(1) Let $f: X \longrightarrow Y$ be a function. Negate the notion of 'one-to-one' and 'onto' functions using 'for all' and 'exists':
(a) f is not one-to-one if
(b) f is not onto if
(2) Let $X=\{1,2,3,4\}$. Describe a set X and a function $f: X \longrightarrow Y$ so that f is: (Note that in all 4 cases the set Y may vary.)
(a) onto Y but not one-to-one
(b) one-to-one but not onto
(c) both one-to-one and onto
(d) neither one-to-one nor onto
(3) Let $f: X \longrightarrow Y$ be a function. Show that f is one-to-one and onto if and only if there is a function $g: Y \longrightarrow X$ so that $f g=\operatorname{id}_{Y}$ and $g f=\operatorname{id}_{X}$.
(4) A diagram of functions

is called commutative if $g f=\ell h$, that is, the two composition functions $g f, \ell h$: $X \longrightarrow T$ are identical.

Verify that the following diagrams are commutative:
(a)

where $f(x)=2 x, g(x)=\frac{1}{2} x, h(x)=x+2$, and $\ell(x)=x-2$.
(b)

where $f(x, y)=(2 x, 3 y, 4), g(x, y, z)=(x, y, 0), h(x, y)=(2 x, y, 0)$, and $\ell(x, y, z, u)=$ $(x, 3 y, 0)$.

