309 Worksheet 3.2

(1) Restate the definition of linear independence/dependence using quantifiers 'for all' and 'exists'.
(2) Write each statement below as a statement using 'for all' and 'exists':
(a) For every positive real number ϵ, there is a natural number n with $\frac{1}{n}<\epsilon$.
(b) Every even integer greater than 2 is the product of an even integer and a prime number.
(c) For every positive real number ϵ, there is a positive number δ such that $x^{2}<\epsilon$ whenever $|x|<\delta$.
(d) There exists an integer m with the property that for every integer x, there is an integer y with $x y=m$.
(e) There is always some prime number strictly between any given integer $n>1$ and its square.
(3) Determine whether each statement below is true or false. Give the negation of each statement:
(a) For all $x \in \mathbb{R}$ there is an $a \in \mathbb{R}$ with $|x|<a$
(b) There is an $a \in \mathbb{R}$ such that for all $x \in \mathbb{N}, a<x$
(c) For all $x \in \mathbb{R}$ there is a $y \in \mathbb{R}$ such that $x y=1$
(d) There is a real number $b \in \mathbb{R}$ such that for all $a \in \mathbb{N},|a-b| \leq 100$
(e) For all $a \in \mathbb{R}, \sqrt{a^{2}}=a$
(f) For all $a \in[0, \infty)$ there is an $x \in \mathbb{R}$ such that $x^{2}=a$ and $-x^{2}=a$
(g) There is an integer $x \in \mathbb{Z}$ such that for all $y \in \mathbb{Z}, \frac{y}{x} \in \mathbb{Z}$
(h) For all $a \in \mathbb{N}$ there are integers $b, c \in \mathbb{N}$ such that $a b=c^{3}$

