309 Worksheet 5.3 (section 5.2)

Let $A \in \mathbb{M}(n, n)$. Suppose we want to solve the n linear systems:

$$
\begin{gather*}
A \mathbf{x}_{1}=\mathbf{e}_{1} \\
A \mathbf{x}_{2}=\mathbf{e}_{2} \\
\vdots \tag{*}\\
A \mathbf{x}_{n}=\mathbf{e}_{n}
\end{gather*}
$$

where $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ are the standard basis vectors of \mathbb{R}^{n}. We can do this by considering n augmented $n \times(n+1)$ matrices $\left[A \mid \mathbf{e}_{1}\right],\left[A \mid \mathbf{e}_{2}\right], \ldots,\left[A \mid \mathbf{e}_{n}\right]$. In each case, we bring A into reduced echelon form D by a sequence of elementary row operations and perform the same sequence of elementary row operations on the $(n+1)$ st column \mathbf{e}_{i}. Note that the same sequence of elementary row operations brings A into reduced echelon in ALL n cases. Hence we can shorten this process by combining the n augmented matrices $\left[A \mid \mathbf{e}_{i}\right]$ into one augmented $n \times 2 n$ matrix $\left[A \mid I_{n}\right]$. Then we perform the same sequence of row operations on A and I_{n} to bring A into reduced echelon form D. The result is an $n \times 2 n$ matrix $[D \mid C]$ with D the reduced echelon form of A and C a matrix obtained from I_{n} by the same sequence of row operations that has been applied to A. Remember that Problem (4) (b) of worksheet 5.2 implies that no row of C consists entirely of zeros!

Problem (1) Let $A \in \mathbb{M}(n, n)$. Show that there is an $n \times n$ matrix C with $A C=I_{n}$ if and only if all n linear systems $(*)$ are solvable. If $A C=I_{n}$ what are the columns of C ?

Problem (2) Let $A \in \mathbb{M}(n, n)$. Show:
(a) If the reduced echelon form of A contains a row which consists entirely of zeros, then for all matrices $B \in \mathbb{M}(n, n), A B \neq I_{n}$.
(b) If the reduced echelon form D of A equals I_{n}, then there is a matrix $C \in \mathbb{M}(n, n)$ with $A C=I_{n}$. Moreover, such a matrix C can be obtained by a sequence of elementary row operations which reduces the augmented matrix $\left[A \mid I_{n}\right]$ to $\left[I_{n} \mid C\right]$.

We just have shown the following theorem:
Theorem 1. Let $A \in \mathbb{M}(n, n)$.
(a) If the reduced echelon form of A contains a row which consists entirely of zeros, then for all matrices $B \in \mathbb{M}(n, n), A B \neq I_{n}$.
(b) If the reduced echelon form of A is I_{n}, then the augmented matrix $\left[A \mid I_{n}\right]$ can be reduced to a matrix $\left[I_{n} \mid C\right]$ where $A C=I_{n}$.

This method provides even more. We claim:
Theorem 2. Let $A \in \mathbb{M}(n, n)$ and suppose that the augmented matrix $\left[A \mid I_{n}\right]$ can be reduced to $\left[I_{n} \mid C\right]$ by a sequence of elementary row operations. Then $A C=$ $C A=I_{n}$.

Proof. We have already shown that $A C=I_{n}$. By assumption the matrix $\left[A \mid I_{n}\right]$ can be reduced to $\left[I_{n} \mid C\right]$ by elementary row operations. This implies that I_{n} is the reduced echelon form of A. Performing an elementary row operation on a matrix B is the same as multiplying B from the left by the corresponding elementary matrix. Thus there are elementary matrices $E_{1}, E_{2}, \ldots, E_{m}$ so that

$$
E_{m} E_{m-1} \ldots E_{2} E_{1} A=I_{n}
$$

In the augmented matrix $\left[A \mid I_{n}\right]$ the same sequence of elementary row operations has been applied to I_{n} in order to obtain the matrix C. This means:

$$
E_{m} E_{m-1} \ldots E_{2} E_{1} I_{n}=C=E_{m} E_{m-1} \ldots E_{2} E_{1}
$$

and showing that also $C A=I_{n}$.
Definition. Let $A \in \mathbb{M}(n, n) . A$ is called invertible or nonsingular if there is a matrix $C \in \mathbb{M}(n, n)$ with $A C=C A=I_{n}$. A matrix with this property is called a multiplicative inverse of A.

Theorem 3. An invertible matrix has a unique inverse, written A^{-1}.
Proof. Suppose that $C, C^{\prime} \in \mathbb{M}(n, n)$ with $A C=C A=I$ and $A C^{\prime}=C^{\prime} A=I$. Multiply the equation

$$
A C=I
$$

by C^{\prime} from the left. Thus:

$$
C^{\prime}(A C)=C^{\prime} I=C^{\prime}
$$

By the associative law for multiplication of matrices:

$$
C^{\prime}(A C)=\left(C^{\prime} A\right) C
$$

and by assumption $C^{\prime} A=I$. Thus

$$
C^{\prime}(A C)=\left(C^{\prime} A\right) C=I C=C=C^{\prime}
$$

Theorem 4. If a matrix is invertible, then A^{-1} is also invertible. In this case $\left(A^{-1}\right)^{-1}=A$.

Proof. Obviously,

$$
A^{-1} A=A A^{-1}=I
$$

and by the uniqueness of the inverse $\left(A^{-1}\right)^{-1}=A$.
Theorem 5. Suppose $A, B \in \mathbb{M}(n, n)$. If A and B are invertible, then so is $A B$. In this case, $(A B)^{-1}=B^{-1} A^{-1}$.

Proof. Verify that

$$
\begin{aligned}
& (A B)\left(B^{-1} A^{-1}\right)=I \quad \text { and } \\
& \left(B^{-1} A^{-1}\right)(A B)=I
\end{aligned}
$$

Corollary 6. If $A, B \in \mathbb{M}(n, n)$ with $A B=I$, then $B A=I$.
Proof. For all $1 \leq j \leq n$ the columns B_{j} of B are solutions to the linear system $A \mathbf{x}=\mathbf{e}_{j}$. By problem (2)(b) the augmented matrix $\left[A \mid I_{n}\right]$ reduces by elementary row operations to $\left[I_{n} \mid C\right]$ where $A C=C A=I$. Hence $C=C I=C(A B)=$ $(C A) B=I B=B$ and also $B A=I$ by Theorem (2).
Corollary 7. If $A, B \in \mathbb{M}(n, n)$ with $B A=I$, then $A B=I$.
Proof. Use Corollary 6 and interchange the role of A and B.
Definition. The rank of an $m \times n$ matrix A, denoted $\operatorname{rank} A$, is the number of leading ones in the reduced echelon form of A.

Theorem 8. An $n \times n$ matrix A has an inverse C if and only if rank $A=n$.
Proof. Here comes your proof:

Note that the rank of an $m \times n$ matrix A equals the dimension of the row space $R(A)$ of A. Of course one can similarly define the column space $C(A)$ of A as the subspace of \mathbb{R}^{m} which is spanned by the columns A_{1}, \ldots, A_{n} of A. Then the following equality holds true:

$$
\operatorname{dim} R(A)=\operatorname{dim} C(A)=\operatorname{rank} A
$$

(without proof)

