309 Worksheet 6.6
Let $T: V \longrightarrow W$ be a linear transformation of finite-dimensional vector spaces. Let $B=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}, B^{\prime}=\left\{\mathbf{v}_{1}^{\prime}, \ldots, \mathbf{v}_{n}^{\prime}\right\}$ be bases of V and $C=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}\right\}$, $C^{\prime}=\left\{\mathbf{u}_{1}^{\prime}, \ldots, \mathbf{u}_{m}^{\prime}\right\}$ bases of W. Suppose that;
(i) A is the matrix of T with respect to bases B and C, that is the following diagram:

commutes.
((ii) P is the change-of-basis matrix for changing from basis B^{\prime} to basis B (of $V)$, that is, the diagram:

commutes.
(c) Q is the change-of-basis matrix for changing from basis C to basis c^{\prime} (of $W)$, that is the diagram

commutes.
This yields a big diagram:

Show:
(a) All squares in the big diagram commute.
(b) The big diagram can be shortened to a commutative diagram

(c) $Q A P$ is the matrix of T with respect to bases B^{\prime} and C^{\prime}.

