonal with diagonal entries the squares of the lengths of the
vectors. Let Λ the diagonal matrix with diagonal entries
λii = ‖vi‖−2. (Note: if ‖vi‖ = 0 for some i, then vi = 0 and so P is
not invertible; so, we may assume that these lengths are nonzero.) It
follows that ΛP tP = I. Therefore, P−1 = ΛP t.

8.4.2 Let 〈, 〉 be a bilinear form on a real vector space V , and let v ∈ V
such that 〈v, v〉 6= 0. What is the formula for the orthogonal
projection π : V →W = v⊥?

Solution: We can decompose an arbitrary vector u ∈ V as w + cv for
some scalar c since V = W ⊕W⊥ by Theorem 8.4.5. (Note: Theorem
8.4.5 applies since 〈v, v〉 6= 0 and so the form is non-degenerate on
the span of v.) The projection is given by π(u) = w = u− cv. Since

〈u, v〉 = 〈w, v〉+ c〈v, v〉 = 0 + c〈v, v〉,

we see that c = 〈u, v〉/〈v, v〉. Therefore,

π(u) = u− 〈u, v〉
〈v, v〉

v.

8.4.3 Let A be a real m× n matrix. Prove that B = AtA is positive
semidefinite, i.e. XtBX ≥ 0 for all X. And prove that A and B have
the same rank.

Solution: XtBX = XtAtAX = (AX)t(AX) ≥ 0 because Y tY ≥ 0 for
all Y ∈ Rm with equality if and only if Y = 0. Thus, XtBX = 0
precisely when AX = 0, i.e. X is in the null space (also called the
kernel) of A. In particular, if X is in the null space of B, then
XtBX = 0 and so AX = 0 by the above. Conversely if AX = 0, then
BX = AtAX = 0. Therefore, the nullity (and, even stronger, the null
space) of A and B are the same. Since for both matrices, the nullity
plus the rank is equal to n, both matrices have the same rank.

8.4.4 Make a sketch showing the positions of some orthogonal vectors in
R2 when the form is 〈X,Y 〉 = x1y1 − x2y2.
Solution:
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In the figure above, the black lines are the x and y axes. These are
orthogonal to each other. The green lines are the lines y = x and
y = −x; each of these is orthogonal to itself. The blue lines are
orthogonal to one another; these have equations y = −2x and
y = −x/2. Finally, the red lines are orthogonal to each other; they
have equations y = 2x and y = x/2.

8.4.5 Find an orthogonal basis for the forms on R having matrices A and
B as shown below.

A =

(
1 1
1 1

)
B =

1 0 1
0 2 1
1 1 1


Solution: For A which define 〈, 〉, let v1 = [1, 0]t. We have that
〈v1, v1〉 = 1. Let w2 = [0, 1]t. Let

v2 = w2 −
〈v1, w2〉
〈v1, v1〉

v1 = [0, 1]t − [1, 0]t = [−1, 1].

By design, v1 and v2 are orthogonal. They are linearly independent
(e.g. compute the determinant of [v1, v2]) and therefore form a basis.

For B which defines 〈, 〉, let v1 = [1, 0, 0]t. Again, we have that
〈v1, v1〉 = 1. Let w2 = [0, 1, 0]t. Let

v2 = w2 −
〈v1, w2〉
〈v1, v1〉

v1 = [0, 1, 0]t − [0, 0, 0]t = [0, 1, 0]t.
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Again, by design, v1 and v2 are orthogonal. We repeat this process.
We have that 〈v2, v2〉 = 2. Let w3 = [0, 0, 1]t. Let

v3 = w3−
〈v1, w3〉
〈v1, v1〉

v1−
〈v2, w3〉
〈v2, v2〉

v2 = [0, 0, 1]t−[1, 0, 0]t−[0, 1/2, 0]t = [−1,−1/2, 1]t.

By design, {v1, v2, v3} is orthogonal and these form a basis (e.g.
compute the determinant of [v1, v2, v3]).

8.4.6 Extend the vector X1 = 1
2(1,−1, 1, 1)t to an orthonormal basis of R4.

8.4.7 Apply the Gram-Schmidt procedure to the basis (1, 1, 0)t, (1, 0, 1)t,
(0, 1, 1)t of R3.

8.4.8 Let A = (aij) be the 2× 2 matrix with a11 = a22 = 2 and
a12 = a21 = 1. Find an orthonormal basis for R2 with respect to the
form XtAY .

8.4.9 Find an orthonormal basis for the vector space P of all real
polynomials of degree at most 2 with the symmetric form defined by

〈f, g〉 =

∫ 1

−1
f(x)g(x) dx.

8.4.10 Let V be the vector space of real n× n matrices. Prove that
〈A,B〉 = trace(AtB) defines a positive definite bilinear form on V ,
and find an orthonormal basis for this form.

Solution: We first show the form is bilinear. Let A,B,C ∈ V and
α ∈ R:

〈A+B,C〉 = trace((A+B)tC) = trace(AtC +BtC) =

trace(AtC) + trace(BtC) = 〈A,C〉+ 〈B,C〉

and
〈αA,B〉 = trace((αA)tB) = α trace(AtB) = α〈A,B〉.

To see it is positive definite, we analyze matrix multiplication: if
C = AB and A = (aij), B = (bij), and C = (cij), then

cij =
n∑
k=1

aikbkj .
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It follows, that if C = AtB, then

cij =
n∑
k=1

akibkj .

Thus, the trace of C = AtA is

n∑
i=1

n∑
k=1

akiaki,

which is a sum of squares of real numbers in which every entry of the
matrix A = (aij) appears exactly once. Therefore, the form is
positive definite.

An orthonormal basis is {eij}1≤i,j≤n, where eij is the matrix whose
only nonzero entry has a value of 1 and occurs in the (i, j) position.
Using the above formula, we see that

trace(etijeij) = 1

and
trace(etijekl) = 0

if (i, j) 6= (k, l) since each term in the sum appearing in the formula
is a product of two entries having exactly the same positions.

8.4.11 Let W1 and W2 be subspaces of a vector space V with a symmetric
bilinear form. Prove the following properties.

(a) W1 +W2)
⊥ = W⊥1 ∩W⊥2

(b) W ⊂W⊥⊥

(c) If W1 ⊂W2, then W⊥2 ⊂W⊥1 .

8.4.12 Let V = R2×2.

(a) Determine the matrix of the bilinear form 〈A,B〉 = tr(AB) with
respect to the standard basis eij .

Solution: Let 〈A,B〉t = trace(At, B), i.e. the form appearing in
the previous exercise. Using the results of that exercise, we have
that

〈eij , ekl〉 = 〈etij , ekl〉t = 〈eji, ekl〉t,

which is 1 if (j, i) = (k, l) and 0 otherwise.
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It follows that the matrix of the form on V = R2×2 is
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 ,

where the ordered basis is (e11, e12, e21, e22).

(b) Determine the signature of the form above.

Solution: Consider the ordered basis
(e11, e22, (e12 + e21)/2, (e12 − e21)/2. It is straightforward to
check that this is an orthogonal basis and the matrix with
respect to this ordered basis is, in block form,(

I3 0
0 −I1

)
.

Therefore, the signature is (3, 1).

(c) Find an orthogonal basis for this form.

Solution: I did this in part (b).

(d) Determine the signature of the form trace(AB) on Rn×n.

Solution: The set

{e11, . . . , enn} ∪ {pij , nij}1≤i<j≤n

is an orthogonal basis, where pij = (eij + eji)/2 and
nij = (eij − eji)/2. As in the 2× 2 case, the matrices {eii} and
the matrices {pij} pair with themselves to a value of 1. The
matrices {nij} pair with themselves to a value of -1. The
number of negative ones is

(
n
2

)
. Therefore, the signature is(

n2 −
(
n

2

)
,

(
n

2

))
=

(
n2 + n

2
,
n2 − n

2

)
.

Verification of the above claims is straightforward using the
formula for the trace of the product of two matrices.

8.4.20 Prove Sylvester’s Criterion for positive definiteness: a real symmetric
n× n matrix A = (aij) is positive definite if and only if for each
k = 1, . . . , n the upper left k × k minor, Ak = (aij)1≤i,j≤k, has
positive determinant.
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Solution: If A is 1× 1, then vtAv = a11v
2 > 0 if and only if a11 > 0

and v 6= 0. So, the criterion holds for n = 1. Let n ≥ 2. Assume the
criterion holds for 1, . . . , n− 1, and let A be an n× n symmetric real
matrix.

If A is positive definite, then we can apply Theorem 8.2.5 to deduce
that A = P tP for some invertible matrix P . Then
detA = (detP )2 > 0. Since An−1 is positive definite (as can be seen
by restricting the form to the subspace W ⊂ Rn of vectors whose n-th
component is zero), we can apply the inductive hypothesis to deduce
that detAk > 0 for k = 1, . . . , n− 1. This proves one direction.

Suppose that detAk > 0 for k = 1, . . . , n. By induction, An−1 defines
a positive definite form on the subspace W described above.
Therefore, An−1 = QtQ for some invertible (n− 1)× (n− 1) matrix.
Another way of saying this is that there exists an orthonormal basis
{w1, . . . , wn−1} of W with change of basis matrix Q so that
An−1 = QtIQ. Extend this basis to an orthogonal basis of Rn in the
usual way: let u be in the complement of W and let v = u− π(u),
where π is the orthogonal projection to W . Such a projection exists
because the form defined by A is non-degenerate since detA 6= 0. In
this way, we obtain an orthogonal basis {w1, . . . , wn−1, v}. Thus,
there is a change of basis matrix P such that A = P tDP , where D is
diagonal and has (n− 1) ones on the diagonal and, after possibly
rescaling v, dnn ∈ {−1, 0, 1}. Since detD = (detA)(detP )2 > 0, we
must have dnn = 1. Therefore, A = P tP , and so by Theorem 8.2.5, A
is positive definite.

8.4.21 Prove Sylvester’s Law: The signature of symmetric form on a real
vector space or of a Hermitian form on a complex vector space does
not depend on the choice of orthogonal basis.

Hint: Begin by showing that if W1 and W2 are subspaces of V and if
the form is positive definite on W1 and negative semi-definite on W2,
then W1 and W2 are independent, i.e. W1 +W2 is a direct sum.

Solution: Suppose that B = (v1, . . . , vd) and B′ = (v′1, . . . v
′
d) are two

ordered orthogonal bases for a real/complex vector space V equipped
with a symmetric/Hermitian form 〈 , 〉. Suppose that the bases are
ordered so that the matrices M and M ′ of the form have positive
entries, followed by negative entries, followed by zero entries along
the diagonal. Let (p, n, z) and (p′, n′, z′) be the signatures of these
matrices. Since these matrices are in reduced row echelon form, we
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can see that the ranks are equal to d− z and d− z′. As we have seen
previously, the ranks of M and M ′ are equal since there is an
invertible d× d matrix S such that S∗MS = M ′. Therefore, z = z′.
We will show that p = p′ and, hence, that n = n′. Suppose to the
contrary that p > p′. Then n < n′. Let P be the subspace spanned
by {v1, . . . , vp}, so that 〈 , 〉 is positive definite on P . Let N ′ be the
subspace spanned by {v′p′+1, . . . , v

′
n′}, so that 〈 , 〉 is negative definite

on N ′. Let Z and Z ′ be the subspaces spanned by the last z = z′

vectors of the bases B and B′, respectively. If there were a vector v
in Z − Z ′, then the span of Z ′ ∪ {v} would be a vector space on
which the form was zero, contradicting the fact that the dimension of
such a subspace is at most d− z = d− z′. Therefore, Z = Z ′.
Consider W = (P + Z) ∩ (N ′ + Z ′). This is a vector space of
dimension at least z + 1. If w ∈W − Z, then w ∈ P ∩N ′. Since
〈w,w〉 is both positive definite and negative definite on P ∩N ′, we
must have w = 0. This implies that the dimension of W is z, which is
a contradiction. Therefore, p = p′ and z′ = z′.

Note: The proof is simpler if we assume there are no zeroes on the
diagonal, i.e. the nullspace is zero. The proof can be somewhat
simplified by using the notion of a quotient vector space. The vector
space V/Z = V/Z ′ is the vector space of cosets of Z = Z ′. The form
descends to V/Z because it vanishes identically on Z. And on V/Z,
the nullspace of the form is zero.

8.5.2 Let W be a subspace of a Euclidean space V . Prove that W = W⊥⊥.

Solution: If w ∈W and f ∈W⊥, then 〈w, f〉 = 0 and so w is
orthogaonal to every such f . This proves that W ⊂W⊥⊥. Since V is
Euclidean, V = W ⊕W⊥ and V = W⊥ ⊕W⊥⊥. It follows that W
and W⊥⊥ have the same dimension and therefore are equal. Note:
We used the assumption that V is finite dimensional.

It is trickier to make this work for an infinite dimensional vector
space.

8.5.3 Let w ∈ Rn be a vector of length 1, and let U denote the orthogonal
space w⊥. The reflection rw about U is defined by rw(v) = −cw + u,
where v = cw + u is the unique way to write v ∈ Rw ⊕ U , where
c ∈ R and u ∈ U .

(a) Prove that P = I − 2wwt is orthogonal

Solution: Check that P t = P and P tP = I − 4wwt + 4wwt = I.
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(b) Prove that multiplication by P is a reflection about U .

Solution: Let v ∈ Rn. Write v = cw + u as above. Then
wtv = wt(cw) = cwtw = c since w has length 1 and wtu = 0
since U = w⊥. Computing, we have that

Pv = v − 2wwtv = v − 2wc = −cw + u = rw(v).

(c) Let u, v be vectors of equal length in Rn. Determine a vector w
such that Pu = v.

Solution: A picture helps. Let w = u− v, normalized to be
length 1. One can verify algebraically that this works. But it is
obvious that this works from a geometric perspective.

8.6.1 Let T be a linear operator on a Hermitian space V , and let T ∗ be the
adjoint operator. Prove that T is Hermitian if and only if
〈Tv,w〉 = 〈v, Tw〉 for all v, w ∈ V . And prove that T is unitary if
and only if 〈Tv, Tw〉 = 〈v, w〉 for all v, w ∈ V .

Solution: Let A be the matrix of T with respect to an orthonormal
basis. By definition, T is Hermitian if and only if A is Hermitian, i.e.
A∗ = A. The condition 〈Tv,w〉 = 〈v, Tw〉 holds if and only if
(Av)∗w = v∗A∗w = v∗Aw. This condition holds for all v, w ∈ V if
and only if A∗ = A by the usual argument: choose standard basis
vectors v = ei and w = ej to deduce equality of the (i, j) entry of
both A∗ and A.

Similarly, by definition, T is unitary if and only if A is unitary, i.e.
U∗U = I. The condition 〈Tv, Tw〉 = 〈v, w〉 holds if and only if
(Av)∗Aw = v∗(A∗A)w = v∗w. As above, the usual argument shows
that this holds if and only if A∗A = I.

8.6.2 Let T be a symmetric operator on a Euclidean space. Using
Proposition 8.6.9, i.e. T has the property that

〈Tv,w〉 = 〈v, T ∗w〉 = 〈v, Tw〉,

prove that if v is a vector such that T 2v = 0, then Tv = 0.

Solution: If T 2v = 0, then 〈T 2v, v〉 = 0. Therefore,
〈Tv, T ∗v〉 = 〈Tv, Tv〉 = 0. But the form is definite; hence, Tv = 0.

The result above generalizes as follows: if T 2kv = 0 for some k ≥ 1,
then Tv = 0. As above, 〈T 2k−1

v, T 2k−1
v〉 = 0. Therefore, T 2k−1

v = 0.
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By induction, on k (where the base case of k = 1 is above) Tv = 0.
Moreover, if Tmv = 0 for some m ≥ 1, then T 2mv = 0; and so, by
what was just proved, Tv = 0.

8.6.3 What does the Spectral Theorem tell us about a real 3× 3 matrix
that is both symmetric and orthogonal?

Solution: If A is symmetric and orthogonal, then At = A = A−1.
Therefore, A2 = I. The Spectral Theorem for symmetric operators
implies that there is an orthogonal matrix P such that P tAP = Λ is
diagonal. Squaring this and using P t = P−1, we find that
Λ2 = P−1P = I. Therefore, the diagonal entries of Λ are square roots
of 1. So, the only eigenvalues of A are 1 and −1. Let’s analyze these
possibilities when A is a 3× 3 matrix. If there are three 1’s, then A
is conjugate (by P ) to I and hence is I. If there are two 1’s and one
−1, then A is conjugate to the reflection of R3 in the xy-plane.
Therefore, A, itself, is a reflection in a 2-dimensional subspace,
namely the image of the xy-plane under P−1 (provided the 1’s along
the diagonal of Λ appear in the first two places). If there is one 1 and
two −1’s, then A is conjugate to the 180 degree rotation of the
xy-plane with the z-axis as its axis of rotation. Therefore, A itself, is
a 180 degree rotation in a 2-dimensional subspace. Finally, if there
are three −1’s, then A is conjugate to −I and hence is equal to −I.

8.6.4 What can be said about a matrix A such that A∗A is diagonal?

Solution: Let A = (v1, . . . , vn), where v1, . . . , vn ∈ Cn×1 are the
columns of A viewed as column vectors. To say that A∗A = Λ is
diagonal means that {v1, . . . , vn} are orthogonal vectors in Cn with
respect to the standard positive definite Hermitian form. In
particular, Λ has real entries, each being positive unless the
corresponding vector vi is zero.

8.6.5 Prove that if A is a real skew-symmetric matrix, then i A is a
Hermitian matrix. What does the Spectral Theorem tell us about a
real skew-symmetric matrix?

Solution: We have that (iA)∗ = −iA∗ = −iAt because A has real
entries. Since A is skew-symmetric, −iAt = iA. Therefore,
(iA)∗ = iA, i.e. iA is Hermitian.

The Spectral Theorem says there is a unitary matrix U such that
U∗(iA)U = Λ is diagonal and has real entries. Therefore,
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U∗AU = −iΛ has pure imaginary entries. Therefore, the eigenvalues
of a skew-symmetric matrix are pure imaginary numbers.

8.6.6 Prove that an invertible matrix A is normal if and only if A∗A−1 is
unitary.

Solution: If A is normal and invertible, then A∗A = AA∗ implies that

(A∗A−1)∗A∗A−1 = (A∗)−1AA∗A−1 = I,

and so A∗A−1 is unitary. Conversely, if

(A∗)−1AA∗A−1 = (A∗A−1)∗A∗A−1 = I,

then multiplying on the left and right by A∗ and A, respectively, we
have that AA∗ = A∗A so that A is normal.

8.6.12 Find a unitary matrix P so that P ∗AP is diagonal when

A =

(
1 i
−i 1

)
.

Solution: To diagonalize the matrix, we look for a basis of
eigenvectors. To make sure that P is unitary, we need to normalize
the eigenvectors to have length one. That the eigenvectors will be
orthogonal follows from the Spectral Theorem: A is Hermitian and
so is diagonalizable.

One finds that the eigenvalues are λ = 0, 2. When λ = 0, the vector
v1 = [1/

√
2, i/
√

2]t is a unit vector in the kernel of λI −A = −A.
When λ = 2, the vector v2 = [−1/

√
2, i/
√

2]t is in the kernel of
λI −A. Let P = [v1, v2], i.e.

P =

(
1/
√

2 −1/
√

2

i/
√

2 i/
√

2

)
Then

P ∗AP =

(
1/
√

2 −i/
√

2

−1/
√

2 −i/
√

2

)(
0 −2/

√
2

0 2i/
√

2

)
=

(
0 0
0 2

)

8.6.13 Find a real orthogonal matrix P so that P tAP is diagonal when A is
one of the matrices below.
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(a)

A =

(
1 2
2 1

)
Solution: As in the previous problem, we find a basis of
eigenvectors and normalize them to have length 1. By the
spectral theorem for symmetric operators, the eigenspaces will
be orthogonal.

One finds that the eigenvalues are λ = −1, 3. The unit vectors
v1 = [1/

√
2, 1/
√

2]t and v2 = [1/
√

2,−1/
√

2]t eigenvectors,
respectively. Let P = [v1, v2]. Then

P tAP =

(
1/
√

2 1/
√

2

1/
√

2 −1/
√

2

)(
3/
√

2 −1/
√

2

3/
√

2 1/
√

2

)
=

(
3 0
0 −1

)
(b)

A =

1 1 1
1 1 1
1 1 1


The characteristic polynomial factors as λ2(λ− 3), so λ = 0, 3
are eigenvalues, with λ = 0 having a 2 dimensional eigenspace.
To find an orthogonal basis of the 2-dimensional eigenspace,
choose one eigenvector and then solve a linear equation to find
the other. The following vectors work: w1 = [1,−1, 0]t,
w2 = [−1,−1, 2]t. The vector w3 = [1, 1, 1]t spans the other
eigenspace. We normalize these vectors to length 1 to obtain
v1, v2, v3 and let P = [v1, v2, v3]. The verification that this works
is similar to the above. Here is the matrix P :

P =

 1/
√

2 −1/
√

6 1/
√

3

−1/
√

2 −1/
√

6 1/
√

3

0 2/
√

6 1/
√

3


(c)

A =

1 0 1
0 1 0
1 0 0


The characteristic polynomial is λ3 − 2λ2 + 1. You can see that
λ = 1 is a root. And the polynomial factors as
(λ− 1)(λ2 − λ− 1). The other two eigenvalues are
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a = (1 +
√

5)/2 and b = (1−
√

5)/2. We find that v1 = [0, 1, 0]t

is a unit eigenvalue corresponding to λ = 1. And we find that
w2 = [a, 0, 1]t and w3 = [b, 0, 1]t are eigenvectors corresponding
to λ = a, b, respectively. After normalizing w2 and w3 to v2 and
v3 and setting P = [v1, v2, v3] we have that

P =

0 a/
√
a2 + 1 b/

√
b2 + 1

1 0 0

0 1/
√
a2 + 1 1/

√
b2 + 1


9.3.3 Prove that every great circle in SU2 is a coset of one of the

longitudes.

Solution: Every great circle C is the intersection of a 2 dimensional
subspace W ⊂ R4 with S3 = {x ∈ R4 | ‖x‖ = 1}. Let w1, w2 be an
orthonormal basis of W . We may choose w2 to lie on the equator
since the equator is the intersection of S3 with a three dimensional
subspace. So w2 = a i + b j + ck. Let w1 = x0 I + x1 i + x2 j + x3 k.
We are given that w1 and w2 are orthogonal; therefore,
ax1 + bx2 + cx3 = 0. To see that C is a coset of a longitude, we
multiply on the left by w−11 = w∗1 = x0 I − x1, i− x2 j− x3k. Each
element of C has the form cos θw1 + sin θw2. Each element of w∗1C
has the form cos θI + sin θw∗1w2. But

w∗1w2 = (ax1 + bx2 + cx3) + e = 0 + e,

for some e in the equator. Therefore, w∗1C has the form of a
longitude. (Viewing the multiplication of the matrices as
multiplication of unit quaternions greatly simplifies the above
computation.)

9.3.4 Determine the centralizer of j in SU2.

Solution: The matrix j has rows (0, 1) and (−1, 0). Given an
arbitrary matrix A in SU2 with rows (a, b) and (−b, a), the condition
that A commutes with j implies (after a straight-forward
computation) that a = a and b = b. Therefore, a and b must be real.
Therefore, the centralizer of j is the longitude containing j. For, these
matrices have the form cos θI + sin θj, which corresponds to the first
row of A being equal to (cos θ, sin θ) (with no imaginary components).

Freshman’s Dream: Prove that in the ring R = Z/nZ that
(a+ b)n = an + bn for each a, b ∈ R provided that n is a prime. Is the
dream true if n is not prime? What if n is a power of a prime?
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Solution: The usual proof by induction of the binomial theorem goes
through for commutative rings. Let R be a commutative ring. Let
a, b ∈ R and let n be a positive integer. Let C(n, k) denote the
binomial coefficient C(n, k) = n(n− 1) · · · (n− k + 1)/k!, which is
defined for 0 ≤ k ≤ n. The binomial theorem says that

(a+ b)n =

n∑
k=0

C(n, k)an−kbk.

Clearly (a+ b)1 = a+ b and C(n, 0) = C(0, n) = 1, and so the
statement is true for n = 1. Assuming the statement holds for n− 1,
we expand

(a+ b)n = (a+ b)(a+ b)n−1 = (a+ b)

n−1∑
k=0

C(n− k, k)an−kbk

using the distributive law and grouping like terms. Applying the
identity C(m, j − 1) + C(m, j) = C(m+ 1, j), where 1 ≤ j ≤ m, and
the “boundary conditions” C(n, 0) = C(0, n) = 1 completes the
proof.

Now suppose that R = Z/nZ and that n is prime. Then
C(n, k) = n(n− 1) . . . n− k + 1/k!, where 1 ≤ k ≤ n− 1 is a multiple
of n since n is not divisible by any of the factors of k! in the
denominator. Therefore, C(n, k) is congruent to 0 modulo n. And, so
the only terms which are non-zero in the expansion of (a+ b)n are
the first and last terms k = 0, n, i.e. (a+ b)n = an + bn.

The same argument applies if n is a power of a prime since not every
factor of the prime in the numerator is canceled with some factor in
the denominator. But this only proves that (a+ b)n is congruent to
an + bn modulo p, where n = pm, a power of a prime p. This is
different than being congruent to an + bn modulo n. And, indeed, the
“dream” is no longer true. Let n = 4. Then (1 + 1)4 is congruent to 0
modulo 4. But 14 + 14 = 2 is not congruent to 0 modulo 4.

If n is not a power of a prime, then the statement is false. For
example, in Z/6Z, (2 + 1)6 is congruent to 3 modulo 6. But 26 + 16 is
congruent to 5 modulo 6.

11.1.1 Prove that 7 + 3
√

2 and
√

3 +
√
−5 are algebraic numbers.

Solution: Let α = 7 + 3
√

2. Then (α− 7)3 = 2, so that α is a root of
(x− 7)3 − 2 ∈ Z[x].
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Let β =
√

3 +
√
−5 =

√
3 + i

√
5. Then

β2 = (3− 5) + 2i
√

15 = −2 + 2i
√

15. Therefore, (β2 + 2)2 = −60.
Hence, β is a root of (x2 + 2)2 + 60 ∈ Z[x].

11.1.3 Let R = Q[α, β] denote the smallest subring of C containing Q and
α =
√

2 and β =
√

3. Let γ = α+ β. Is R = Q[γ]? Is
S = Z[α, β] = Z[γ]?

Solution: We have that γ3 = 11
√

2 + 9
√

3. Thus, 2
√

2 = γ3 − 9γ.
Since 1/2 ∈ Q, it follows that R ⊂ Q[γ]; the opposite inclusion is
obvious.

The above argument does not work over the integers. But, perhaps
we need to consider higher powers of γ:

γ2 5 + 2
√

6

γ3 11
√

2 + 9
√

3

γ4 49 + 20
√

6

γ5 109
√

2 + 89
√

3

γ6 485 + 198
√

6

We observe (and can prove— but won’t!! — using induction) that
the even powers of γ have even multiples of

√
6 and the odd powers

of γ have odd multiples of both
√

2 and
√

3.

Suppose that
√

2 ∈ Z[γ]. Then, since Z[γ] is the set of polynomials in
γ with integer coefficients, we would have that

√
2 = a0 + a1γ + a2γ

2 + · · ·+ anγ
n

for some non-negative integer n. Gathering like terms, we would have
that

√
2 = A+B

√
2 + C

√
3 +D

√
6 for some integers A, B, C, and

D. But since
√

2,
√

3, and
√

6 are linearly independent over Z, this
means that B = 1 and C = 0. But B and C must have the same
parity (even/odd) because each time they appear in a power of γ
they have the same parity. Therefore,

√
2 /∈ Z[γ].

Note: The proof as written is incomplete since the fact that
√

2,
√

3,
and
√

6 are linearly independent over Z, while perhaps easy to
believe, requires proof. Here is the missing step:
a
√

2 + b
√

3 + c
√

6 = 0 with a, b, c ∈ Z implies that
2a2 + 3b2 + 2ab

√
6 = 6c2 which implies that

√
6 is rational, which is a

contradiction.

11.1.6 Decide whether S is a subring of R.
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(a) S = {r ∈ Q | r = a/b; a, b ∈ Z; 3 - b} and R = Q.

Solution: This is a subring. Given r = a/b, s = c/d ∈ S, then
r − s = ad−bc

bd . It suffices to show that 3 - bd to show that
r − s ∈ S. If 3 | bd, then 3 | b or 3 | d since 3 is prime. But 3
does not divide b or d, and so 3 does not divide bd.

We have that rs = (ac)/(bd). As already shown above, 3 - bd,
and so rs ∈ S. Finally, 1 ∈ S. This completes the proof that S
is a subring of R.

(b) S is the set of linear combinations of functions in the set
{1, cos (nt), sin (nt) | n ∈ Z} and R is the set of real valued
functions of t.

Solution: This is not a subring. Let f(t) = cos t and g(t) = sin t.
Then (fg)(t) = 1

2 sin (2t) by the double angle formula for sine.
This function cannot be an integer linear combination of
functions in the set above. For instance, those functions are
linearly independent over R as can be seen by using the positive
definite symmetric bilinear form 〈f, g〉 =

∫ π
0 (fg)(t) dt. It follows

that there is only one way to write fg as an R linear
combination of these functions. And so there is at most one way
to write these as a rational linear combination. In particular,
since we have one such linear combination using non-integer
coefficients, there are none using integer coefficients.

Note: The solution given above presumes some familiarity with
the inner product used when considering Fourier series. The
problem will be graded very leniently since you may not have
seen these ideas before.

11.1.8 Determine the units in R = Z/nZ, n ≥ 2.

Solution: If a ∈ R and there exists b ∈ R such that ab = 1, then a
has a representative 0 ≤ a′ < n that is coprime (relatively prime) to
n. Here is a proof of this: if there is a prime p that divides a′ and n,
then p < n and there are integers 0 < k < a′ and 0 < ` < n such that
a′ = pk and n = p`. Therefore,

0 = (`a) b = ` (ab) = `

But this means that n divides `, which is impossible since 0 < ` < n.

On the other hand, if a is coprime to n, then we can choose a
representative 0 ≤ a′ < n and apply the Euclidean algorithm to find
integers k and ` such that ka′ + `n = 1. Therefore, ka = 1.
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Thus, have proven that a is a unit if and only if a has a
representative 0 ≤ a′ < n that is coprime to n.

Note: To say that a′ is a representative of a means that a′ = a. If b is
any representative of a, then b− a = kn for some integer k. It follows
that b is coprime to n if and only if a is coprime to n; for if p is a
prime dividing b and n, then p divides a = b− kn. And analogously,
if p is a prime dividing a and n, then p divides b = a+ kn. So it may
seem that there is no reason to use representatives at all; however,
you do need to use representatives (at least for the proof I have
given) since the argument uses facts about integers, not facts about
eqvuivalence classes of integers such as a.

11.2.2 Let F be a field and let R = F [[t]] be the ring of formal power series
over F . Show that R is indeed a ring and determine the units of R.

Solution: Let f, g ∈ R. It is clear that f + g ∈ R by the way in which
addition is defined and using the fact that F is closed under
addition. The product fg has coefficients ck, where

ck =
∑
i+j=k

aibj ,

where ai and bi are the coefficients of f and g, respectively. Since the
above sum is finite and F is closed under sums and products,
fg ∈ R. The

To see that the remaining axioms holds requires some patience. It is
worthwhile to at least think about how one would show that the
distributive law holds. (You need to work with the formula displayed
above.)

The units in R are precisely those f for which the constant term, a0,
is non-zero. For if a0 = 0, then fg has leading coefficient
c0 = a0b0 = 0 6= 1. But if a0 6= 0, then we can construct an inverse g
as follows: let b0 = a−10 . Thus, c0 = a0b0 = 1. We want ck = 0 for all
k > 0. We have that c1 = a0b1 + a1b0. We have already defined b0.
Let b1 be the solution to the equation 0 = a0b1 + a1b0, which exists
because we need to and can divide by a0. In general,
ck = a0bk + · · ·+ akb0. The terms bi for i = 1, . . . , k − 1 will have
already been defined. And we define bk to be the unique solution to
the equation 0 = a0bk + · · ·+ akb0 which exists because we can divide
by a0.
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11.5.1 Let f = x4 + x3 + x2 + x+ 1 and let α denote the residue of x in
R = Z[x]/(f). Write (α3 + α2 + α)(α5 + 1) in terms of the basis
(1, α, α2, α3) of R

Solution: Since (x5 − 1) = (x− 1)(x4 + x3 + x2 + x+ 1) = (x− 1) · f ,
we have that α5 + 1 = (α− 1) + 2 = 2 in R. So, the given expression
above is equal to 2α3 + 2α2 + 2α.

11.5.4 Determine the structure of the ring R′ = Z[α], where α is the
element adjoined and satisfying the relations below.

(a) 2α = 6, 6α = 15.

Solution: We prove that R′ ∼= Z3. Since 6α = 18 = 15, we have
that 3 = 0 in R′. In particular, if the ideal I generated by
2x− 6 and 6x− 15 in Z[x] is equal to (3, 2x− 6, 6x− 15). We
first kill the element 3 to deduce that R′ ∼= Z3[x]/(2x). Since 2
is a unit, we have that (2x) = (x) in Z3[x]. So, R′ ∼= Z3.

Here is another proof: let φ : Z[x]→ Z3 be given by
φ(n) = n ∈ Z3 and φ(x) = 0. Clearly, I ⊂ kerφ. Conversely, if
f ∈ kerφ, then we divide by x to write f = xq + r, where r ∈ Z.
Since φ(f) = 0, a0 ≡ 0 mod 3 and so a0 = 3a for some a ∈ Z.
As in the first paragraph above, we have that 3 ∈ I. And since
x = 2(2x− 6) + (−x+ 4)(3), we have that x ∈ I. And so,
p(x) = xq + 3a ∈ I. Therefore, I = kerφ.

(b) 2α− 6 = 0, α− 10 = 0

Solution: If we first kill x− 10, we have that
Z[x]/(2x− 6, x− 10) is isomorphic to Z/(20− 6) = Z/14Z.

Another way to say this is as follows:
14 = (1)2x− 6 + (−2)(x− 10) and
2x− 6 = (1)(14) + (2)(x− 10), so

(14, x− 10) = (2x− 6, x− 10).

The ring Z[x]/(14, x− 10) is isomorphic to Z/14Z, where the
residue of x is 10.

(c) α3 + α2 + 1 = 0, α2 + α = 0

Solution: Since 1 = (1)(x3 +x2 + 1) + (−x)(x2 +x), we have that

(x3 + x2 + 1, x2 + x) = (1).

Therefore, the quotient ring is the zero ring.
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11.5.5 Is there a field F such that F [x]/(x2) ∼= F [x]/(x2 − 1)?

Solution: Yes. Let F = Z2 = Z/2Z. Define a homomorphism
φ : F [x]→ F [x]/(x2 − 1) via φ(x) = x+ 1. (Here, 1 refers to 1 ∈ Z2;
I will omit the bars.) By the substitution principle, φ is a
homomorphism extending the composite of the inclusion Z2 → Z2[x]
and the natural map Z2[x]→ Z2[x]/(x2 − 1). This map is surjective
since φ(x+ 1) = x+ 1 + 1 = x. We show that the kernel of φ is (x2).
Suppose that p(x) = anx

n + · · ·+ a0 ∈ F [x]. Since

φ(x2) = (x+ 1)2 = x2 + 2x+ 1 = 0 ∈ F [x]/(x2 + 1),

φ(p(x)) = φ(a1x+ a0) = a1(x+ 1) + a0. If this is equal to zero in
F [x]/(x2 + 1), then a1 = a0 = 0. Therefore, p(x) ∈ (x2). Conversely,
(x2) ⊂ kerφ. By the First Isomorphism Theorem,

F [x]/(x2) ∼= F [x]/(x2 + 1).

11.5.7 Let F be a field and let R = F [t] be the polynomial ring. Let
R′ = R[x]/(tx− 1). Prove that R′ can be identified with the ring of
Laurent polynomials, i.e. the ring of finite linear combinations of t
and t−1 where tkt` = tk+` for all k, ` ∈ Z.

Solution: The ring of Laurent polynomials in t over F is denoted by
F [t, t−1]. By definition, its elements are F -linear combinations of
integral powers of t where t0 is identified with 1 ∈ F . Multiplication
in F [t, t−1] is defined as one would expect.

The ring R = F [t] is a subring of F [t, t−1]. By the substitution
principle, there is a unique homomorphism Φ : R[x]→ F [t, t−1]
extending the inclusion R ⊂ F [t, t−1] and mapping x to t−1. This
homomorphism is clearly surjective. And (tx− 1) is clearly contained
in ker Φ. However, it seems difficult to apply the first isomorphism
theorem since our usual approach using long division does not apply
since tx− 1 is not monic.

*** Update: This can be done, although the output of long division
is modified slightly; skip to the end of this solution for the details.

Instead, we let φ : R[x]/(tx− 1)→ F [t, t−1] be defined by
φ(f(x) + (tx− 1)) = φ(f(x)). Since (tx− 1) ⊂ ker Φ, this is well
defined.

Next, define a homomorphism ψ : F [t, t−1]→ R[x]/(tx− 1) by

ψ(
∑

ait
i) =

∑
i>0

ait
i + a0 +

∑
i<0

aix
i.
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It is clear that ψ preserves the additive structure, but it is not
obvious that it preserves the multiplicative structure. So, to prove Ψ
is a homomorphism, we check that ψ((

∑
ait

i)(
∑
bjt

j)) is congruent
modulo (tx− 1) to

(
∑
i>0

ait
i + a0 +

∑
i<0

aix
i)(
∑
j>0

bjt
j + a0 +

∑
j<0

bjx
j).

Indeed, modulo (tx− 1), we have that the above product is equal to∑
i+j=k<0

aibjt
k +

∑
i+j=0

aibj +
∑

i+j=k>0

aibjx
k = ψ((

∑
ait

i)(
∑

bjt
j)).

Given f(x) ∈ R[x], we can choose g(x) ∈ R[x] such that

g(x) =
∑
i>0

ait
i + a0 +

∑
i<0

aix
i

and f(x)− g(x) ∈ (tx− 1). This is achieved by looking at each
monomial tjxk appearing in f(x) and replacing it with tj−k if
j − k ≥ 0 or with xk−j if j − k < 0.

For such a representative g(x) of f(x) + (tx− 1), we have that
ψ(φ(g(x)) = ψ(Φ(g(x)) = ψ(

∑
ait

i) = g(x) + (tx− 1). Thus, ψ ◦ φ is
the identity mapping. This implies that φ is injective. Therefore, φ is
an isomorphism.

*** Here are the details of how to modify long division. The
polynomial tx− 1 ∈ R[x] has leading coefficient t ∈ R = F [t]. Given
f(x, t) ∈ R[x] = F [t, x], we can, by successively eliminating each term
of the form ai,jt

ixj such that i, j ≥ 1 by subtracting the multiple
ai,j(tx− 1), write f(t, x) = q(t, x)(tx− 1) + r1(t) + r2(x), where
r1(t) ∈ F [t], r2(x) ∈ F [x], and the constant term of r2(x) is zero. If
f(x, t) ∈ ker Φ, then r1(t) + r2(x) ∈ ker Φ. This means that
r1(t) + r2(t

−1) = 0. This implies that all of the coefficients of both r1
and r2 are zero. (Two Laurent polynomials are equal precisely when
their coefficients are zero; the zero polynomial has all coefficients
equal to zero.) Therefore, f(x, t) is a multiple of (tx− 1). Hence,
ker Φ = (tx− 1).

11.7.1 Prove that a finite integral domain (not necessarily containing an
identity) is a field.
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Solution: Let R = {0, r1, . . . , rn−1} be an enumeration of the
elements of R so that ri = rj if and only if i = j and 0 6= ri for any i.
Given any nonzero a ∈ R, the mapping ri → ari is a permutation
since R has the cancellation property: ari = arj if and only if ri = rj .
Thus, this mapping is one-to-one and, since R is finite, onto. By
considering this mapping for powers of a, we have that for some k,
the mapping ri → akri is the identity mapping. (The positive integer
k is the order of the permutation ri → ari in the symmetric group
Sn−1.) By re-indexing, we assume that r1 = ak. Then r1 · rj = rj for
all j. Therefore, r1 is a multiplicative identity for R. Since such an
identity is unique if it exists, we can write r1 = 1. If b is a nonzero
element of R, then the mapping ri → bri is onto and so there exists a
j such that brj = r1 = 1. Therefore, rj is an inverse of b. Thus, we
have proven the existence of an inverse for any nonzero element.
Hence, R is a field.

11.7.3 Is there an integral domain with exactly 15 elements?

Solution: No. By the previous problem, such an integral domain R
would be a field. Let n be the least positive integer such that na = 0
for all a ∈ R. Such an n exists because R is a finite abelian group
under addition. It follows from Lagrange’s Theorem that n is a
divisor of |R| = 15. More precisely, given a ∈ R, the subgroup
generated by a has cardinality equal to the order of a; so, by
Lagrange’s Theorem, the order of a is a divisor of |R|. In particular,
15a = 0 for all a ∈ R. Since 3 and 5 are elements of R (because
1 ∈ R since R is a field), the equation 3(5a) = 0 implies that 3 = 0 or
5a = 0 for all a. So, 3a = 0 for all a ∈ R or 5a = 0 for all a ∈ R.
However, |R| = 15. Cauchy’s theorem implies the existence of
elements of order 3 and order 5. But this is impossible since 3 and 5
are coprime.

The subtle point in the above argument is that 1 ∈ R and 1 6= 0 ∈ R,
where 0 is the identity of the additive group R.

The above argument generalizes to show that if F is a finite field,
then |F | must be a power of a prime number p. Here is the
argument. Given |F | = n, we have that na = 0 for all a ∈ F . If
n = k` for some pair of coprime integers k, ` > 1, then as above, since
k, ` ∈ F , either ka = 0 for all a ∈ F or `a = 0 for all a ∈ F . But since
k, ` > 1 are coprime, we can select prime divisors p and q of k and `,
respectively; by Cauchy’s theorem, there exists elements in F of
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order exactly p and q. But this contradicts ka = 0 or `a = 0 for all a.
Therefore, each proper divisor of n must have the same prime
divisors. Therefore, n is a power of a prime.

11.7.5 Let S be a subset of an integral domain R and assume that 0 /∈ S
and that S is closed under multiplication. Let RS be the set of
S-fractions, i.e. equivalence classes of fractions of the form a/b,
where b ∈ S. Prove that RS is a ring.

Solution: Let a, b ∈ R and c, d ∈ S. Then a/c− b/d = (ad− bc)/(cd)
and (a/c)(b/d) = (ab)/(cd) are well-defined because cd ∈ S. This is
because the equivalence relation on fractions, namely a/c ∼ b/d if
ad = bc, is the same one we used to prove the operations of addition
and multiplication are well-defined in the field of fractions of R.
Thus, we have shown that RS is a subring of the field of fractions of
R.

11.8.1 Which principal ideals in Z[x] are maximal?

Solution: Consider I = (f(x)), where f(x) = anx
n + · · ·+ a0 ∈ Z[x],

an 6= 0. We may assume that f(x) is irreducible and not a unit since
units and reducible elements do not generate maximal principal
ideals.

If n = 0, then f(x) = p, where p is a prime. (We may assume p > 0
by replacing f(x) with −f(x). Consider the ideal J = (p, x). Then
I ( J ( Z[x] since x 6= I and 1 6= J . It is clear that x 6= I since every
element of I has the form p · g(x) for some g(x) ∈ Z and so every
coefficient is divisible by p. To see that 1 /∈ J , we observe that if
1 = p · g(x) + xh(x) for some g(x), h(x) ∈ Z[x], then 1 = pb0, where b0
is the constant coefficient of g(x); this is not possible, and so 1 /∈ J .

If n > 0, then choose a prime p which does not divide an. Since f(x)
has degree n > 0, p /∈ I. To see that J = (f(x), p) is not all of Z[x],
consider the quotient ring Z[x]/J . We see this is isomorphic to
Fp[x]/(f(x)). This quotient is not the zero ring since p does not
divide the leading coefficient of f(x). Therefore, J is a proper ideal
of Z[x].

11.8.3 Prove that F2[x]/(x3 + x+ 1) is a field but that F3[x]/(x3 + x+ 1) is
not a field.

Solution: x3 + x+ 1 is irreducible since neither 0 nor 1 is a root; any
proper factorization of a cubic must contain a linear factor and hence
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the polynomial would be a root. Therefore (x3 + x+ 1) is maximal
and so the first ring above is a field.

The polynomial x3 + x+ 1 is not irreducible over F3 since 1 is a root.
Therefore, (x3 + x+ 1) is not maximal and so the second ring above
is not a field.

12.1.2 (partial fractions)

Write 7/24 in the form a/8 + b/3.

Solution: This is equivalent to solving the equation 7 = 3a+ 8b
since we will need a common denominator of 24. Since
gcd(3, 8) = 1, we can find x, y ∈ Z such that 3x+ 7y = 1 and
then multiply this by 7. Indeed, 3(3) + 8(−1) = 1 and so
3(21) + 8(−7) = 7. So, a = 21 and b = −7 are solutions.

There are many other solutions. Indeed,
3(3 + 8m) + 8(−1− 3m) = 1 for every integer m. Conversely, if
3x+ 8y = 1, then 3x ≡ 1 (mod 8) and so x ≡ 3 (mod 8). To see
this, note that x ∈ Z/8Z must be a unit and so we only need to
check which values in {1, 3, 5, 7} solve the equation. Trial and
error shows that x = 3 is the only solution in this set.

(a)(b) Prove that if n = uv and u and v are relatively prime, then
q = m/n can be written as q = a/u+ b/v.

Solution: As in (a), the problem involving fractions is equivalent
to finding a solution to m = av + bu. Since u and v are
relatively prime, there exist integers x and y such that
ux+ vy = 1. Therefore, m = v(my) + u(mx). Hence, a = my
and b = mx are solutions.

12.1.3 (Chinese remainder theorem)

(a) Let m and n be relatively prime integers, and let a and b be
arbitrary integers. Prove that there is an integer x that solves
the simultaneous congruence x ≡ a (mod m) and x ≡ b
(mod n).

Solution: We are looking for an integer x such that x = a+ km
and x = b+ `n for some k, ` ∈ Z. If a = b, then we can take
k = ` = 0 so that x = a = b is a solution.

We may assume hence forth that a 6= b. Subtracting the two
equations above, we have that

0 = a− b+ km− `n.
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And, re-writing, we have that

(b− a) = mk + n(−`).

We can solve this equation just as we did in the previous
problem. Since m and n are relatively prime, there exist
integers λ and µ such that mλ+ nµ = 1. Multiply through by
the non-zero integer (b− a). Then, it is clear that if
k = λ(b− a) and −` = µ(b− a), then x = a+ km = b+ `n
solves the simultaneous congruences. Thus,

x = a+mλ(b− a) = b+ nµ(a− b)

is a solution. The above formula is also correct if a = b.

(b) Determine all of the solutions to the above simultaneous
congruences.

Solution: Suppose that x1 and x0 are solutions to the
simultaneous congruences. Then (x1 − x0) is both congruent to
0 modulo m and congruent to 0 modulo n. Since m and n are
relatively prime, (x− 1− x0) is congruent to 0 modulo mn.

(Proof: x1 − x0 = km and n | km together with gcd(m,n) = 1
implies that n | k. Therefore, x1 − x0 = `mn for some ` ∈ Z.)

Moreover, if x0 is a solution to the simultaneous congruences
and ` ∈ Z, then x1 = x0 + `mn is also a solution: it is congruent
to x0 modulo m and to x0 modulo n.

Thus, we have proved that the set of solutions to the
simultaneous congruences is

{x0 + `mn | ` ∈ Z},

where x0 is a particular solution.

12.1.4 Solve the following systems of equations:

(a) x ≡ 3 (mod 8), x ≡ 2 (mod 5)

Solution: Since 1 = (−3)(8) + (5)(5) and b− a = 2− 3 = −1, we
find that x0 = 3 + (3)(8) = 27 is a solution. Therefore, all other
solutions are of the form x0 = 27 + 40t for some integer t by the
previous problem.
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(b) x ≡ 3 (mod 15), x ≡ 5 (mod 8), x ≡ 2 (mod 7)

Solution: Since 1 = (−1)(15) + 2(8) and b− a = 5− 3 = 2, we
find that x0 = 3 + (−2)(15) = −27 is a solution to the first two
congruences. To find a solution to the last congruence, we can
add multiples of 15× 8 = 120 until we find one. Indeed,
93 = −27 + 120 satisfies, 93 ≡ 2 (mod 7). Therefore, all other
solutions are of the form x0 = 93 + 840t.

(c) x ≡ 13 (mod 43), x ≡ 7 (mod 71)

Solution: Since 1 = (−33)(43) + (20)(71) and
b− a = 7− 13 = −6, we find that
x0 = 13 + (−6)(−33)(43) = 8527 is a solution. Therefore, all
other solutions are of the form x0 = 8527 + 3053t for some
integer t by the previous problem. (For a solution in [0, 3053],
let x0 = 2421.)

12.2.1 Factor into irreducibles in Fp[x]:

(a) x3 + x2 + x+ 1, p = 2

Solution: Since 3 ≡ 1 (mod 2), we see that (x+ 1)3 is equal to
the polynomial above. And x+ 1 is clearly irreducible.

(b) x2 − 3x− 3, p = 5

Solution: (x+ 3)(x+ 4) = x2 + 7x+ 12 =
x2 + 2x+ 2 = x2 − 3x− 3 in F5. And (x+ 3) and (x+ 4) are
irreducible.

(c) x2 + 1, p = 7

Solution: F3 = {0, 1, 2, 3,−3,−2,−1}, and we can check that
x2 + 1 6= 0 if x ∈ {0,±1,±2,±3} in F3. Therefore, x2 + 1 is
irreducible, for otherwise it would have a linear factor and
therefore a root (since we are working in a field).

12.2.2 Compute the gcd of x6 + x4 + x3 + x2 + x+ 1 and
x5 + 2x3 + x2 + x+ 1 in Q[x].

Solution: Observe that

x6+x4+x3+x2+x+1 = (x2+1)x4+(x2+1)x+(x2+1)(1) = (x2+1)(x4+x2+1).

We find that x4 + x2 + 1 = (x2 + x+ 1)(x2 − x+ 1). These two
factors are irreducible in Q[x] since the roots are imaginary.
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And observe that

x5+2x3+x2+x+1 = (x2+1)x3+(x2+1)x+(x2+1)(1) = (x2+1)(x3+x+1).

We see that x2 + 1 and x3 + x+ 1 are irreducible in Q[x]: the first
because the roots are imaginary and the second because it has no
rational roots (as the only possibilities are ±1).

We have thus found factorizations into irreducbiles. Since Q[x] is a
UFD, we have that x2 + 1 is the gcd.

The above is not the intended solution. For that, you should use the
Euclidean algorithm. But the above solutions illustrates the familiar
method of finding the gcd by factoring into primes.

12.2.3 How many roots does the polynomial x2 − 2 have modulo 8?

Solution: None. We can verify this by letting x range over the
elements of Z/8Z = {0,±1,±2,±3, 4 = −4} and verifying that x2 − 2
is never equal to zero.

12.2.5 (partial fractions for polynomials)

(a) Prove that every element of C(x) can be written as a sum of a
polynomial and a C-linear combination of functions of the form
1/(x− a)k, where k ∈ N.

Solution: We will prove this in several steps. We assume the
fundamental theorem of algebra so that every polynomial in
C[x] factors into a product of linear factors or is a constant
polynomial.

STEP 1: Suppose that f(x), g(x) ∈ C[x] have no common root.
Then f(x) and g(x) have no common divisors of degree greater
than zero. Therefore, f(x) and g(x) are relatively prime. Since
C[x] is a PID, there exist a(x), b(x) ∈ C[x] such that

a(x)f(x) + b(x)g(x) = 1.

STEP 2: Let f(x) ∈ C(x) so that f(x) = p(x)/q(x) for some
p(x), q(x) ∈ C[x] with q(x) 6= 0. We will prove that f(x) is equal
to a polynomial plus a C[x]-linear combination of functions of
the form 1/(x− a)k.

We may assume that p(x) and q(x) have no common roots, for
otherwise we could reduce the fraction. We may also assume

31



that q(x) has degree greater than 0, for otherwise f(x) is a
polynomial and we are done.

If the degree of p(x) is greater than or equal to q(x), we can
perform long division so that p(x) = g(x) + h(x)/q(x) for
polynomials g(x), h(x) ∈ C[x] where h(x) has smaller degree
than q(x) or h(x) is zero.

If h(x) is a zero, then we are done: f(x) is a polynomial.

If h(x) is nonzero, let r be a root of q(x). And write
q(x) = (x− r)kt(x) where t(x) ∈ C[x] and t(r) 6= 0. By STEP 1,
there exist a(x), b(x) ∈ C[x] such that
a(x)(x− r)k + b(x)t(x) = 1. Therefore,

1

q(x)
=
a(x)

t(x)
+

b(x)

(x− r)k
.

And so,

f(x) =
p(x)

q(x)
= g(x) +

h(x)

q(x)
= g(x) +

a(x)h(x)

t(x)
+
b(x)h(x)

(x− r)k
.

If t(x) above is a constant polynomial, then we are done with
STEP 2. Otherwise, t(x) has fewer distinct roots than q(x). We
can then apply mathematical induction on the number of
distinct roots of the denominator. The base case is trivial.

STEP 3: We have now expressed f(x) as a polynomial plus as
C[x]-linear combination of functions of the form 1/(x− a)k.
Moreover, the coefficients of the functions do not have a as a
root, for otherwise we could reduce the fraction.

So, it remains to show that if s(x) ∈ C[x], a ∈ C, s(a) 6= 0, and
k ∈ N, then s(x)/(x− a)k is a polynomial plus a C-linear
combination of function of the form 1/(x− a)j . By performing
long-division, we can reduce the degree of s(x) below that of k
at the expense of introducing a polynomial summand. Since
1, (x− a), (x− a)2, . . . , (x− a)k−1 forms a basis of the vector
space of polynomial of degree less than k, we can write s(x)
uniquely as

s(x) = Ak +Ak−1(x− a) + · · ·+A1(x− a)k,

for some A1, . . . , Ak ∈ C. Therefore,

s(x)

(x− a)k
=

Ak
(x− a)k

+ · · ·+ A1

(x− a)
.
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This completes the proof.

(b) Find a basis for the field C(x) as a C-vector space.

Solution: By part (a), C is spanned by polynomials together
with all functions of the form 1/(x− a)k. The polynomials are
spanned by 1, x, x2, . . . . We claim that

{xk | k ∈ {0} ∪ N} ∪ {(x− a)−k | a ∈ C, k ∈ N}

is a basis for C(x) as a C-vector space.

It remains to show these are linearly independent. Suppose that

M∑
i=0

cix
i +

N∑
j=1

bj

(x− aj)kj
= 0.

Suppose that a ∈ {aj | 1 ≤ j ≤ N}. Let k = k∗ be the maximum
of {kj | aj = a}. Multiply the above equation by (x− a)k and
then let x = a. The resulting equation is b∗ = 0. It follows that
bj = 0 whenever aj = a. Since a was arbitrary, bj = 0 for each
j = 1, . . . , N . Thus, the above equation is a linear combination
of 1, x, x2, . . . , xM . Therefore, c0 = c1 = · · · = cM = 0. This
completes the proof.

12.2.6 Prove that the following rings are Euclidean domains.

(a) Z[ω], where ω = e2πi/3.

Solution: The ring is an integral domain since it is a subring of
the field of complex numbers. We use the norm
N(z) = |z|2 = a2 + b2, where z = a+ bi ∈ C. We have that
N(zw) = N(z)N(w) for all z, w ∈ C.

Suppose that α, β ∈ R = Z[ω] and α 6= 0. We are to show that
there are elements q, r ∈ R such that β = αq + r, where r = 0 or
N(r) < N(α). Let q′ = β/α ∈ C. Let q ∈ R be an element
which is closest to q′. We claim that if r = β − αq, then
N(r) < N(α). Since

N(r) = N(β−αq′+αq′−αq) = N(0+α(q′−q)) = N(α)N(q′−q),

it remains to show that N(q′ − q) < 1. This is clear from a
sketch of the lattice R: the lattice points lie at the vertices of
the equilateral triangle tiling of the plane with fundamental
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domain (a generating tile of the tiling) having vertices 0, 1, and
1 + ω. The point farthest from these vertices is the centroid,
which is (0 + 1 + (1 + ω))/3 = (2 + ω)/3. It follows that

N(q′ − q) ≤ N((2 + ω)/3) = (4 + ωω)/9 = 5/9 < 1.

(b) Z[
√
−2].

Solution: The proof is the same as in part (a) except for the last
part where we consider the lattice. The lattice in this case is
rectangular: the lattice points lie at the vertices of the tiling of
the plane with fundamental domain a rectangle with vertices 0,
1,
√

2i, 1 + i
√

2. The point farthest from these vertices is again
the centroid, which is (1 + i

√
2)/2. Since this has norm equal to

3/4 < 1, this ring is also a Euclidean domain.

12.2.7 Let a, b ∈ Z. Prove that the gcd of a and b in Z is the same as their
gcd in Z[i].

Solution: Let d be the gcd of a and b in Z and let e be the gcd of a
and b in Z[i]. Both Z and Z[i] are PID’s, and so there exist x, y ∈ Z
and w, z ∈ Z[i] such that d = ax+ by and e = aw + bz. Since d
divides a and b in Z, d divides both in Z[i]. Therefore, from the
equation e = aw+ bz, we have that d divides e in Z[i]. Since e divides
a and b in Z[i] and since the equation d = ax+ by is true in Z[i], we
have that e divides d in Z[i]. Thus, there exist q1, q2 ∈ Z[i] such that
e = q1d and d = q2e. Therefore, e = q1q2e. Since e 6= 0, 1 = q1q2 and
so both q1 and q2 are units. Therefore, d and e are associates. And so
the gcd’s coincide in Z[i]. (The gcd is only defined up to associates.)

12.2.8 Describe a systematic method for performing long division in Z[i]
and apply your method to to divide 4 + 36i by 5 + i.

Solution:

12.3.1 Let φ : Z[x]→ R be given by (a) φ(x) = 1 +
√

2 or (b)
φ(x) = 1

2 +
√

2. In each case, determine whether the kernel of φ is a
principal ideal. If the answer is yes, then give a generator.

Solution: Both homomorphisms, say φ1 and φ2, have the effect of
evaluating a polynomial f(x) ∈ Z at the given value, say a1 = 1 +

√
2

or a2 = 1
2 +
√

2, respectively. So, f(x) is in the kernel of φi precisely,
when f(ai) = 0.

34



We claim that if ai is a root, then so is it’s conjugate, where
a1 = 1−

√
2 and a2 = 1

2 −
√

2. One way to see this is observe that

there is a homomorphism ψ : Q(
√

2)→ Q(
√

2) given by
ψ(a+ b

√
2) = a− b

√
2, where a, b ∈ Q(

√
2). The image of each φi is

contained in Q(
√

2).

Suppose that φi(f(x)) = 0, where f(x) ∈ Z[x]. Then ψ(φ(f(x))) = 0.
This implies that ai is a root of f(x) also.

Therefore, if f(x) ∈ kerφ1, then the monic polynomial

(x− 1−
√

2)(x− 1 +
√

2) = (x− 1)2 − 2 = x2 − 2x− 1

is a factor of f(x). Clearly if this is a factor of some f(x), then f(x)
belongs to kerφ1. Therefore, the kernel of φ1 is the principal ideal
(x2 − 2x− 1).

If f(x) ∈ kerφ2, we might hope to use the same approach:

(x− 1

2
−
√

2)(x− 1

2
+
√

2) = (x− 1

2
)2 − 2 = x2 − x− 7

4
.

So, we hope that 4x2 − 4x− 7 ∈ Z[x] is a generator for kerφ2.

If 4x2 − 4x− 7 is a factor of f(x), then f(x) ∈ kerφ2. If
f(x) ∈ kerφ2, then by the above, 4x2 − 4x− 7 is a factor of f(x) in
Q[x] (because we can perform divison using rational coefficients.
Now apply Gauss’s Lemma. The polynomial 4x2 − 4x− 7 is
primitive. And so, Gauss’s Lemma applies and we can conclude that
since it is a divisor of f(x) in Q[x] that it is also a divisor of f(x) in
Z[x]. Therefore, kerφ2 is the principal ideal (4x2 − 4x− 7).

12.3.2 Prove that two polynomials in Z[x] are relatively prime in Q[x] if and
only if they generate an ideal in Z[x] which contains an integer.

Solution: If f, g ∈ Z[x] and n ∈ Z is such that n ∈ (f, g) ⊂ Z[x], then
we have that n = a(x)f(x) + b(x)g(x) for some a(x), b(x) ∈ Z[x].
Therefore, in Q[x], we can divide this equation by n to write 1 as a
Q[x]-linear combination of f and g. Therefore, f and g are relatively
prime.

Conversely, if f and g are relatively prime in Q[x], then 1 is a
Q[x]-linear combination of f and g. By clearing denominators, we
obtain an integer in (f, g) ⊂ Z[x].
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12.3.3 State and prove a version of Gauss’s Lemma for Euclidean domains.

Solution: The usual definitions involved are as follows: if
f(x) ∈ R[x], the content of f(x) is the gcd of the coefficients of f(x).
For this to make sense, we need to work in a ring in which the gcd
always exists for a, b ∈ R, not both zero. Let’s assume that R is a
Euclidean domain. In particular, R has gcd’s, is commutative, and
has 1. We say that f(x) is primitive if it has content 1. The
generalization of Gauss’s Lemma is that if f(x) and g(x) are
primitive in R[x], then f(x)g(x) is primitive.

In a Euclidean domain, primes and irreducibles coincide. (This is
true, more generally, in any PID.) In particular, the gcd of a pair of
elments a, b ∈ R is not 1 if and only if there is a prime p such that p
divides both a and b.

Suppose p is a prime dividing some coefficient of f(x)g(x). If f(x)
and g(x) are primitive, then both have a smallest index coefficient
which is not divisible by p. Let a0, . . . , an and b0, . . . , bm be the
coefficients of f(x) and g(x), resepectively. So, we have p divides
a0, . . . , ai−1 and p divides b0, . . . , bj−1, but p does not divide ai or bj .
But then, p does not divide the coefficient of xi+j : this coefficient is
bi+ja0 + · · ·+ bjai + · · ·+ b0ai+j (where coefficients exceeding the
degree of the polynomials are understood to be zero). All of these
terms except bjai are divisible by p. And so this coefficient cannot be
divisible by p. This contradiction proves Gauss’s Lemma.

The above proof was the same as one of the proofs presented in class.
The other proof also can be adopted to this context. If f(x) and g(x)
have content zero, and f(x)g(x) did not, then we could consider the
image of f(x)g(x) in R/(p)[x], where p is a prime dividing the
coefficients of f(x)g(x). Since p is prime and R is a PID, p is
irreducible. Since R is a PID, it follows that (p) is a maximal ideal:
any overideal is a principal and so a generator is a divisor of p.
Therefore F = R/(p) is a field and therefore, F [x] is an integral
domain. Thus, the image of f(x) or the image of g(x) must be zero.
This means that p divides all the coefficients of f(x) or all the
coefficients of g(x). This is a contradiction and so Gauss’s Lemma is
proved.

12.4.1 (a) Factor x9 − x and x9 − 1 in F3[x].

Solution: By looking for a difference of squares, we can factor
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x9 − x over Z[x] as follows:

x(x8 − 1) = x(x4 − 1)(x4 + 1) = x(x2 − 1)(x2 + 1)(x4 + 1) =

x(x− 1)(x+ 1)(x2 + 1)(x4 + 1).

The polynomial x2 + 1 is irreducible in F3[x] since it has no
roots in F3. The other irreducible quadratic polynomials in
F3[x] are x2 + x− 1, x2 − x+ 1, and x2 − x− 1. One finds that

(x2 + x− 1)(x2 − x− 1) = (x2 − 1)2 − x2 = x4 + 1

in F3. Thus,

x9 − x = x(x− 1)(x+ 1)(x2 + 1)(x2 + x− 1)(x2 − x− 1).

The polynomial (x− 1)9 has coefficients
(
9
k

)
for k = 0, . . . , 9.

except for the first and last, these are all multiples of 3.
Therefore, (x− 1)9 = x9 − 1 in F3[x].

(b) Factor x16 − x in F2[x].

Solution: x16−x = x(x15−1) = x(x−1)(x14 +x13 + · · ·+x+ 1).
Attempting to divide by the irreducible quadratic polynomial
x2 + x+ 1, we find a factorization

x(x+ 1)(x2 + x+ 1)(x12 + x9 + x6 + x3 + 1).

At this point, one might try to divide by other irreducible
polynomials in F2[x]. Neither of the irreducible cubic
polynomials divides x12 + x9 + x6 + x3 + 1. But the first quartic
irreducible polynomial on p. 373, x4 + x3 + 1 does. One then
finds a complete factorization as follows:

x(x+ 1)(x2 +x+ 1)(x4 +x3 + 1)(x4 +x+ 1)(x4 +x3 +x2 +x+ 1).

This is not a very satisfying solution. But, perhaps the point is
that we are being asked to factor an element into prime factors,
a task we already know from experience is very difficult over the
ring of integers.

A idea might be the following: factorization in F2[x] seems
simliar to factoring integers given by a binary representation.
The polynomial x12 + x9 + x6 + x3 + 1, when x = 2, represents
the integer 4681 which has 31 and 151 its only prime factors.
The polynomial x4 + x3 + x2 + x+ 1, when x = 2, represents 31.
And so, x4 + x3 + x2 + x+ 1 is a divisor in F2[x].
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12.4.2 Prove that the following polynomials are irreducible:

(a) x2 + 1 ∈ F7[x].

Solution: It has no roots in F7.

(b) x3 − 9 in F31[x].

Solution: It has no roots in F31. To see this, we can use the
following trick. Suppose that a ∈ F31 were a root. Then a3 ≡ 9
(mod 31) and so a30 ≡ 910 (mod 31). By Euler’s theorem (using
φ(31) = 30 since 31 is prime), a30 ≡ 1 (mod 31). On the other
hand, 910 = 320. We find that 33 = 27 ≡ −4 (mod 31) and,
therefore, 35 ≡ −36 ≡ −5 (mod 31). Therefore, 310 ≡ 25 ≡ −6
(mod 31). And, therefore, 320 ≡ 36 ≡ 5 (mod 31). Since 1 is
not congruent to 5 modulo 31, there is no solution to the
equation x3 = 9 in F31.

12.4.3 Decide whether or not the polynomial x4 + 6x3 + 9x+ 3 generates a
maximal ideal in Q[x].

Solution: We can apply Eisenstein’s Criterion with p = 3 to deduce
that this polynomial is irreducible. Since Q[x] is a PID, an ideal
generated by an irreducible element is a maximal ideal.

12.4.4 Factor the polynomial x5 + 2x4 + 3x3 + 3x+ 5 modulo 2, modulo 3,
and in Q.

Solution: Modulo 2, the polynomial is x5 + x3 + x+ 1 which is equal
to (x+ 1)(x4 + x3 + 1). The polynomial x4 + x3 + 1 has no linear
factors since it has no roots in F2. The only quadratic irreducible
polynomials in F2[x] is x2 + x+ 1. And we can verify that
(x2 + x+ 1)2 = x4 + x2 + 1. Therefore x4 + x3 + 1 is irreducible.
Incidentally, there is an easy way to compute the square of a
polynomial in F2[x]: the identity

(a1 + · · ·+ an)2 =

n∑
i=1

a2i + 2
∑

1≤i<j≤n
aiaj

implies that (a1 + · · ·+ an)2 = a21 + · · ·+ a2n in F2.

Modulo 3, the polynomial is x5 + 2x4 + 2. Since −1 is a root modulo
3, we find a factorization (x+ 1)(x4 + x3 + 2x2 + x+ 2). Again −1 is
a root, and we factor again: (x+ 1)2(x3 + 2x+ 2). Since neither 1
nor −1 is a root of x3 + 2x+ 2 modulo 3, this factor is irreducible (as
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a reducible cubic polynomial must have a root when the coefficient
ring is a field).

Finally, in Q[x], we see that −1 is a root and find that the
polynomial factors as

(x+ 1)(x4 + x3 + 2x2 − 2x+ 5).

The factor x4 + x3 + 2x2 − 2x+ 5 is congruent to x4 + x3 + 1 modulo
2. This is an irreducible polynomial in F2. We can now apply
Proposition 12.4.3: since p = 2 does not divide the leading coefficient
of x4 + x3 + 2x2 − 2x+ 5 and since its residue is irreducible in Fp[x],
it must be irreducible in Q[x].

12.4.9 For which primes p and which integers n is the polynomial xn − p
irreducible in Q[x]?

Solution: We will assume that n ≥ 1. Then f(x) = xn − p is
irreducible for any prime p. This follows from Eisenstein’s criterion:
p does not divide the leading coefficient, p divides all other
coefficients, and p2 does not divide the constant coefficient.

12.4.15 Suppose that f(x) ∈ Z[x]. Let p be a prime and let f(x) be the
residue of f(x) in Fp[x]. What can be said about the irreducibility of
f(x) when f(x) satisfies the given conditions below and one considers
a criterion similar to Eisenstein’s Criterion?

(a) Suppose f(x) is constant. Thus, p divides every coefficient of
f(x) except possibly the constant coefficient. If p divides all
coefficients, then f(x) factors as p · 1pf(x) and is therefore

reducible. If p does not divide the constant coefficient and p2

does not divide the leading coefficient, then we can apply
Eisenstein’s criterion to g(x) =

∑n
k=0 an−kx

k, where
f(x) =

∑n
k=0 akx

k. If f(x) were reducible, then g(x) would be
reducible. Therefore, f(x) is irreducible. If p2 divides the
leading coefficient, then we cannot deduce that f(x) is
irreducible; for example,

f(x) = (px+ 1)2 = p2x2 + 2px+ 1

is reducible and f is a constant.
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(b) Suppose f(x) = xn + bxn−1. Let’s assume that

f(x) = xn + an−1x
n−1 + · · ·+ a0

so that an = 1, an−1 = b and ak = 0 for k = 1, . . . , n− 2. If f(x)
were reducible, say f = gh for some g, h ∈ Z[x], then we may
assume that g(x) = xk for some k ∈ {1, . . . , n− 1} and that
h(x) = xn−k(x− b).
If k < n− 1, then both g(x) and h(x) must have a constant
coefficient which is congruent to 0 modulo p. It follows that
p2 | a0.
If k = n− 1, then the above need not be true. However, in this
case, g(x) = xn−1 so, in particular, g(x) has degree n− 1 and
therefore h(x) has degree 1. (It is important that we have
assumed f(x) to have degree n; in general, the degree of f can
be strictly less than the degree of f .) Since we have assumed
that f(x) is monic, h(x) can be assumed to be monic as well.
Therefore, h(x) = x− c for some integer c, where c = b. So,
f(x) = g(x) · (x− b) for some integer c such that c ≡ b (mod p)
in this case.

Thus, we can deduce from the above that if f(x) is monic, p2

does not divide a0, and f(x) does not have a root in Z which is
congruent to b modulo p, then f(x) is irreducible in Z[x] and
also in Q[x] (by Gauss’s Lemma).

12.4.16 Factor x14 + 8x13 + 3 in Q[x].

Solution: We can apply part(b) of the previous problem with p = 3.
The polynomial has residue x14 + 2x13 in F3. The given polynomial is
monic, p2 does not divide the constant coefficient, and the polynomial
does not have a root in Z which is congruent to 2. The first two
claims are clear; the third is true because f(x) does not have any
root in Z. We can deduce this from the rational roots theorem and
by verifying that none of 1, −1, 3, or −3 is a root of x14 + 8x13 + 3.
The only one which is non-trivial to verify is that −3 is not a root:

(−3)14 + 8(−3)13 + 3 = 3 · 313 − 8 · 313 + 3 = −5 · 313 + 3 6= 0.

Therefore, this polynomial is irreducible in Q[x].

12.5.9 Let R = Z[ω], where ω = e2πi/3. Let p be a prime integer such that
p 6= 3. Imitate the proof of Theorem 12.5.2 to prove the following
statements:
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(a) The polynomial x2 + x+ 1 has a root in Fp if and only if p ≡ 1
(mod 3).

Solution: Let p ∈ Z be prime. If p ≡ 0 (mod 3), then p = 3. If
p ≡ 1 (mod 3), then 3 | (p− 1) = |F×p |, where the latter is the
group of units in Fp. By Sylow’s theorem, there is an element
a ∈ F×p of order 3. (Really, we are only using a special case of
Sylow’s first theorem; this special case is often referred to as
Cauchy’s theorem.) Therefore, a3 − 1 and a 6= 1. From the
factorization x3− 1 = (x− 1)(x2 + x+ 1), we see that a is a root
of x2 + x+ 1. Therefore, Conversely, if x2 + x+ 1 has a root
a ∈ Fp, then a 6= 0 (clearly) and a 6= 1 (because p 6= 3).
Therefore, a is a nontrivial element of F×p . Since a has order 3
in this group, 3 is a divisor of the order of this group, i.e.
3 | (p− 1).

(b) The ideal (p) is a maximal ideal in R if and only if p ≡ −1
(mod 3).

Solution: From part (a), we have that x2 + x+ 1 is irreducible
in Fp[x] if and only if p is not congruent to 0 or 1 modulo 3.
Therefore, p ≡ −1 (mod 3) if and only if x2 + x+ 1 is
irreducible in Fp[x]. Since R = Z[ω] = Z[x]/(x2 + x+ 1), we see
that Q = R/(p) ∼= Zp/(x2 + x+ 1). Therefore, Q is a field if and
only if x2 + x+ 1 is irreducible which is true if and only if (p) is
a maximal ideal in Q.

(c) The prime p has a proper factorization in R if and only if
p = a2 + ab+ b2 for some a, b ∈ Z.

Solution: If p factors in R, then p is a product of primes
π1, . . . , πk ∈ R. Therefore, p2 = pp = (π1π1) · · · (πkπk). Since
factoriztion into primes in Z is unique (up to units), k ≤ 2. So,
if p factors in R, then p = ππ for some prime π = a− bω ∈ R,
where a, b ∈ Z. (The choice of the negative sign becomes clear
in a moment.) Therefore,

p = (a− bω)(a− bω = a2 + b2 − ab(ω + ω = a2 + b2 + ab.

Conversely, if p = a2 + b2 + ab for some integers a, b ∈ Z, then
we can factor p as above in R. The units in R are ±1,±ω,±ω.
In terms of the lattice basis (1, ω) of R, the units are
±1,±ω,±(1 +ω). It follows that if a− bω were a unit in R, then

(a, b) ∈ {(±1, 0), (0,±1),±(1,−1)}.
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Since these possibilities imply that p = 1 (not prime) or p = 3
(we are assuming p 6= 3 in the given statement of the problem),
we conclude that p = (a+ bω)(a+ bω is a proper factorization in
R.

13.1.4 Let d and d′ be integers. When are the fields Q(
√
d) and Q(

√
d′

distinct?

Solution: Suppose that
√
d = s ∈ Z. Then Q(

√
d) = Q(s) = Q. So,

this case is straightforward. Suppose that
√
d /∈ Z. Then d can be

uniquely expressed in the form d = n2s, where n, s ∈ Z, n > 0 and s
is square-free, meaning that if m ∈ Z and m2 /∈ {0, 1}, then m2 does
not divide s. In particular, s is non-zero. The claim is that the fields
coincide precisely when s = s′, where d′ = (n′)2s′ is the analogous
decomposition for an integer d′ such that

√
d′ /∈ Z.a non-zero integer

d′.

To see, this we observe that if x ∈ Q(
√
d), then x = a+ b

√
d for some

rational numbers a and b. Thus, x = a+ (bn)
√
s ∈ Q(

√
s). Since

Q(
√
s) is clearly a subset of Q(

√
d), these two rings coincide.

Analogously, Q(
√
d′) = Q(

√
s′). Therefore, it remains to determine

when Q(
√
s) = Q(

√
s′). Clearly these are equal if s = s′. If s 6= s′, we

argue that
√
s /∈ Q(

√
s′). Suppose to the contrary that√

s = a+ b
√
s′ for some rational numbers a and b. Squaring both

sides and re-arranging we have that 2ab
√
s′ = s− a2 − b2s′. Unless

a = 0 or b = 0, we have a contradiction since
√
s′ is irrational. If

b = 0, then the original equation says that
√
s is rational, which is

not true. So, a = 0, and therefore
√
s = b

√
s′. Thus, s = b2s′.

Therefore, b2 divides s. Since s is square-free, we must have that
b = ±1. Therefore,

√
s = ±

√
s′. This can only happen if s = s′.

13.2.2 For which negative integers d ≡ 2 (mod 4) is the ring of integers in
Q[
√
d] a UFD?

Solution: Suppose that d is a negative integer congruent to 2 modulo
4. We can assume that d is square free by the previous exercise. The
ring of integers is thus R = Z[

√
d] (by Proposition 13.1.6) and the

group of units is {±1} (by Proposition 13.2.2). Let δ =
√
d. Let

e = (4− d)/2 ∈ Z. Then 2e = 4− d = (2− δ)(2 + δ).

We need to decide whether the above factorization is indeed a
factoriztaion into irreducibles. If d = −2, then it is not since
3 = (1 + δ)(1− δ) is not irreducible. In fact, the same argument as
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was used to show that Z[i] and Z[e2πi/3] are Euclidean domains
works to show that Z[

√
−2] is a Euclidean domain. Therefore, when

d = −2, R is a unique factorization domain.

Let N(a+ bδ) = a2 − b2d be the norm in R. By the above, we can
assume that d ≤ −6. In this case, we have that N(a+ bδ) ≥ 1− d ≥ 7
if a2, b2 ≥ 1. If a = 0 and b = ±1, then N(a+ bδ) = −d ≥ 6. If
a = ±1 and b = 0, then a+ bδ = ±1 is a unit. If 3 were reducible in
R, it would factor as a product of two elements whose norms
multiply to 9 = N(3). From the above analysis and the fact that
norms are non-negative integers, we conclude that 3 is irreducible in
R. If R were a UFD, then 3 must divide (2 + δ) or (2− δ). If
3(a+ bδ) = (2 + δ), for some integers a and b, then 3a− 2 = (1− b)δ.
Since the right hand side of this equation is irrational, b = 1. But
this forces 3a− 2 = 0 and so a is not an integer.

Thus, we have proved that R is not a UFD if d ≡ 2 (mod 4), d < 0,
and d 6= −2.

13.3.2 Let δ =
√
−5. Decide whether or not the lattice of integer linear

combinations of the given vectors is an ideal in R = Z[δ].

(a) (5, 1 + δ)

Solution: It is not an ideal. The element δ(1 + δ) = δ − 5 is not
in the lattice, for if 5a+ (1 + δ)b = δ − 5 then 5a+ b = −5 and
b = 1. Therefore, a = −6/5, which is not an integer.

(b) (7, 1 + δ)

Solution: It is not an ideal. The same method as above works.

(c) (4− 2δ, 2 + 2δ, 6 + 4δ)

Solution: It is an ideal. It is easy to see that all elements of the
ideal generated by these three elements will be sums of even
numbers and even multiples of δ. So, it suffices to show that
both 2 and 2δ belong to the lattice. Indeed,
2 = (−2)(2 + 2δ) + (1)(6 + 4δ) and
2δ = (3)(2 + 2δ) + (−1)(6 + 4δ).

15.2.2 Let f(x) =
∑n

k=0 akx
k be an irreducible polynomial over a field F .

Let α be a root of f in an extension field K. Write α−1 ∈ K in terms
of the coefficients of f .

Solution: Because f is irreducible, a0 6= 0; otherwise, x would divide
f . We can solve the equation f(α) = 0 for a0 in K and then divide
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by a0, to obtain the following equation:

1 = a−10 (−anαn−1 − an−1αn−2 − · · · − a2α− a1)α.

Thus, α−1 is the left factor in the right-hand side of the above
equation.

15.3.1 Let F be a field and suppose that F (α) is a degree 5 extension.
Prove that F (α2) = F (α).

Solution: Since α2 ∈ F (α), F (α2) ⊂ F (α). If it were a proper
subfield, then its degree over F would be a proper divisor of 5,
namely 1. In this were so, then, F (α2) = F . This would imply that
α2 ∈ F . And, therefore, x2 − α2 ∈ F [x]. But then F (α) would be at
most a degree 2 extension of F , which is a contradiction. Hence,
F (α2) is not a proper subset of F (α) and so F (α2) = F (α).

15.3.3 Let ζn = e2πi/n. Prove that ζ5 /∈ Q(ζ7).

Solution: The irreducible polynomial for ζp, where p is a prime is
xp−1 + xp−2 + · · ·+ x+ 1. (It is irreducible by the x = y + 1 trick so
that Eisenstein’s criterion applies.) Therefore Q(ζ7) is a degree 6
extension of Q. Since 4 is not a divisor of 6, Q(ζ5) cannot be a
subfield of Q(ζ7).

15.3.6 Let a be a positive rational number that is not a square in Q. Prove
that 4

√
a has degree 4 over Q.

Solution: Since a is not a square in Q, x2 − a has no roots in Q and
is, therefore, irreducible. Therefore, Q(

√
a) is a degree 2 extension of

Q. This extension is a subfield of Q( 4
√

2. Therefore, Q( 4
√

2) is an even
degree extension of Q. It is not a degree 2 extensions, because if it
were then it would be equal to Q(

√
a) and then we would have an

equaation
4
√

2 = p+ q
√
a

for some p, q ∈ Q. Squaring this equation and solving for
√
a we find

that
√
a = (p2 + aq2)/(1− 2pq). The denominator is not zero; if it

were, then 0 = p2 + aq2 implies that a ≤ 0, contrary to the
hypothesis. Thus, the solution for

√
a reveals that

√
a is rational,

which is also a contradiction. We have prove that the degree of
Q( 4
√

2) is even and degree at least 4. It has degree equal to 4 because
4
√

2 is a root of x4 − 2. (We did not need to prove directly that x4 − 2
is irreducible in Q[x]; but one could also solve the problem by doing
so.)
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15.3.10 Let K/F and L/K be algebraic extensions. Prove that K/F is an
algebraic extension.

Solution: Let α ∈ K. We are to show that α is algebraic over F . We
will use the fact that α is algebraic over F if and only if α belongs to
a finite extension of F .

(Proof of this fact: If α is a root of an irreducible polynomial
f ∈ F [x] of degree n, then α ∈ F (α) and 1, α, α2, . . . , αn−1 is a basis;
so F (α) has finite dimension over F . Conversely, if α ∈M , a finite
extension of F , then for some n ∈ N, 1, α, α2, . . . , αn−1 must be a
linearly dependent subset of M , and so there exist scalars
a0, . . . , an ∈ F , not all zero, such that
a0 + a1α+ a2α

2 + · · ·+ an−1α
n−1 = 0; and so α is a root of a nonzero

polynomial in F [x].)

Since α is algebraic over L, there is a nonzero polynomial f ∈ L[x]
such that f(α) = 0. Let a0, . . . , an ∈ L be the coefficients of f . Since
each ai is algebraic over F , F (a0, . . . , an) is a finite extension of F .
Since f ∈ F (a0, . . . , an)[x], the field F (α, a0, . . . , an) is a finite
exension of F . Therefore, α is algebraic over F .

15.5.2 Prove that the regular pentagon is constructible by (a) field theory
and by (b) an explicit construction.

Solution to part (a): The regular pentagon is construtible if and only
if α = cos 2π/5 belongs to a tower of degree two extensions of Q. A
good source of trigonmetric identities can be found by comparing
real an imaginary parts in de Moivre’s formula:

(cos θ + i sin θ)n = cosnθ + i sin θ.

From this with n = 5 and the pythaogrean identity,
cos2 θ + sin2 θ = 1, we obtain the following:

cos 5θ = 16 cos5 θ − 20 cos3 θ + 5 cos θ.

To obtain a polynomial relation of degree 4, we will consider the
angle θ = π/10 and let β = cos θ. The above formula implies that

0 = 16β5 − 20β3 + 5β = β(16β4 − 20β2 + 5).

Since β 6= 0, we have that 0 = 16β4 − 20β2 + 5, which we can view as
a quadratic in β2. Therefore, Q(β2) is a quadratic extension of Q.
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By using the half-angle formula, we find that cosπ/5 = 2β2 − 1 and,
therefore, by the half-angle formula again, we find that
α = 2(2β2 − 1)− 1 ∈ Q(β2). Therefore, α is constructible. In fact, we
have obtained an exact formula: α = 1

4(
√

5− 1).

15.5.3 Decide whether or not a regular 9-gon is constructible.

Solution: Let α = cos 2π/9. The 9-gon is constructible if and only if
α is constructible. Let’s use a formula involving cos 3θ. We find (see
the previous problem) that

cos 3θ = 4 cos3 θ − 3 cos θ.

Use θ = 2π/9. Thus, −1
2 = cos 2π/3 = 4α3 − 3α. The polynomial

f(x) = 8x3 − 6x+ 1 is irreducible in Q[x] (by the rational roots test
and the fact that it is cubic). Therefore, Q(α) is a degree 3 extension
of Q. Therefore, α does not belong to a tower of degree 2 extensions
of Q. Therefore, the 9-gon is not constructible.

15.6.1 Let F be a field of characteristic zero. Suppose that g(x) ∈ F [x] is
irreducible and is a common divisor of f and f ′, where f(x) ∈ F [x].
Prove that g2 divides f .

Solution: We may assume that g has positive degree since the
conclusion is clearly true if f has degree zero since F is a field. Since
g | f , there is an h ∈ F [x] such that f = gh. By the product rule,
f ′ = g′h+ gh′. Since g | f ′ and g | g, we must have that g | g′h. Since
F has characteristic zero and g has positive degree, g and g′ are
relatively prime. Since F [x] is a PID, g, being irreducible, is also a
prime. Therefore, g | g′h implies that g | h. Therefore, there exists a
k ∈ F [x] such that h = kg. Hence, f = kg2 and so g2 | f .

15.7.8 The polynomials f(x) = x3 + x+ 1 and g(x) = x3 + x2 + 1 are
irreducible over F2 and so define extensions K and L by adjoining a
root of f(x) and g(x), respectively. Give an explicit description of an
isomorphism K → L. How many such isomorphisms are there?

Solution: Let F = F2. Let M = F8. Since this is a degree 3 extension
of F which consists of all of the roots of x8 − x, which has both f
and g as factors, we know that both f and g split completely over M
and both have exactly 3 roots. (This follows from our previous
analysis of M .)

Let α ∈M be a root of f(x) and let K = F (α). Similarly, let β ∈M
be a root of g(x) and let L = F (β). Any isomorphism φ : K → L
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must take 1 to 1 and so φ is the identity when restricted to the prime
subfield F . Therefore, φ is determined completely by φ(α) by the
substitution principle. (Remember that F [α] = F (α), so the
substitution principle applies.)

To be a well-defined homomorphism, we must have that φ(α)
satisfies f(α) = 0 in L. Thus, α must map to a root of f(x) ∈ L[x].
And mapping α to a root will necessarily define an isomorphism
since the image will be a degree three extension of F and hence is all
of L. Therefore, there are exactly 3 such isomorphisms.

We can determine one by brute force since we know all of the
elements of L:

L = {0, 1, β, β + 1, β2, β2 + 1, β + β2, 1 + β + β2},

where g(β) = 0.

We find that β + 1 is a root of f(x):

f(β + 1) = β3 + β2 + β + 1 + β + 1 + 1 = β3 + β2 + 1 = 0.

Therefore, φ(α) = β + 1 defines an isomorphism K → L.

15.3.7 (a) Is i in the field Q( 4
√
−2)? (b) Is 3

√
5 ∈ Q( 3

√
2?

Solution to part (a): Let F = Q, L = F ( 4
√

2), and K = L(i). Since
x4 − 2 is irreducible over F (by Eisenstein with p = 2), [L : F ] = 4.
Since L is a subfield of R, i /∈ L. Since x2 + 1 is irreducible over L,
[K : L] = 2 and so [K : F ] = 8. Let M = Q( 4

√
−2). Since x4 + 2 is

irreducible over F , [M : F ] = 4. If i ∈M , then M = M(i). But we
will prove that M(i) = K, which provides a contradiction since K
has degree 8 over F .

It sufficies to prove that 4
√

2 ∈M(i). Let ω = eiπ/4. Then ω 4
√

2 is a
4th root of −2 since ω4 = −1. Since ( 4

√
−2)2 =

√
−2 = ±i

√
2, it

follows that
√

2 ∈M(i). And from this, it follows that
ω = 1√

2
(1 + i) ∈M(i). And, therefore, 4

√
2 ∈M(i). Thus, we have

shown that M = K.

Solution to part (b):

15.7.4 Determine the number of irreducible polynomials of degree 3 over F3

and over F5.

Solution: Let p be a prime and let K be the field of q = p3 elements.
The elements of K correspond to the roots of xq − x in some splitting
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field. If g(x) is an irreducible factors of xq − x, then Fp[x]/(g) is
isomorphic to a subfield of K. Since [K : Fp] = 3, the degree of g
must be 1 or 3. There are exactly p irreducible factors of degree 1,
each corresponding to an element of Fp. After factoring these from
xq − x, we are left with another factor of degree q − p. All irreducible
factors of this must have degree 3. Therefore, there are (q − p)/3 of
them.

If p = 3, then there are 8; if there are p = 5, then there are 40.
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