309 Worksheet 6.5

(1) Let V be a finite-dimensional vector space with ordered bases $B=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ and $B^{\prime}=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}\right\}$. The identity map $\operatorname{id}_{V}: V \longrightarrow V$ is a linear transformation which yields a commutative diagram:

where P is the change-of-basis matrix from basis B to basis B^{\prime}. Show:
(a) μ_{P} is one-to-one and onto.
(b) P is an invertible matrix.
(c) P^{-1} is the change-of-basis matrix for changing from basis B^{\prime} to B.
(2) Let V be a finite-dimensional vector space with ordered bases $B=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$, $B^{\prime}=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}\right\}$, and $B^{\prime \prime}=\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{n}\right\}$. The identity map yields a commutative diagram:

where P is the change-of-basis matrix from B to B^{\prime} and P^{\prime} is the change-of-basis matrix from P^{\prime} to $P^{\prime \prime}$. Show:
(a) All three squares are commutative.
(b) The above diagram can be shortened to a commutative diagram

(c) $P^{\prime} P$ is the change-of-basis matrix from basis B to basis $B^{\prime \prime}$.

