309 Worksheet 8.2

Let A and C be similar $n \times n$ matrices and P an invertible matrix with $P^{-1}CP = A$. In the following $B = {\mathbf{e}_1, \dots, \mathbf{e}_n}$ denotes the standard basis of \mathbb{R}^n .

(1) Show that $B_P = \{P\mathbf{e}_1, \dots, P\mathbf{e}_n\}$ is a basis of \mathbb{R}^n .

P not only defines the isomorphism $\mu_P : \mathbb{R}^n \longrightarrow \mathbb{R}^n$, but we may also consider P as a change-of-basis matrix.

(2) Show that the diagram

$$\mathbb{R}^{n} \xrightarrow{\operatorname{id}_{\mathbb{R}^{n}}} \mathbb{R}^{n}$$
$$[]_{B_{P}} \downarrow \qquad []_{B} \downarrow$$
$$\mathbb{R}^{n} \xrightarrow{\mu_{P}} \mathbb{R}^{n}$$

commutes. (*Hint:* Test commutativity on the basis vectors of $B_{P.}$)

Hence P is the change-of-basis matrix for changing from basis B_P to basis B in \mathbb{R}^n .

(3) Show:

- (a) $[]_B = id_{\mathbb{R}^n}$ (b) $[]_{B_P} = \mu_{P^{-1}}$

(4) Show that the diagram

$$\mathbb{R}^{n} \xrightarrow{\mathrm{id}_{\mathbb{R}^{n}}} \mathbb{R}^{n}$$
$$[]_{B} \downarrow \qquad []_{B_{P}} \downarrow$$
$$\mathbb{R}^{n} \xrightarrow{\mu_{P-1}} \mathbb{R}^{n}$$

commutes.

This gives a big commutative diagram

$$\mathbb{R}^{n} \xrightarrow{\operatorname{id}_{\mathbb{R}^{n}}} \mathbb{R}^{n} \xrightarrow{\mu_{C}} \mathbb{R}^{n} \xrightarrow{\operatorname{id}_{\mathbb{R}^{n}}} \mathbb{R}^{n}$$
$$[]_{B}\downarrow \qquad []_{B}\downarrow \qquad []_{B}\downarrow \qquad []_{B}\downarrow \qquad []_{B}\downarrow$$
$$\mathbb{R}^{n} \xrightarrow{\mu_{P}} \mathbb{R}^{n} \xrightarrow{\mu_{C}} \mathbb{R}^{n} \xrightarrow{\mu_{P-1}} \mathbb{R}^{n}$$

(5) Show that

- (a) All squares in the diagram commute.
- (b) The big diagram can be shortened to a commutative diagram

$$\mathbb{R}^{n} \xrightarrow{\mu_{C}} \mathbb{R}^{n}$$

$$[]_{B_{P}} \downarrow \qquad []_{B_{P}} \downarrow$$

$$\mathbb{R}^{n} \xrightarrow{\mu_{P-1}_{CP}} \mathbb{R}^{n}$$

(c) $A = P^{-1}CP$ is the matrix of μ_C with respect to the basis B_P .

Summary: Matrices A and C are similar if and only if the corresponding linear operators μ_A and μ_C are the same linear maps up to a base change.