309 Worksheet 8.2

Let A and C be similar $n \times n$ matrices and P an invertible matrix with $P^{-1} C P=A$. In the following $B=\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right\}$ denotes the standard basis of \mathbb{R}^{n}.
(1) Show that $B_{P}=\left\{P \mathbf{e}_{1}, \ldots, P \mathbf{e}_{n}\right\}$ is a basis of \mathbb{R}^{n}.
P not only defines the isomorphism $\mu_{P}: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$, but we may also consider P as a change-of-basis matrix.
(2) Show that the diagram

commutes. (Hint: Test commutativity on the basis vectors of B_{P}.)

Hence P is the change-of-basis matrix for changing from basis B_{P} to basis B in \mathbb{R}^{n}.
(3) Show:
(a) []$_{B}=\mathrm{id}_{\mathbb{R}^{n}}$
(b) []$_{B_{P}}=\mu_{P^{-1}}$
(4) Show that the diagram

$$
\begin{array}{rr}
\mathbb{R}^{n} \xrightarrow{\mathrm{id}_{\mathbb{R}^{n}}} \mathbb{R}^{n} \\
{[]_{B} \downarrow} & {[]_{B_{P}} \downarrow} \\
\mathbb{R}^{n} \xrightarrow{\mu_{P-1}} \mathbb{R}^{n}
\end{array}
$$

commutes.

This gives a big commutative diagram

(5) Show that
(a) All squares in the diagram commute.
(b) The big diagram can be shortened to a commutative diagram

$$
\begin{aligned}
& \mathbb{R}^{n} \xrightarrow{\mu_{C}} \mathbb{R}^{n} \\
& {[]_{B_{P}} \downarrow } {[]_{B_{P}} \downarrow } \\
& \mathbb{R}^{n} \xrightarrow{\mu_{P-1} \downarrow} \mathbb{R}^{n}
\end{aligned}
$$

(c) $A=P^{-1} C P$ is the matrix of μ_{C} with respect to the basis B_{P}.

Summary: Matrices A and C are similar if and only if the corresponding linear operators μ_{A} and μ_{C} are the same linear maps up to a base change.

