309 Worksheet 6.3

Theorem (1). Let V and W be vector spaces and $T: V \longrightarrow W$ a linear transformation. Assume that V is finite-dimensional with basis $B=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$. Show:
(a) T is one-to-one if and only if the set $T(B)=\left\{T\left(\mathbf{v}_{1}\right), \ldots, T\left(\mathbf{v}_{n}\right)\right\}$ is linearly independent.
(b) T is onto if and only if the set $T(B)=\left\{T\left(\mathbf{v}_{1}\right), \ldots, T\left(\mathbf{v}_{n}\right)\right\}$ spans W.
(c) T is onto and one-to-one if and only if the set $T(B)=\left\{T\left(\mathbf{v}_{1}\right), \ldots, T\left(\mathbf{v}_{n}\right)\right\}$ is a basis of W.
(2) Let

be a commutative diagram. Suppose that the maps h and g are onto and one-to-one.
Show:
(a) f is one-to-one if and only if ℓ is one-to-one.
(b) f is onto if and only if ℓ is onto.
(c) f is one-to-one and onto if and only if ℓ is one-to-one and onto.
(3) Let X, Y, S, and T be sets and $h: X \longrightarrow S$ and $g: Y \longrightarrow T$ one-to-one and onto maps.
(a) Let $f: X \longrightarrow Y$ be a map. Show that there is a unique map $\ell: S \longrightarrow T$ so that the diagram:

commutes.
(b) Let $\ell: S \longrightarrow T$ be a map. Show that there is a unique map $f: X \longrightarrow Y$ so that the diagram:

commutes.

