309 Worksheet 4.2
True or False? Justify your answer:
(1) If two vectors are orthogonal, they are linearly independent.

True - False?
REASON:
(2) If \mathbf{x} is orthogonal to both \mathbf{u} and \mathbf{v}, then \mathbf{x} is orthogonal to every vector in $\operatorname{span}(\mathbf{u}, \mathbf{v})$.
True - False?
REASON:
(3) The orthogonal projection of \mathbf{y} onto \mathbf{u} is a scalar multiple of \mathbf{y}.

True - False?
REASON:
(4) If $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is an orthogonal basis of W, then multiplying \mathbf{v}_{3} by a scalar c gives a new orthogonal basis $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, c \mathbf{v}_{3}\right\}$.
True - False?
REASON:
(5) The Gram-Schmidt process produces from a linearly independent set $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\}$ an orthogonal set $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ with the property that for every $1 \leq k \leq n$, the vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ span the same subspace as $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}$.
True - False?
REASON:
(6) The set of all vectors in \mathbb{R}^{n} which are orthogonal to one fixed vector is a subspace of \mathbb{R}^{n}.
True - False?
REASON:

