309 Worksheet 4.2

True or False? Justify your answer:

(1) If two vectors are orthogonal, they are linearly independent. True — False? REASON:

(2) If \mathbf{x} is orthogonal to both \mathbf{u} and \mathbf{v} , then \mathbf{x} is orthogonal to every vector in span (\mathbf{u}, \mathbf{v}) . True — False? REASON:

(3) The orthogonal projection of \mathbf{y} onto \mathbf{u} is a scalar multiple of \mathbf{y} . True — False? REASON:

(4) If $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is an orthogonal basis of W, then multiplying \mathbf{v}_3 by a scalar c gives a new orthogonal basis $\{\mathbf{v}_1, \mathbf{v}_2, c\mathbf{v}_3\}$. True — False? REASON:

(5) The Gram-Schmidt process produces from a linearly independent set $\{\mathbf{x}_1, \ldots, \mathbf{x}_n\}$ an orthogonal set $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ with the property that for every $1 \le k \le n$, the vectors $\mathbf{v}_1, \ldots, \mathbf{v}_k$ span the same subspace as $\mathbf{x}_1, \ldots, \mathbf{x}_k$. True — False? REASON:

(6) The set of all vectors in \mathbb{R}^n which are orthogonal to one fixed vector is a subspace of \mathbb{R}^n . True — False? REASON: