309 Worksheet 6.3

Theorem (1). Let V and W be vector spaces and $T: V \longrightarrow W$ a linear transformation. Assume that V is finite-dimensional with basis $B = {\mathbf{v}_1, \ldots, \mathbf{v}_n}$. Show:

- (a) T is one-to-one if and only if the set $T(B) = \{T(\mathbf{v}_1), \ldots, T(\mathbf{v}_n)\}$ is linearly independent.
- (b) T is onto if and only if the set $T(B) = \{T(\mathbf{v}_1), \dots, T(\mathbf{v}_n)\}$ spans W.
- (c) T is onto and one-to-one if and only if the set $T(B) = \{T(\mathbf{v}_1), \dots, T(\mathbf{v}_n)\}$ is a basis of W.

(2) Let

$$\begin{array}{ccc} X & \stackrel{f}{\longrightarrow} Y \\ h & g \\ S & \stackrel{\ell}{\longrightarrow} T \end{array}$$

be a commutative diagram. Suppose that the maps h and g are onto and one-to-one. Show:

- (a) f is one-to-one if and only if ℓ is one-to-one.
- (b) f is onto if and only if ℓ is onto.
- (c) f is one-to-one and onto if and only if ℓ is one-to-one and onto.

(3) Let X, Y, S, and T be sets and $h : X \longrightarrow S$ and $g : Y \longrightarrow T$ one-to-one and onto maps.

(a) Let $f: X \longrightarrow Y$ be a map. Show that there is a unique map $\ell: S \longrightarrow T$ so that the diagram:

$$\begin{array}{ccc} X & \stackrel{f}{\longrightarrow} & Y \\ h & & g \\ S & \stackrel{\ell}{\longrightarrow} & T \end{array}$$

commutes.

(b) Let $\ell: S \longrightarrow T$ be a map. Show that there is a unique map $f: X \longrightarrow Y$ so that the diagram:

$$\begin{array}{ccc} X & \stackrel{f}{\longrightarrow} & Y \\ h & & g \\ S & \stackrel{\ell}{\longrightarrow} & T \end{array}$$

commutes.