309 Worksheet 3.2

(1) Restate the definition of linear independence/dependence using quantifiers 'for all' and 'exists'.

(2) Write each statement below as a statement using 'for all' and 'exists':

(a) For every positive real number ϵ , there is a natural number n with $\frac{1}{n} < \epsilon$.

(b) Every even integer greater than 2 is the product of an even integer and a prime number.

(c) For every positive real number ϵ , there is a positive number δ such that $x^2 < \epsilon$ whenever $|x| < \delta$.

(d) There exists an integer m with the property that for every integer x, there is an integer y with xy = m.

(e) There is always some prime number strictly between any given integer n > 1 and its square.

(3) Determine whether each statement below is true or false. Give the negation of each statement:

- (a) For all $x \in \mathbb{R}$ there is an $a \in \mathbb{R}$ with |x| < a
- (b) There is an $a \in \mathbb{R}$ such that for all $x \in \mathbb{N}, a < x$
- (c) For all $x \in \mathbb{R}$ there is a $y \in \mathbb{R}$ such that xy = 1
- (d) There is a real number $b \in \mathbb{R}$ such that for all $a \in \mathbb{N}, |a b| \le 100$
- (e) For all $a \in \mathbb{R}, \sqrt{a^2} = a$
- (f) For all $a \in [0, \infty)$ there is an $x \in \mathbb{R}$ such that $x^2 = a$ and $-x^2 = a$
- (g) There is an integer $x \in \mathbb{Z}$ such that for all $y \in \mathbb{Z}, \frac{y}{x} \in \mathbb{Z}$
- (h) For all $a \in \mathbb{N}$ there are integers $b, c \in \mathbb{N}$ such that $ab = c^3$