309 Worksheet 6.4

(1) Let V be a finite dimensional vector space with ordered basis $B = {\mathbf{v}_1, \dots, \mathbf{v}_n}$. Let $[]_B : V \longrightarrow \mathbb{R}^n$ denote the coordinate function of V with respect to B, that

is, if
$$\mathbf{v} \in V$$
 with $\mathbf{v} = a_1 \mathbf{v}_1 + \dots + a_n \mathbf{v}_n$ then $[\mathbf{v}]_B = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}$ and let $L_B : \mathbb{R}^n \longrightarrow V$
denote the function defined by $L_B \begin{pmatrix} r_1 \\ \vdots \end{pmatrix} = r_1 \mathbf{v}_1 + \dots + r_n \mathbf{v}_n$. Show

 $\langle r_n \rangle$

- (a) []_B and L_B are linear transformations. (b) []_B and L_B are inverse to each other.

(2) Let V and W be finite-dimensional vector spaces with ordered bases $B = {\mathbf{v}_1, \ldots, \mathbf{v}_n}$ of V and $B' = B = {\mathbf{u}_1, \ldots, \mathbf{u}_m}$ of W. Let $T: V \longrightarrow W$ be a linear transformation. Consider the commutative diagram

$$V \xrightarrow{T} W$$
$$[]_{B} \downarrow \qquad []_{B'} \downarrow$$
$$\mathbb{R}^{n} \xrightarrow{\mu_{A}} \mathbb{R}^{m}$$

where A is the matrix of T relative to B and B'. Show

- (a) There is exactly one map $\mu_A : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ such that the above diagram commutes.
- (b) T is one-to-one if and only if μ_A is one-to-one.
- (c) T is onto if and only if μ_A is onto.
- (d) T has an inverse function if and only if the matrix A is invertible.