309 Worksheet 6.4

(1) Let V be a finite dimensional vector space with ordered basis $B=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$. Let []$_{B}: V \longrightarrow \mathbb{R}^{n}$ denote the coordinate function of V with respect to B, that is, if $\mathbf{v} \in V$ with $\mathbf{v}=a_{1} \mathbf{v}_{1}+\ldots a_{n} \mathbf{v}_{n}$ then $[\mathbf{v}]_{B}=\left(\begin{array}{c}a_{1} \\ \vdots \\ a_{n}\end{array}\right)$ and let $L_{B}: \mathbb{R}^{n} \longrightarrow V$ denote the function defined by $L_{B}\left(\begin{array}{c}r_{1} \\ \vdots \\ r_{n}\end{array}\right)=r_{1} \mathbf{v}_{1}+\ldots r_{n} \mathbf{v}_{n}$. Show
(a) []$_{B}$ and L_{B} are linear transformations.
(b) []$_{B}$ and L_{B} are inverse to each other.
(2) Let V and W be finite-dimensional vector spaces with ordered bases $B=$ $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ of V and $B^{\prime}=B=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}\right\}$ of W. Let $T: V \longrightarrow W$ be a linear transformation. Consider the commutative diagram

where A is the matrix of T relative to B and B^{\prime}. Show
(a) There is exactly one map $\mu_{A}: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ such that the above diagram commutes.
(b) T is one-to-one if and only if μ_{A} is one-to-one.
(c) T is onto if and only if μ_{A} is onto.
(d) T has an inverse function if and only if the matrix A is invertible.

