309 Worksheet 5.2

An $n \times n$ elementary matrix is a matrix obtained from the $n \times n$ identity matrix I_{n} by one elementary operation.
$E_{i \leftrightarrow j}$ is obtained from I_{n} by interchanging the i th and the j th row. $E_{a i}$ is obtained from I_{n} by multiplying the i th row by the nonzero constant a. $E_{a i+j}$ is obtained from I_{n} by adding a times the i th row to the j th row.
(1) Let A be an $n \times m$ matrix and E an $n \times n$ elementary matrix. Show:
(a) $E_{i \leftrightarrow j} A$ is the matrix obtained from A by interchanging the i th and the j th row of A.
(b) $E_{a i} A$ is the matrix obtained from A by multiplying the i th row of A by $a \neq 0$.
(c) $E_{a i+j} A$ is the matrix obtained from A by adding a times the i th row to the j th row of A.
(2) Let B be an $m \times n$ matrix and E an $n \times n$ elementary matrix. Show:
(a) $B E_{i \leftrightarrow j}$ is the matrix obtained from B by interchanging the i th and the j th column of B.
(b) $B E_{a i}$ is the matrix obtained from B by multiplying the i th column of B by a.
(c) $B E_{a i+j}$ is the matrix obtained from B by adding a times the i th column to the j th column of B.
(3) Show:
(a) $E_{i \leftrightarrow j}^{2}=I_{n}$
(b) $E_{a i} E_{a^{-1} i}=E_{a^{-1} i} E_{a i}=I_{n}$
(c) $E_{a i+j} E_{(-a) i+j}=E_{(-a) i+j} E_{a i+j}=I_{n}$

Let $A=\left(\begin{array}{c}\mathbf{a}_{1} \\ \mathbf{a}_{2} \\ \vdots \\ \mathbf{a}_{m}\end{array}\right)$ be an $m \times n$ matrix where $\mathbf{a}_{i} \in \mathbb{M}(1, n)$ denote the rows of
A. The row space of A is defined to be the subspace $R(A)=\operatorname{span}\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}\right) \subseteq$ $\mathbb{M}(1, n)$.
(4) Show:
(a) If A^{\prime} is a matrix obtained from A by a sequence of elementary row operations, then $R\left(A^{\prime}\right)=R(A)$. In particular, $\operatorname{dim}\left(R\left(A^{\prime}\right)\right)=\operatorname{dim}(R(A))$.
(b) Let I_{n} be the $n \times n$ identity matrix and C a matrix obtained from I_{n} by a sequence of elementary row operations. Then no row of C consists entirely of zeros.

