State hypothesis and conclusion in the following theorems from calculus:
(1) Theorem: Suppose that the function $f$ is continuous on the closed interval $[a, b]$. Then $f(x)$ assumes every value between $f(a)$ and $f(b)$.

Hypothesis:

Conclusion:
(2) Theorem: If $n$ is a positive integer and if $a>0$ for even values of $n$ then

$$
\lim _{x \rightarrow a} \sqrt[n]{x}=\sqrt[n]{a}
$$

Hypothesis:

Conclusion:
(3) Theorem: Let $C$ be a piecewise smooth simple closed curve that bounds the region $R$ in the plane. Suppose that the functions $P(x, y)$ and $Q(x, y)$ are continuous and have continuous first-order partial derivatives on $R$. Then

$$
\oint_{C} P d x+Q d y=\iint_{R}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A .
$$

Hypothesis:

Conclusion:
(4) Theorem: If $f$ is differentiable at $c$ and is defined on an open interval containing $c$ and if $f(c)$ is either a local maximum value or a local minimum value of f , then $f^{\prime}(c)=0$.

Hypothesis:

Conclusion:
(5) Theorem: Suppose that a function $g$ has a continuous derivative on $[a, b]$ and that $f$ is continuous on the set $g([a, b])$. Let $u=g(x)$. Then

$$
\int_{a}^{b} f(g(x)) g^{\prime}(x) d x=\int_{g(a)}^{g(b)} f(u) d u
$$

Hypothesis:

Conclusion:
(6) Theorem: Suppose that the function $f$ is defined on the open interval $I$ and that $f^{\prime}(x)>0$ for all $x$ in $I$. Then $f$ has an inverse function $g$, the function $g$ is differentiable, and

$$
g^{\prime}(x)=\frac{1}{f^{\prime}(g(x))}
$$

for all $x$ in the domain of $g$.
Hypothesis:

Conclusion:

