309 Worksheet 3.3

True or False? Justify your answer: Let V be a vector space.

(1) For all $\mathbf{v} \in V$ the set $\{\mathbf{v}\}$ is linearly independent. True — False? REASON:

(2) If $B = {\mathbf{v}_1, \dots, \mathbf{v}_n} \subseteq V$ with $\mathbf{v}_i = \mathbf{0}$ for some $1 \leq i \leq n$ then B is linearly dependent. True — False? REASON:

(3) The set of vectors $B = {\mathbf{v}_1, \ldots, \mathbf{v}_n} \subseteq V$ is linearly dependent if and only if every vector \mathbf{v}_i can be written as a linear combination of vectors $\mathbf{v}_1, \ldots, \mathbf{v}_{i-1}, \mathbf{v}_{i+1}, \ldots, \mathbf{v}_n$. True — False? REASON:

(4) Three vectors $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^3$ are linearly dependent if and only if $\operatorname{span}(\mathbf{x}, \mathbf{y}, \mathbf{z})$ is a plane in \mathbb{R}^3 . True — False? REASON:

(5) If $B = {\mathbf{v}_1, \ldots, \mathbf{v}_n} \subseteq V$ is a linearly independent subset of V then every nonempty subset $B' \subseteq B$ is linearly independent. True — False? REASON:

(6) If $B = {\mathbf{u}_1, \ldots, \mathbf{u}_n}$ is a set of vectors in a vector space V so that for all $1 \le i < j \le n$ the set ${\mathbf{u}_i, \mathbf{u}_j}$ is linearly independent, then the set B is linearly independent. True — False? REASON: