
309 Worksheet 5.3 (section 5.2)

Let A ∈M(n, n). Suppose we want to solve the n linear systems:

Ax1 = e1

Ax2 = e2

...(*)
Axn = en

where e1, . . . , en are the standard basis vectors of Rn. We can do this by consider-
ing n augmented n× (n + 1) matrices [A | e1], [A | e2], . . . , [A | en]. In each case, we
bring A into reduced echelon form D by a sequence of elementary row operations
and perform the same sequence of elementary row operations on the (n + 1)st col-
umn ei. Note that the same sequence of elementary row operations brings A into
reduced echelon in ALL n cases. Hence we can shorten this process by combin-
ing the n augmented matrices [A | ei] into one augmented n × 2n matrix [A | In].
Then we perform the same sequence of row operations on A and In to bring A
into reduced echelon form D. The result is an n × 2n matrix [D |C] with D the
reduced echelon form of A and C a matrix obtained from In by the same sequence
of row operations that has been applied to A. Remember that Problem (4) (b) of
worksheet 5.2 implies that no row of C consists entirely of zeros!

Problem (1) Let A ∈M(n, n). Show that there is an n×n matrix C with AC = In

if and only if all n linear systems (∗) are solvable. If AC = In what are the columns
of C?



Problem (2) Let A ∈M(n, n). Show:

(a) If the reduced echelon form of A contains a row which consists entirely of zeros,
then for all matrices B ∈M(n, n), AB 6= In.

(b) If the reduced echelon form D of A equals In, then there is a matrix C ∈M(n, n)
with AC = In. Moreover, such a matrix C can be obtained by a sequence of
elementary row operations which reduces the augmented matrix [A | In] to [In |C].

We just have shown the following theorem:

Theorem 1. Let A ∈M(n, n).

(a) If the reduced echelon form of A contains a row which consists entirely of
zeros, then for all matrices B ∈M(n, n), AB 6= In.

(b) If the reduced echelon form of A is In, then the augmented matrix [A | In]
can be reduced to a matrix [In |C] where AC = In.

This method provides even more. We claim:

Theorem 2. Let A ∈M(n, n) and suppose that the augmented matrix [A | In] can
be reduced to [In |C] by a sequence of elementary row operations. Then AC =
CA = In.



Proof. We have already shown that AC = In. By assumption the matrix [A | In]
can be reduced to [In |C] by elementary row operations. This implies that In is the
reduced echelon form of A. Performing an elementary row operation on a matrix B
is the same as multiplying B from the left by the corresponding elementary matrix.
Thus there are elementary matrices E1, E2, . . . , Em so that

EmEm−1 . . . E2E1A = In.

In the augmented matrix [A | In] the same sequence of elementary row operations
has been applied to In in order to obtain the matrix C. This means:

EmEm−1 . . . E2E1In = C = EmEm−1 . . . E2E1

and showing that also CA = In.

Definition. Let A ∈ M(n, n). A is called invertible or nonsingular if there is a
matrix C ∈ M(n, n) with AC = CA = In. A matrix with this property is called a
multiplicative inverse of A.

Theorem 3. An invertible matrix has a unique inverse, written A−1.

Proof. Suppose that C, C ′ ∈ M(n, n) with AC = CA = I and AC ′ = C ′A = I.
Multiply the equation

AC = I

by C ′ from the left. Thus:
C ′(AC) = C ′I = C ′.

By the associative law for multiplication of matrices:

C ′(AC) = (C ′A)C

and by assumption C ′A = I. Thus

C ′(AC) = (C ′A)C = IC = C = C ′.

Theorem 4. If a matrix is invertible, then A−1 is also invertible. In this case
(A−1)−1 = A.

Proof. Obviously,
A−1A = AA−1 = I

and by the uniqueness of the inverse (A−1)−1 = A.

Theorem 5. Suppose A, B ∈ M(n, n). If A and B are invertible, then so is AB.
In this case, (AB)−1 = B−1A−1.

Proof. Verify that

(AB)(B−1A−1) = I and

(B−1A−1)(AB) = I



Corollary 6. If A, B ∈M(n, n) with AB = I, then BA = I.

Proof. For all 1 ≤ j ≤ n the columns Bj of B are solutions to the linear system
Ax = ej . By problem (2)(b) the augmented matrix [A | In] reduces by elementary
row operations to [In |C] where AC = CA = I. Hence C = CI = C(AB) =
(CA)B = IB = B and also BA = I by Theorem (2).

Corollary 7. If A, B ∈M(n, n) with BA = I, then AB = I.

Proof. Use Corollary 6 and interchange the role of A and B.

Definition. The rank of an m×n matrix A, denoted rankA, is the number of leading
ones in the reduced echelon form of A.

Theorem 8. An n× n matrix A has an inverse C if and only if rankA = n.

Proof. Here comes your proof:

Note that the rank of an m× n matrix A equals the dimension of the row space
R(A) of A. Of course one can similarly define the column space C(A) of A as
the subspace of Rm which is spanned by the columns A1, . . . , An of A. Then the
following equality holds true:

dimR(A) = dimC(A) = rankA.

(without proof)


