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Preface

Enumerative combinatorics has seen an explosive growth over the last 50 years. The
purpose of this text is to give a gentle introduction to this exciting area of research. So,
rather than trying to cover many different topics, I have chosen to give a more leisurely
treatment of some of the highlights of the field. My goal has been towrite the exposition
so it could be read by a student at the advanced undergraduate or beginning graduate
level, either as part of a course or for independent study. The reader will find it similar
in tone to my book on the symmetric group. I have tried to keep the prerequisites to a
minimum, assuming only basic courses in linear and abstract algebra as background.
Certain recurring themes are emphasized, for example, the existence of sum and prod-
uct rules first for sets, then for ordinary generating functions, and finally in the case of
exponential generating functions. I have also included some recent material from the
research literature which, to my knowledge, has not appeared in book form previously,
such as the theory of quotient posets and the connection between pattern avoidance
and quasisymmetric functions.

Most of the exercises should be doable with a reasonable amount of effort. A few
unsolved conjectures have been included among the problems in the hope that an in-
terested studentmight wish to tackle one of them. They are, of course, marked as such.

A few words about the title are in order. It is in part meant to be a tip of the hat to
Donald Knuth’s influential series of books The art of computer programing, Volumes
1–3 [51–53], which, amongmany other things, helped give birth to the study of pattern
avoidance through its connection with stack sorting; see Exercise 36 in Chapter 1. I
hope that the title also conveys some of the beauty found in this area of mathemat-
ics, for example, the elegance of the Hook Formula (equation (7.10)) for the number
of standard Young tableaux. In addition I should mention that, due to my own pref-
erences, this book concentrates on the enumerative side of combinatorics and mostly
ignores the important extremal and existential parts of the field. The reader interested
in these areas can consult the books of Flajolet and Sedgewick [25] and of van Lint [95].

xi
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xii Preface

This book grew out of the lecture notes which I have compiled over years of teach-
ing the graduate combinatorics course at Michigan State University. I would like to
thank the students in these classes for all the feedback they have given me about the
various topics and their presentation. I am also indebted to the following colleagues,
some of whom taught from a preliminary version of this book, who provided me with
suggestions aswell as catching numerous typographical errors: Matthias Beck,Moussa
Benoumhani, Andreas Blass, Seth Chaiken, Sylvie Corteel, Georges Grekos, Richard
Hensh, Nadia Lafrenière, Duncan Levear, and Tom Zaslavsky. Darij Grinberg deserves
special mention for providing copious comments and corrections as well as providing
a number of interesting exercises. I also received valuable feedback from four anony-
mous referees. Finally, I wish to express my appreciation of Ina Mette, my editor at
the American Mathematical Society. Without her gentle support and persistence, this
text would never have seen the light of day. Because I typeset this document myself,
all errors can be blamed on my computer.

East Lansing, Michigan, 2020
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Chapter 1

Basic Counting

In this chapter we will develop the most elementary techniques for enumerating sets.
Even though these methods are relatively basic, they will presage more complicated
things to come. We denote the integers by ℤ and parameters such as 𝑛 and 𝑘 are always
assumed to be integral unless otherwise indicated. We also use the notation ℕ and ℙ
for the nonnegative and positive integers, respectively. As usual, ℚ, ℝ, and ℂ stand
for the rational numbers, real numbers, and complex numbers, respectively. Finally,
whenever taking the cardinality of a set we will assume it is finite.

1.1. The Sum and Product Rules for sets

The SumandProduct Rules for sets are the basis formuch of enumeration. Andwewill
see various extensions of them later to ordinary and exponential generating functions.
Although the rules are very easy to prove, we will include the demonstrations because
the results are so useful. Given a finite set 𝑆, we will use either of the notations #𝑆 or
|𝑆| for its cardinality. We will also write 𝑆 ⊎ 𝑇 for the disjoint union of 𝑆 and 𝑇, and
usage of this symbol implies disjointness even if it has not been previously explicitly
stated. Finally, our notation for the (Cartesian) product of sets is

𝑆 × 𝑇 = {(𝑠, 𝑡) ∣ 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇}.

Lemma 1.1.1. Let 𝑆, 𝑇 be finite sets.
(a) (Sum Rule) If 𝑆 ∩ 𝑇 = ∅, then

|𝑆 ⊎ 𝑇| = |𝑆| + |𝑇|.
(b) (Product Rule) For any finite sets

|𝑆 × 𝑇| = |𝑆| ⋅ |𝑇|.

Proof. Let 𝑆 = {𝑠1, . . . , 𝑠𝑚} and 𝑇 = {𝑡1, . . . , 𝑡𝑛}. For part (a), if 𝑆 and 𝑇 are disjoint,
then we have 𝑆 ⊎ 𝑇 = {𝑠1, . . . , 𝑠𝑚, 𝑡1, . . . , 𝑡𝑛} so that |𝑆 ⊎ 𝑇| = 𝑚 + 𝑛 = |𝑆| + |𝑇|.

1
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2 1. Basic Counting

For part (b), we induct on 𝑛 = |𝑇|. If 𝑇 = ∅, then 𝑆 × 𝑇 = ∅ so that |𝑆 × 𝑇| = 0 as
desired. If |𝑇| ≥ 1, then let 𝑇 ′ = 𝑇 − {𝑡𝑛}. We can write 𝑆 × 𝑇 = (𝑆 × 𝑇 ′) ⊎ (𝑆 × {𝑡𝑛}).
Also 𝑆 × {𝑡𝑛} = {(𝑠1, 𝑡𝑛), . . . , (𝑠𝑚, 𝑡𝑛)}, which has |𝑆| = 𝑚 elements since the second
component is constant. Now by part (a) and induction

|𝑆 × 𝑇| = |𝑆 × 𝑇 ′| + |𝑆 × {𝑡𝑛}| = 𝑚(𝑛 − 1) + 𝑚 = 𝑚𝑛,

which finishes the proof. □

In combinatorial choice problems, one is often given either the option to do one
operation or another, or to do both. Suppose there are 𝑚 ways of doing the first oper-
ation and 𝑛 ways of doing the second. If there is no common operation, then the Sum
Rule tells us that the number of ways to do one or the other is𝑚+ 𝑛. And if doing the
first operation has no effect on doing the second, then the Product Rule gives a count
of 𝑚𝑛 for doing the first and then the second. More generally if there are 𝑚 ways of
doing the first operation and, no matter which of the𝑚 is chosen, the number of ways
to continue with the second operation is 𝑛, then again there are 𝑚𝑛 ways to do both.
(The actual 𝑛 second operations availablemay depend on the choice of the first, but not
their number.) So in practice one translates from English to mathematics by replacing
“or” with addition and “and” with multiplication.

Another important concept related to cardinalities is that of a bijection. A bijection
between sets 𝑆, 𝑇 is a function 𝑓∶ 𝑆 → 𝑇 which is both injective (one-to-one) and sur-
jective (onto). If 𝑆, 𝑇 are finite, then the existence of a bijection between them implies
that |𝑆| = |𝑇|. (One can extend this notion to infinite sets, but we will have no cause
to do so here.) In combinatorics, one often uses bijections to prove that two sets have
the same cardinality. See, for just one of many examples, the proof of Theorem 1.1.2
below.

We will illustrate these ideas with one of the most famous sequences in all of com-
binatorics: the Fibonacci numbers. As is sometimes the case, there is an amusing (if
somewhat improbable) story attached to the sequence. One starts at the beginning of
time with a pair of immature rabbits, one male and one female. It takes one month
for rabbits to mature. In every subsequent month a pair gives birth to another pair of
immature rabbits, one male and one female. If rabbits only breed with their birth part-
ner and live forever (as I said, the story is somewhat improbable), how many pairs of
rabbits are there at the beginning ofmonth 𝑛? Let us call this number 𝐹𝑛. It will be con-
venient to let 𝐹0 = 0. Since we begin with only one pair, 𝐹1 = 1. And at the beginning
of the second month, the pair has matured but produced no offspring, so 𝐹2 = 1. In
subsequent months, one has all the rabbits from the previous month, counted by 𝐹𝑛−1,
together with the newborn pairs. The number of newborn pairs equals the number of
mature pairs from the previous month, which equals the total number of pairs from
the month before which is 𝐹𝑛−2. Thus, applying the Sum Rule,

(1.1) 𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2 for 𝑛 ≥ 2 with 𝐹0 = 0 and 𝐹1 = 1

where we can start the recursion at 𝑛 = 2 rather than 𝑛 = 3 due to letting 𝐹0 = 0.
The 𝐹𝑛 are called the Fibonacci numbers. It is also important to note that some authors
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Figure 1.1. 𝒯3

define this sequence by letting

(1.2) 𝑓0 = 𝑓1 = 1 and 𝑓𝑛 = 𝑓𝑛−1 + 𝑓𝑛−2 for 𝑛 ≥ 2.
So it is important to make sure which flavor of Fibonacci is being discussed in a given
context.

One might wonder if there is an explicit formula for 𝐹𝑛 in addition to the recursive
one above. We will see that such an expression exists, although it is far from obvious
how to derive it from what we have done so far. Indeed, we will need the theory of
ordinary generating functions discussed in Chapter 3 to derive it.

Another thing which might be desired is a combinatorial interpretation for 𝐹𝑛. A
combinatorial interpretation for a sequence of nonnegative integers 𝑎0, 𝑎1, 𝑎2, . . . is a
sequence of sets 𝑆0, 𝑆1, 𝑆2, . . . such that #𝑆𝑛 = 𝑎𝑛 for all 𝑛. Such interpretations of-
ten give rise to very pretty and intuitive proofs about the original sequence and so are
highly desirable. One could argue that the story of the rabbits already gives such an
interpretation. But we would like something more amenable to mathematical manip-
ulation.

Suppose we are given a row of squares. We are also given two types of tiles: domi-
nos which can cover two squares and monominos which can cover one. A tiling of the
row is a set of tiles which covers each square exactly once. Let 𝒯𝑛 be the set of tilings
of a row of 𝑛 squares. See Figure 1.1 for a list of the elements of 𝒯3. There is a simple
relationship between tilings and Fibonacci numbers.

Theorem 1.1.2. For 𝑛 ≥ 1 we have
𝐹𝑛 = #𝒯𝑛−1.

Proof. It suffices to prove that both sides of this equation satisfy the same initial con-
ditions and recurrence relation. When the row contains no squares, it only has the
empty tiling so 𝒯0 = 1 = 𝐹1. And when there is one square, it can only be tiled by
a monomino so 𝒯1 = 1 = 𝐹2. For the recursion, the tilings in 𝒯𝑛 can be divided into
two types: those which end with a monomino and those which end with a domino.
Removing the last tile shows that these tilings are in bijection with those in 𝒯𝑛−1 and
those in 𝒯𝑛−2, respectively. Thus #𝒯𝑛 = #𝒯𝑛−1 + #𝒯𝑛−2 as desired. □

To see the power of a good combinatorial interpretation, we will now give a simple
proof of an identity for the 𝐹𝑛. Such identities are legion. See, for example, the book of
Benjamin and Quinn [10].

Corollary 1.1.3. For𝑚 ≥ 1 and 𝑛 ≥ 0 we have
𝐹𝑚+𝑛 = 𝐹𝑚−1𝐹𝑛 + 𝐹𝑚𝐹𝑛+1.
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Proof. By the previous theorem, the left-hand side counts the number of tilings of a
row of𝑚+𝑛−1 squares. So it suffices to show that the same is true of the right. Label
the squares 1, . . . , 𝑚 + 𝑛 − 1 from left to right. We can write 𝒯𝑚+𝑛−1 = 𝒮 ⊎ 𝒯 where
𝒮 contains those tilings with a domino covering squares 𝑚 − 1 and 𝑚, and 𝒯 has the
tilings with𝑚−1 and𝑚 in different tiles. The tilings in𝒯 are essentially pairs of tilings,
the first covering the first𝑚− 1 square and second covering the last 𝑛 squares. So the
Product Rule gives |𝒯| = |𝒯𝑚−1| ⋅ |𝒯𝑛| = 𝐹𝑚𝐹𝑛+1. Removing the given domino from the
tilings in 𝒮 again splits each tiling into a pair with the first covering𝑚−2 squares and
the second 𝑛 − 1. Taking cardinalities results in |𝒮| = 𝐹𝑚−1𝐹𝑛. Finally, applying the
Sum Rule finishes the proof. □

The demonstration just given is called a combinatorial proof since it involves count-
ing discrete objects. We will meet other useful proof techniques as we go along. But
combinatorial proofs are often considered to be themost pleasant, in part because they
can be more illuminating than demonstrations just involving formal manipulations.

1.2. Permutations and words

It is always importantwhen considering an enumeration problem todeterminewhether
the objects being considered are ordered or not. In this section we will consider the
most basic ordered structures, namely permutations and words.

If 𝑆 is a set with #𝑆 = 𝑛, then a permutation of 𝑆 is a sequence 𝜋 = 𝜋1 . . . 𝜋𝑛
obtained by listing the elements of 𝑆 in some order. If 𝜋 is a permutation, we will
always use 𝜋𝑖 to denote the 𝑖th element of 𝜋 and similarly for other ordered structures.
We let 𝑃(𝑆) denote the set of all permutations of 𝑆. For example,

𝑃({𝑎, 𝑏, 𝑐}) = {𝑎𝑏𝑐, 𝑎𝑐𝑏, 𝑏𝑎𝑐, 𝑏𝑐𝑎, 𝑐𝑎𝑏, 𝑐𝑏𝑎}.
Clearly #𝑃(𝑆) only depends on #𝑆. So often we choose the canonical 𝑛-element set

[𝑛] = {1, 2, . . . , 𝑛}.
We can also consider 𝑘-permutations of 𝑆 which are sequences 𝜋 = 𝜋1 . . . 𝜋𝑘 obtained
by linearly ordering 𝑘 distinct elements of 𝑆. Here, 𝑘 is called the length of the permu-
tation and we write ℓ(𝜋) = 𝑘. Again, we use the same terminology and notation for
other ordered structures. The set of all 𝑘-permutations of 𝑆 is denoted 𝑃(𝑆, 𝑘). By way
of illustration,

𝑃({𝑎, 𝑏, 𝑐, 𝑑}, 2) = {𝑎𝑏, 𝑏𝑎, 𝑎𝑐, 𝑐𝑎, 𝑎𝑑, 𝑑𝑎, 𝑏𝑐, 𝑐𝑏, 𝑏𝑑, 𝑑𝑏, 𝑐𝑑, 𝑑𝑐}.
In particular, if #𝑆 = 𝑛, then 𝑃(𝑆, 𝑛) = 𝑃(𝑆). Also 𝑃(𝑆, 𝑘) = ∅ for 𝑘 > 𝑛 since in this
case it is impossible to pick 𝑘 distinct elements from a set with only 𝑛. And 𝑃(𝑆, 0) = {𝜖}
where 𝜖 is the empty sequence.

To count permutations it will be convenient to introduce the following notation.
Given nonnegative integers 𝑛, 𝑘, we can form the falling factorial

𝑛↓𝑘= 𝑛(𝑛 − 1) . . . (𝑛 − 𝑘 + 1).
Note that 𝑘 equals the number of factors in the product.
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Theorem 1.2.1. For 𝑛, 𝑘 ≥ 0 we have
#𝑃([𝑛], 𝑘) = 𝑛↓𝑘 .

In particular
#𝑃([𝑛]) = 𝑛! .

Proof. Since 𝑃([𝑛]) = 𝑃([𝑛], 𝑛), it suffices to prove the first formula. Given 𝜋 =
𝜋1 . . . 𝜋𝑘 ∈ 𝑃([𝑛], 𝑘), there are 𝑛 ways to pick 𝜋1. Since 𝜋2 ≠ 𝜋1, there remains 𝑛 − 1
choices for 𝜋2. Since the number of choices for 𝜋2 does not depend on the actual ele-
ment chosen for 𝜋, one can continue in this way and apply a modified version of the
Product Rule to obtain the result. □

Note that when 0 ≤ 𝑘 ≤ 𝑛 we can write

(1.3) 𝑛↓𝑘=
𝑛!

(𝑛 − 𝑘)! .

But for 𝑘 > 𝑛 the product 𝑛 ↓𝑘 still makes sense, even though the product cannot be
expressed as a quotient of factorials. Indeed, if 𝑘 > 𝑛, then zero is a factor and so
𝑛 ↓𝑘= 0, which agrees with the fact that 𝑃([𝑛], 𝑘) = ∅. In the special case 𝑘 = 0 we
have 𝑛↓𝑘= 1 because it is an empty product. Again, this reflects the combinatorics in
that 𝑃([𝑛], 0) = {𝜖}.

One of the other things to keep track of in a combinatorial problem is whether
elements are allowed to be repeated or not. In permutations we have no repetitions.
But the case when they are allowed is interesting as well. A 𝑘-word over a set 𝑆 is a
sequence 𝑤 = 𝑤1 . . . 𝑤𝑘 where 𝑤𝑖 ∈ 𝑆 for all 𝑖. Note that there is no assumption that
the 𝑤𝑖 are distinct. We denote the set of 𝑘-words over 𝑆 by 𝑃((𝑆, 𝑘)). Note the use of
the double parentheses to denote the fact that repetitions are allowed. Note also that
𝑃(𝑆, 𝑘) ⊆ 𝑃((𝑆, 𝑘)), but usually the inclusion is strict. To illustrate

𝑃(({𝑎, 𝑏, 𝑐, 𝑑}, 2)) = 𝑃({𝑎, 𝑏, 𝑐, 𝑑}, 2) ⊎ {𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑑𝑑}.
The proof of the next result is almost identical to that of Theorem 1.2.1 and so is left to
the reader. When a result is given without proof, this is indicated by a box at the end
of its statement.

Theorem 1.2.2. For 𝑛, 𝑘 ≥ 0 we have
#𝑃(([𝑛], 𝑘)) = 𝑛𝑘. □

1.3. Combinations and subsets

We will now consider unordered versions of the combinatorial objects studied in the
last section. These are sometimes called combinations, although the reader may know
them by their more familiar name: subsets.

Given a set 𝑆, we let 2𝑆 denote the set of all subsets of 𝑆. Notice that 2𝑆 is a set, not
a number. For example,

2{𝑎,𝑏,𝑐} = {∅, {𝑎}, {𝑏}, {𝑐}, {𝑎, 𝑏}, {𝑎, 𝑐}, {𝑏, 𝑐}, {𝑎, 𝑏, 𝑐}}.
The reason for this notation should be made clear by the following result.
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Theorem 1.3.1. For 𝑛 ≥ 0 we have
#2[𝑛] = 2𝑛.

Proof. By Theorem 1.2.2 we have 2𝑛 = #𝑃(({0, 1}, 𝑛)). So it suffices to find a bijection
𝑓∶ 2[𝑛] → 𝑃(({0, 1}, 𝑛)),

and there is a canonical one. In particular, if 𝑆 ⊆ [𝑛], then we let 𝑓(𝑆) = 𝑤1 . . . 𝑤𝑛
where, for all 𝑖,

𝑤𝑖 = { 1 if 𝑖 ∈ 𝑆,
0 if 𝑖 ∉ 𝑆.

To show that 𝑓 is bijective, it suffices to find its inverse. If𝑤 = 𝑤1 . . . 𝑤𝑛 ∈ 𝑃(({0, 1}, 𝑛)),
then we let 𝑓−1(𝑤) = 𝑆 where 𝑖 ∈ 𝑆 if 𝑤𝑖 = 1 and 𝑖 ∉ 𝑆 if 𝑤𝑖 = 0 where 1 ≤ 𝑖 ≤ 𝑛. It is
easy to check that the compositions 𝑓 ∘ 𝑓−1 and 𝑓−1 ∘ 𝑓 are the identity maps on their
respective domains. This completes the proof. □

The proof just given is called a bijective proof and it is a particularly nice kind of
combinatorial proof. This is because bijective proofs can relate different types of com-
binatorial objects, sometimes revealing unexpected connections. Also note that we
proved 𝑓 bijective by finding its inverse rather than showing directly that it was one-
to-one and onto. This is the preferred method as having a concrete description of 𝑓−1
can be useful later. Finally, when dealing with functions we will always compose them
right-to-left so that

(𝑓 ∘ 𝑔)(𝑥) = 𝑓(𝑔(𝑥)).
We now want to count subsets by their cardinality. For a set 𝑆 we will use the

notation

(𝑆𝑘) = {𝑇 ⊆ 𝑆 ∣ #𝑇 = 𝑘}.

As an example,

({𝑎, 𝑏, 𝑐}2 ) = {{𝑎, 𝑏}, {𝑎, 𝑐}, {𝑏, 𝑐}}.

As expected, we now find the cardinality of this set.

Theorem 1.3.2. For 𝑛, 𝑘 ≥ 0 we have

#([𝑛]𝑘 ) =
𝑛↓𝑘
𝑘! .

Proof. Cross-multiplying and using Theorem 1.2.1 we see that it suffices to prove

#𝑃([𝑛], 𝑘) = 𝑘! ⋅#([𝑛]𝑘 ).

To see this, note that we can get each 𝜋1 . . . 𝜋𝑘 ∈ 𝑃([𝑛], 𝑘) exactly once by running
through the subsets 𝑆 = {𝑠1, . . . , 𝑠𝑘} ⊆ [𝑛] and then ordering each 𝑆 in all possible
ways. The number of choices for 𝑆 is #([𝑛]𝑘 ) and, by Theorem 1.2.1 again, the number
of ways of permuting the elements of 𝑆 is 𝑘!. So we are done by the Product Rule. □
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Figure 1.2. Rows 0 through 4 of Pascal’s triangle

Given 𝑛, 𝑘 ≥ 0, we define the binomial coefficient

(1.4) (𝑛𝑘) = #([𝑛]𝑘 ) =
𝑛↓𝑘
𝑘! .

The reason for this name is that these numbers appear in the binomial expansionwhich
will be studied in Chapter 3. Often you will see the binomial coefficients displayed in
a triangular array called Pascal’s trianglewhich has (𝑛𝑘) as the entry in the 𝑛th row and
𝑘th diagonal. When 𝑘 > 𝑛 it is traditional to omit the zeros. See Figure 1.2 for rows 0
through 4. (We apologize to the reader for not writing out the whole triangle, but this
page is not big enough.) For 0 ≤ 𝑘 ≤ 𝑛 we can use (1.3) to write

(1.5) (𝑛𝑘) =
𝑛!

𝑘! (𝑛 − 𝑘)! ,

which is pleasing because of its symmetry. We can also extend the binomial coefficients
to 𝑘 < 0 by letting (𝑛𝑘) = 0. This is in keeping with the fact that ([𝑛]𝑘 ) = ∅ in this case.

In the next theorem, we collect various basic results about binomial coefficients
whichwill be useful in the sequel. In it, wewill use theKronecker delta function defined
by

𝛿𝑥,𝑦 = { 1 if 𝑥 = 𝑦,
0 if 𝑥 ≠ 𝑦.

Also note that we do not specify the range of the summation variable 𝑘 in (c) and (d)
because it can be taken as either 0 ≤ 𝑘 ≤ 𝑛 or 𝑘 ∈ ℤ since the extra terms in the larger
sum are all zero. Both viewpoints will be useful on occasion.

Theorem 1.3.3. Suppose 𝑛 ≥ 0.
(a) The binomial coefficients satisfy the initial condition

(0𝑘) = 𝛿𝑘,0

and recurrence relation

(𝑛𝑘) = (𝑛 − 1
𝑘 − 1) + (𝑛 − 1

𝑘 )

for 𝑛 ≥ 1.
(b) The binomial coefficients are symmetric, meaning that

(𝑛𝑘) = ( 𝑛
𝑛 − 𝑘).
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(c) We have

∑
𝑘
(𝑛𝑘) = 2𝑛.

(d) We have

∑
𝑘
(−1)𝑘(𝑛𝑘) = 𝛿𝑛,0.

Proof. (a) The initial condition is clear. For the recursion let 𝒮1 be the set of 𝑆 ∈ ([𝑛]𝑘 )
with 𝑛 ∈ 𝑆, and let 𝒮2 be the set of 𝑆 ∈ ([𝑛]𝑘 ) with 𝑛 ∉ 𝑆. Then ([𝑛]𝑘 ) = 𝒮1 ⊎ 𝒮2. But
if 𝑛 ∈ 𝑆, then 𝑆 − {𝑛} ∈ ([𝑛−1]𝑘−1 ). This gives a bijection between 𝒮1 and (

[𝑛−1]
𝑘−1 ) so that

#𝒮1 = (𝑛−1𝑘−1). On the other hand, if𝑛 ∉ 𝑆, then 𝑆 ∈ ([𝑛−1]𝑘 ) and this implies#𝒮2 = (𝑛−1𝑘 ).
Applying the Sum Rule completes the proof.

(b) It suffices to find a bijection 𝑓∶ ([𝑛]𝑘 ) → ( [𝑛]𝑛−𝑘). Consider themap 𝑓∶ 2
[𝑛] → 2[𝑛]

by 𝑓(𝑆) = [𝑛] − 𝑆 where the minus sign indicates difference of sets. Note that the
composition 𝑓2 is the identity map so that 𝑓 is a bijection. Furthermore 𝑆 ∈ ([𝑛]𝑘 ) if and
only if 𝑓(𝑆) ∈ ( [𝑛]𝑛−𝑘). So 𝑓 restricts to a bijection between these two sets.

(c) This follows by applying the Sum Rule to the equation 2[𝑛] = ⨄𝑘 (
[𝑛]
𝑘 ).

(d) The case 𝑛 = 0 is easy, so we assume 𝑛 > 0. We will learn general techniques
for dealing with equations involving signs in the next chapter. But for now, we try to
prove the equivalent equality

∑
𝑘 odd

(𝑛𝑘) = ∑
𝑘 even

(𝑛𝑘).

Let𝒯1 be the set of 𝑇 ∈ 2[𝑛] with#𝑇 odd and let𝒯2 be the set of 𝑇 ∈ 2[𝑛] with#𝑇 even.
We wish to find a bijection 𝑔∶ 𝒯1 → 𝒯2. Consider the operation of symmetric difference

𝑆 Δ 𝑇 = (𝑆 − 𝑇) ⊎ (𝑇 − 𝑆).
It is not hard to see that (𝑆 Δ 𝑇) Δ 𝑇 = 𝑆. Now define 𝑔∶ 2[𝑛] → 2[𝑛] by 𝑔(𝑇) = 𝑇 Δ {𝑛}
so that, by the previous sentence, 𝑔2 is the identity. Furthermore, 𝑔 reverses parity and
so restricts to the desired bijection. □

As with the case of permutations and words, we want to enumerate “sets” where
repetitions are allowed. A multiset 𝑀 is an unordered collection of elements which
may be repeated. For example

𝑀 = {{𝑎, 𝑎, 𝑎, 𝑏, 𝑐, 𝑐}} = {{𝑐, 𝑎, 𝑏, 𝑎, 𝑐, 𝑎}}.
Note the use of double curly brackets to denote amultiset. Wewill also usemultiplicity
notation where 𝑎𝑚 denotes𝑚 copies of the element 𝑎. Continuing our example

𝑀 = {{𝑎3, 𝑏, 𝑐2}}.
As with powers, an exponent of one is optional and an exponent of zero indicates that
there are no copies of that element in the multiset. The cardinality of a multiset is its
number of elements counted with multiplicity. So in our example#𝑀 = 2+1+3 = 6.
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1.3. Combinations and subsets 9

If 𝑆 is a set, then𝑀 is a multiset on 𝑆 if every element of𝑀 is an element of 𝑆. We let
((𝑆𝑘)) be the set of all multisets on 𝑆 of cardinality 𝑘 and

((𝑛𝑘)) = #(([𝑛]𝑘 )).

To illustrate

(({𝑎, 𝑏, 𝑐}2 )) = { {{𝑎, 𝑎}}, {{𝑎, 𝑏}}, {{𝑎, 𝑐}}, {{𝑏, 𝑏}}, {{𝑏, 𝑐}}, {{𝑐, 𝑐}} }

and so ((32)) = 6.

Theorem 1.3.4. For 𝑛, 𝑘 ≥ 0 we have

((𝑛𝑘)) = (𝑛 + 𝑘 − 1
𝑘 ).

Proof. We wish to find a bijection

𝑓∶ (([𝑛]𝑘 )) → ([𝑛 + 𝑘 − 1]
𝑘 ).

Given a multiset𝑀 = {{𝑚1 ≤ 𝑚2 ≤ 𝑚3 ≤ ⋯ ≤ 𝑚𝑘}} on [𝑛], let
𝑓(𝑀) = {𝑚1 < 𝑚2 + 1 < 𝑚3 + 2 < ⋯ < 𝑚𝑘 + 𝑘 − 1}.

Now the𝑚𝑖+𝑖 − 1 are distinct, and the fact that𝑚𝑘 ≤ 𝑛 implies𝑚𝑘+𝑘−1 ≤ 𝑛+𝑘−1.
It follows that 𝑓(𝑀) ∈ ([𝑛+𝑘−1]𝑘 ) and so the map is well-defined. It should now be easy
for the reader to construct an inverse, proving that 𝑓 is bijective. □

As with the binomial coefficients, we extend ((𝑛𝑘)) to negative 𝑘 by letting it equal
zero. In the future we will do the same for other constants whose natural domain of
definition is 𝑛, 𝑘 ≥ 0 without comment.

We do wish to comment on an interesting relationship between counting sets and
multisets. Note that definition (1.4) is well-defined for any complex number 𝑛 since the
falling factorial is just a product, and in particular it makes sense for negative integers.
In fact, if 𝑛 ∈ ℕ, then

(−𝑛𝑘 ) = (−𝑛)(−𝑛 − 1)⋯ (−𝑛 − 𝑘 + 1)
𝑘!(1.6)

= (−1)𝑘 𝑛(𝑛 + 1)⋯ (𝑛 + 𝑘 − 1)
𝑘!

= (−1)𝑘((𝑛𝑘))

by Theorem 1.3.4. This kind of situation where evaluation of an enumerative formula
at negative arguments yields, up to sign, another enumerative function is called com-
binatorial reciprocity and will be studied in Section 3.9.
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10 1. Basic Counting

1.4. Set partitions

We have already seen that disjoint unions are nice combinatorially. So it should come
as no surprise that set partitions also play an important role.

A partition of a set 𝑇 is a set 𝜌 of nonempty subsets 𝐵1, . . . , 𝐵𝑘 such that 𝑇 = ⨄𝑖 𝐵𝑖,
written 𝜌 ⊢ 𝑇. The 𝐵𝑖 are called blocks and we use the notation 𝜌 = 𝐵1/ . . . /𝐵𝑘
leaving out all curly brackets and commas, even though the elements of the blocks,
as well as the blocks themselves, are unordered. For example, one set partition of
𝑇 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔} is

𝜌 = 𝑎𝑐𝑓/𝑏𝑒/𝑑/𝑔 = 𝑑/𝑒𝑏/𝑔/𝑐𝑓𝑎.
We let 𝐵(𝑇) be the set of all 𝜌 ⊢ 𝑇. To illustrate,

𝐵({𝑎, 𝑏, 𝑐}) = {𝑎/𝑏/𝑐, 𝑎𝑏/𝑐, 𝑎𝑐/𝑏, 𝑎/𝑏𝑐, 𝑎𝑏𝑐}.
The 𝑛th Bell number is 𝐵(𝑛) = #𝐵([𝑛]). Although there is no known expression for
𝐵(𝑛) as a simple product, there is a recursion.

Theorem 1.4.1. The Bell numbers satisfy the initial condition 𝐵(0) = 1 and the recur-
rence relation

𝐵(𝑛) = ∑
𝑘
(𝑛 − 1
𝑘 − 1)𝐵(𝑛 − 𝑘)

for 𝑛 ≥ 1.

Proof. The initial condition counts the empty partition of ∅. For the recursion, given
𝜌 ∈ 𝐵([𝑛]), let 𝑘 be the number of elements in the block 𝐵 containing 𝑛. Then there
are (𝑛−1𝑘−1) ways to pick the remaining 𝑘 − 1 elements of [𝑛 − 1] to be in 𝐵. And the
number of ways to partition [𝑛] − 𝐵 is 𝐵(𝑛 − 𝑘). Summing over all possible 𝑘 finishes
the proof. □

We may sometimes want to keep track of the number of blocks in our partitions.
So define 𝑆(𝑇, 𝑘) to be the set of all 𝜌 ⊢ 𝑇 with 𝑘 blocks. The Stirling numbers of the
second kind are 𝑆(𝑛, 𝑘) = #𝑆([𝑛], 𝑘). We will introduce Stirling numbers of the first
kind in the next section. For example

𝑆({𝑎, 𝑏, 𝑐}, 2) = {𝑎𝑏/𝑐, 𝑎𝑐/𝑏, 𝑎/𝑏𝑐}
so 𝑆(3, 2) = 3. Just as with the binomial coefficients, the 𝑆(𝑛, 𝑘) for 1 ≤ 𝑘 ≤ 𝑛 can
be displayed in a triangle as in Figure 1.3. And like the binomial coefficients, these
Stirling numbers satisfy a simple recurrence relation.

1
1 1

1 3 1
1 7 6 1

1 15 25 10 1

Figure 1.3. Rows 1 through 5 of Stirling’s second triangle
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1.5. Permutations by cycle structure 11

Theorem 1.4.2. The Stirling numbers of the second kind satisfy the initial condition
𝑆(0, 𝑘) = 𝛿𝑘,0

and recurrence relation

𝑆(𝑛, 𝑘) = 𝑆(𝑛 − 1, 𝑘 − 1) + 𝑘𝑆(𝑛 − 1, 𝑘)
for 𝑛 ≥ 1.

Proof. By now, the reader should be able to explain the initial condition without diffi-
culty. For the recursion, the elements 𝜌 ∈ 𝑆([𝑛], 𝑘) are of two flavors: those where 𝑛 is
in a block by itself and those where 𝑛 is in a block with other elements. Removing 𝑛 in
the first case leaves a partition in 𝑆([𝑛− 1], 𝑘 − 1) and this is a bijection. This accounts
for the summand 𝑆(𝑛−1, 𝑘−1). Removing 𝑛 in the second case leaves 𝜎 ∈ 𝑆([𝑛−1], 𝑘),
but this map is not a bijection. In particular, given 𝜎, one can insert 𝑛 into any one of
its 𝑘 blocks to recover an element of 𝑆([𝑛], 𝑘). So the total count is 𝑘𝑆(𝑛 − 1, 𝑘) for this
case. □

1.5. Permutations by cycle structure

The ordered analogue of a decomposition of a set into a partition is the decomposition
of a permutation of [𝑛] into cycles. These are counted by the Stirling numbers of the
first kind.

The symmetric group is𝔖𝑛 = 𝑃([𝑛]). As the name implies,𝔖𝑛 has a group structure
defined as follows. If 𝜋 = 𝜋1 . . . 𝜋𝑛 ∈ 𝔖𝑛, then we can view this permutation as a
bijection 𝜋∶ [𝑛] → [𝑛] where 𝜋(𝑖) = 𝜋𝑖. From this it follows that 𝔖𝑛 is a group where
the operation is composition of functions.

Given 𝜋 ∈ 𝔖𝑛 and 𝑖 ∈ [𝑛], there is a smallest exponent ℓ ≥ 1 such that 𝜋ℓ(𝑖) = 𝑖.
This and various other claims below will be proved using digraphs in Section 1.9. In
this case, the elements 𝑖, 𝜋(𝑖), 𝜋2(𝑖), . . . , 𝜋ℓ−1(𝑖) are all distinct and we write

𝑐 = (𝑖, 𝜋(𝑖), 𝜋2(𝑖), . . . , 𝜋ℓ−1(𝑖))
and call this a cycle of length ℓ or simply an ℓ-cycle of 𝜋. Cycles of length one are called
fixed points. As an example, if 𝜋 = 6514237 and 𝑖 = 1, then we have 𝜋(1) = 6, 𝜋2(1) =
3, 𝜋3(1) = 1 so that 𝑐 = (1, 6, 3) is a cycle of 𝜋. We now iterate this process: if there
is some 𝑗 ∈ [𝑛] which is not in any of the cycles computed so far, we find the cycle
containing 𝑗 and continue until every element is in a cycle. The cycle decomposition
of 𝜋 is 𝜋 = 𝑐1 . . . 𝑐𝑘 where the 𝑐𝑗 are the cycles found in this process. Continuing our
example, we could get

𝜋 = (1, 6, 3)(2, 5)(4)(7).
To distinguish the cycle decomposition of𝜋 from its description as𝜋 = 𝜋1 . . . 𝜋𝑛wewill
call the latter the one-line notation for 𝜋. This is also distinct from two-line notation,
which is where one writes

(1.7) 𝜋 = 1 2 . . . 𝑛
𝜋1 𝜋2 . . . 𝜋𝑛

.
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12 1. Basic Counting

1
1 1

2 3 1
6 11 6 1

24 50 35 10 1

Figure 1.4. Rows 1 through 5 of Stirling’s first triangle

Note that an ℓ-cycle can be written in ℓ different ways depending on which of its
elements one starts with; for example

(1, 6, 3) = (6, 3, 1) = (3, 1, 6).
Furthermore, the distinct cycles of 𝜋 are disjoint. So if we think of the cycle 𝑐 as the
permutation of [𝑛]which agrees with 𝜋 on the elements of 𝑐 and has all other elements
as fixed points, then the cycles of𝜋 = 𝑐1 . . . 𝑐𝑘 commute where we consider the product
as a composition of permutations. Returning to our running example, we could write

𝜋 = (1, 6, 3)(2, 5)(4)(7) = (4)(1, 6, 3)(7)(2, 5) = (5, 2)(3, 1, 6)(7)(4).
As mentioned above, we defer the proof of the following result until Section 1.9.

Theorem 1.5.1. Every 𝜋 ∈ 𝔖𝑛 has a cycle decomposition 𝜋 = 𝑐1 . . . 𝑐𝑘 which is unique
up to the order of the factors and cyclic reordering of the elements within each 𝑐𝑖.

We are now in a position to proceed parallel to the development of set partitions
with a given number of blocks in the previous section. For 𝑛 ≥ 0we denote by 𝑐([𝑛], 𝑘)
the set of all permutations in𝔖𝑛 which have 𝑘 cycles in their decomposition. Note the
difference between “𝑘 cycles” referring to the number of cycles and “𝑘-cycles” referring
to the length of the cycles. The signless Stirling numbers of the first kind are 𝑐(𝑛, 𝑘) =
#𝑐([𝑛], 𝑘). So, analogous to what we have seen before, 𝑐(𝑛, 𝑘) = 0 for 𝑘 < 0 or 𝑘 > 𝑛.
To illustrate the notation,

𝑐([4], 1) = {(1, 2, 3, 4), (1, 2, 4, 3), (1, 3, 2, 4), (1, 3, 4, 2), (1, 4, 2, 3), (1, 4, 3, 2)}
so 𝑐(4, 1) = 6. In general, as youwill be asked to prove in an exercise, 𝑐([𝑛], 1) = (𝑛−1)!.
Part of Stirling’s first triangle is displayed in Figure 1.4. We also have a recursion.

Theorem1.5.2. The signless Stirling numbers of the first kind satisfy the initial condition
𝑐(0, 𝑘) = 𝛿𝑘,0

and recurrence relation
𝑐(𝑛, 𝑘) = 𝑐(𝑛 − 1, 𝑘 − 1) + (𝑛 − 1)𝑐(𝑛 − 1, 𝑘)

for 𝑛 ≥ 1.

Proof. As usual, we concentrate on the recurrence. Given 𝜋 ∈ 𝑐([𝑛], 𝑘), we can re-
move 𝑛 from its cycle. If 𝑛 was a fixed point, then the resulting permutations are
counted by 𝑐(𝑛 − 1, 𝑘 − 1). If 𝑛 was in a cycle of length at least two, then the per-
mutations obtained upon removal are in 𝑐([𝑛 − 1], 𝑘). So one must find the number of
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1.6. Integer partitions 13

ways to insert 𝑛 into a cycle of some 𝜎 ∈ 𝑐([𝑛−1], 𝑘). There are ℓ places to insert 𝑛 in a
cycle of length ℓ. So the total number of insertion spots is the sum of the cycle lengths
of 𝜎, which is 𝑛 − 1. □

The reader may have guessed that there are also (signed) Stirling numbers of the
first kind defined by

𝑠(𝑛, 𝑘) = (−1)𝑛−𝑘𝑐(𝑛, 𝑘).
It is not immediately apparent why one would want to attach signs to these constants.
We will see one reason in Chapter 5 where it will be shown that the 𝑠(𝑛, 𝑘) are the
Whitney numbers of the first kind for the lattice of set partitions ordered by refinement.
Here we will content ourselves with proving an analogue of part (d) of Theorem 1.3.3.

Corollary 1.5.3. For 𝑛 ≥ 0 we have

∑
𝑘
𝑠(𝑛, 𝑘) = { 1 if 𝑛 = 0 or 1,

0 if 𝑛 ≥ 2.

Proof. The cases when 𝑛 = 0 or 1 are easy to verify, so assume 𝑛 ≥ 2. Since 𝑠(𝑛, 𝑘) =
(−1)𝑛−𝑘𝑐(𝑛, 𝑘) and (−1)𝑛 is constant throughout the summation, it suffices to show
that∑𝑘(−1)𝑘𝑐(𝑛, 𝑘) = 0. Using Theorem 1.5.2 and induction on 𝑛 we obtain

∑
𝑘
(−1)𝑘𝑐(𝑛, 𝑘) = ∑

𝑘
(−1)𝑘𝑐(𝑛 − 1, 𝑘 − 1) +∑

𝑘
(−1)𝑘(𝑛 − 1)𝑐(𝑛 − 1, 𝑘)

= −∑
𝑘
(−1)𝑘−1𝑐(𝑛 − 1, 𝑘 − 1) + (𝑛 − 1)∑

𝑘
(−1)𝑘𝑐(𝑛 − 1, 𝑘)

= −0 + (𝑛 − 1)0

= 0

as desired. □

Note the usefulness of considering the sums in the preceding proof as over 𝑘 ∈ ℤ
rather than 0 ≤ 𝑘 ≤ 𝑛. This does away with having to consider any special cases at the
values 𝑘 = 0 or 𝑘 = 𝑛.

1.6. Integer partitions

Just as one can partition a set into blocks, one can partition a nonnegative integer as
a sum. Integer partitions play an important role not just in combinatorics but also in
number theory and the representation theory of the symmetric group. See the appendix
at the end of the book for more information on the latter.

An integer partition of 𝑛 ≥ 0 is a multiset 𝜆 of positive integers such that the sum
of the elements of 𝜆, denoted |𝜆|, is 𝑛. We also write 𝜆 ⊢ 𝑛. These elements are called
the parts. Since the parts of 𝜆 are unordered, we will always list them in a canonical
order 𝜆 = (𝜆1, . . . , 𝜆𝑘) which is weakly decreasing. We let 𝑃(𝑛) denote the set of all
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14 1. Basic Counting

partitions of 𝑛 and 𝑝(𝑛) = #𝑃(𝑛). For example,
𝑃(4) = {(1, 1, 1, 1), (2, 1, 1), (2, 2), (3, 1), (4)}

so that 𝑝(4) = 5. Note the distinction between 𝑃([𝑛]), which is a set of set partitions,
and 𝑃(𝑛), which is a set of integer partitions. Sometimes we will just say “partition”
if the context makes it clear whether we are partitioning sets or integers. We will use
multiplicity notation for integer partitions just as we would for any multiset, writing

𝜆 = (1𝑚1 , 2𝑚2 , . . . , 𝑛𝑚𝑛)
where𝑚𝑖 is the multiplicity of 𝑖 in 𝜆.

There is no known product formula for 𝑝(𝑛). In fact, there is not even a simple
recurrence relation. One can use generating functions to derive results about these
numbers, but that must wait until Chapter 3. Here we will just introduce a useful
geometric device for studying 𝑝(𝑛). The Ferrers or Young diagram of 𝜆 = (𝜆1, . . . , 𝜆𝑘) ⊢
𝑛 is an array of 𝑛 boxes into left-justified rows such that row 𝑖 contains 𝜆𝑖 boxes. Dots
are also sometimes used in place of boxes and in this case some authors use “Ferrers
diagram” for the dot variant and “Young diagram” for the corresponding array of boxes.
We often make no distinction between a partition and its Young diagram. The Young
diagram of 𝜆 = (5, 5, 2, 1) is shown in Figure 1.5. We should warn the reader that
we are writing our Young diagrams in English notation where the rows are numbered
from 1 to 𝑘 from the top down as in a matrix. Some authors prefer French notation
where the rows are numbered from bottom to top as in a Cartesian coordinate system.
The conjugate or transpose of 𝜆 is the partition 𝜆𝑡 whose Young diagram is obtained by
reflecting the diagram of 𝜆 about its main diagonal. This is done in Figure 1.5, showing
that (5, 5, 2, 1)𝑡 = (4, 3, 2, 2, 2). There is also another way to express the parts of the
conjugate.

𝜆 = (5, 5, 2, 1) = = • • • • •
• • • • •
• •
•

𝜆𝑡 =

Figure 1.5. A partition, its Young diagram, and its conjugate

The preliminary version made available with permission of the publisher, the American Mathematical Society



1.6. Integer partitions 15

Proposition 1.6.1. If 𝜆 = (𝜆1, . . . , 𝜆𝑘) is a partition and 𝜆𝑡 = (𝜆𝑡1, . . . , 𝜆𝑡𝑙 ), then, for
1 ≤ 𝑗 ≤ 𝑙,

𝜆𝑡𝑗 = #{𝑖 ∣ 𝜆𝑖 ≥ 𝑗}.

Proof. By definition, 𝜆𝑡𝑗 is the length of the 𝑗th column of 𝜆. But that column contains
a box in row 𝑖 if and only if 𝜆𝑖 ≥ 𝑗. □

The number of parts of a partition 𝜆 is called its length and is denoted ℓ(𝜆). At
this point the reader is probably expecting a discussion of those partitions of 𝑛 with
ℓ(𝜆) = 𝑘. As it turns out, it is a bit simpler to consider 𝑃(𝑛, 𝑘), the set of all partitions 𝜆
of𝑛with ℓ(𝜆) ≤ 𝑘, and𝑝(𝑛, 𝑘) = #𝑃(𝑛, 𝑘). Note that the number of 𝜆 ⊢ 𝑛with ℓ(𝜆) = 𝑘
is just 𝑝(𝑛, 𝑘) − 𝑝(𝑛, 𝑘 − 1). So in some sense the two viewpoints are equivalent. But it
will be easier to state our results in terms of 𝑝(𝑛, 𝑘). Note also that

𝑝(𝑛, 0) ≤ 𝑝(𝑛, 1) ≤ ⋯ ≤ 𝑝(𝑛, 𝑛) = 𝑝(𝑛, 𝑛 + 1) = ⋯ = 𝑝(𝑛).
Because of this behavior, it is best to display the 𝑝(𝑛, 𝑘) in a matrix, rather than a trian-
gle, keeping in mind that the entries in the 𝑛th row eventually stabilize to an infinite
repetition of the constant 𝑝(𝑛). Part of this array will be found in Figure 1.6. We also
assume that 𝑝(𝑛, 𝑘) = 0 if 𝑛 < 0 or 𝑘 < 0. Unlike 𝑝(𝑛), one can write down a simple
recurrence relation for 𝑝(𝑛, 𝑘).

Theorem 1.6.2. The 𝑝(𝑛, 𝑘) satisfy

𝑝(0, 𝑘) = { 0 if 𝑘 < 0,
1 if 𝑘 ≥ 0

and
𝑝(𝑛, 𝑘) = 𝑝(𝑛 − 𝑘, 𝑘) + 𝑝(𝑛, 𝑘 − 1)

for 𝑛 ≥ 1

Proof. We skip directly to the recursion. Note that since conjugation is a bijection,
𝑝(𝑛, 𝑘) also counts the partitions 𝜆 = (𝜆1, . . . , 𝜆𝑙) ⊢ 𝑛 such that 𝜆1 ≤ 𝑘. It will be
convenient to use this interpretation of 𝑝(𝑛, 𝑘) for the proof. We have two possible
cases. If 𝜆1 = 𝑘, then 𝜇 = (𝜆2, . . . , 𝜆𝑙) ⊢ 𝑛 − 𝑘 and 𝜆2 ≤ 𝜆1 = 𝑘. So these partitions are
counted by 𝑝(𝑛 − 𝑘, 𝑘). The other possibility is that 𝜆1 ≤ 𝑘 − 1. And these 𝜆 are taken
care of by the 𝑝(𝑛, 𝑘 − 1) term. □

0 1 2 3 4 5
0 1 1 1 1 1 1
1 0 1 1 1 1 1
2 0 1 2 2 2 2
3 0 1 2 3 3 3
4 0 1 3 4 5 5

Figure 1.6. The values 𝑝(𝑛, 𝑘) for 0 ≤ 𝑛 ≤ 4 and 0 ≤ 𝑘 ≤ 5
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16 1. Basic Counting

1.7. Compositions

Recall that integer partitions are really unordered even though we usually list them in
weakly decreasing fashion. This raises the question about what happens if we consid-
ered ways to write 𝑛 as a sum when the summands are ordered. This is the notion of a
composition.

A composition of 𝑛 is a sequence 𝛼 = [𝛼1, . . . , 𝛼𝑘] of positive integers called parts
such that∑𝑖 𝛼𝑖 = 𝑛. We write 𝛼 ⊧ 𝑛 and use square brackets to distinguish composi-
tions from integer partitions. This causes a notational conflict between [𝑛] as a compo-
sition of 𝑛 and as the integers from 1 to 𝑛, but the context should make it clear which
interpretation is meant. Let 𝑄(𝑛) be the set of compositions of 𝑛 and 𝑞(𝑛) = #𝑄(𝑛).
So the compositions of 4 are

𝑄(4) = {[1, 1, 1, 1], [2, 1, 1], [1, 2, 1], [1, 1, 2], [2, 2], [3, 1], [1, 3], [4]}.

So 𝑞(4) = 8, which is a power of 2. This, as your author is fond of saying, is not a
coincidence.

Theorem 1.7.1. For 𝑛 ≥ 1 we have

𝑞(𝑛) = 2𝑛−1.

Proof. There is a famous bijection 𝜙 ∶ 2[𝑛−1] → 𝑄(𝑛), which we will use to prove
this result. This map will be useful when working with quasisymmetric functions in
Chapter 8. Given 𝑆 = {𝑠1, . . . , 𝑠𝑘} ⊆ [𝑛 − 1] written in increasing order, we define

(1.8) 𝜙(𝑆) = [𝑠1 − 𝑠0, 𝑠2 − 𝑠1, . . . , 𝑠𝑘 − 𝑠𝑘−1, 𝑠𝑘+1 − 𝑠𝑘]

where, by definition, 𝑠0 = 0 and 𝑠𝑘+1 = 𝑛. To show that 𝜙 is well-defined, suppose
𝜙(𝑆) = [𝛼1, . . . , 𝛼𝑘+1]. Since 𝑆 is increasing, 𝛼𝑖 = 𝑠𝑖 − 𝑠𝑖−1 is a positive integer. Fur-
thermore

𝑘+1
∑
𝑖=1

𝛼𝑖 =
𝑘+1
∑
𝑖=1

(𝑠𝑖 − 𝑠𝑖−1) = 𝑠𝑘+1 − 𝑠0 = 𝑛.

Thus 𝜙(𝑆) ∈ 𝑄(𝑛) as desired.
To show that 𝜙 is bijective, we construct its inverse 𝜙−1 ∶ 𝑄(𝑛) → 2[𝑛−1]. Given

𝛼 = [𝛼1, . . . , 𝛼𝑘+1] ∈ 𝑄(𝑛), we let

𝜙−1(𝛼) = {𝛼1, 𝛼1 + 𝛼2, 𝛼1 + 𝛼2 + 𝛼3, . . . , 𝛼1 + 𝛼2 +⋯+ 𝛼𝑘}.

It should not be hard for the reader to prove that 𝜙−1 is well-defined and the inverse of
𝜙. □

As usual, we wish to make a more refined count by restricting the number of con-
stituents of the object under consideration. Let 𝑄(𝑛, 𝑘) be the set of all compositions
of 𝑛 with exactly 𝑘 parts and let 𝑞(𝑛, 𝑘) = #𝑄(𝑛, 𝑘). Since the 𝑞(𝑛, 𝑘) will turn out to
be previously studied constants, we will forgo the usual triangle. The result below fol-
lows easily by restricting the function 𝜙 from the previous proof, so the demonstration
is omitted.
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1.8. The twelvefold way 17

Theorem 1.7.2. The composition numbers satisfy
𝑞(0, 𝑘) = 𝛿𝑘,0

and

𝑞(𝑛, 𝑘) = (𝑛 − 1
𝑘 − 1)

for 𝑛 ≥ 1. □

1.8. The twelvefold way

Wenowhave all the tools in place to count certain functions. There are 12 types of such
functions and so this scheme is called the twelvefoldway, an ideawhichwas introduced
in a series of lectures by Gian-Carlo Rota. The namewas suggested by Joel Spencer and
should not be confused with the twelvefold path of Buddhism!

We will consider three types of functions 𝑓∶ 𝐷 → 𝑅, namely, arbitrary functions,
injections, and surjections. We will also permit the domain 𝐷 and range 𝑅 to be of
two types each: either distinguishable, which means it is a set, or indistinguishable,
which means it is a multiset consisting of a single element repeated some number of
times. Thus the total number of types of functions under consideration is the product
of the number of choices for 𝑓, 𝐷, and 𝑅 or 3 ⋅ 2 ⋅ 2 = 12. Of course, a function where
the domain or range is a multiset is not really well-defined, even though the intuitive
notion should be clear. To be precise, when 𝐷 is a multiset and 𝑅 is a set, suppose 𝐷′

is a set with |𝐷′| = |𝐷|. Then a function 𝑓∶ 𝐷 → 𝑅 is an equivalence class of functions
𝑓∶ 𝐷′ → 𝑅 where 𝑓 and 𝑔 are equivalent if #𝑓−1(𝑟) = #𝑔−1(𝑟) for all 𝑟 ∈ 𝑅. The
reader can come up with the corresponding notions for the other cases if desired. We
will assume throughout that |𝐷| = 𝑛 and |𝑅| = 𝑘 are both nonnegative integers. We
will collect the results in the chart in Table 1.1.

We first deal with the case where both 𝐷 and 𝑅 are distinguishable. Without loss
of generality, we can assume that 𝐷 = [𝑛]. So a function 𝑓∶ 𝐷 → 𝑅 can be considered
as a word 𝑤 = 𝑓(1)𝑓(2) . . . 𝑓(𝑛). Since there are 𝑘 choices for each 𝑓(𝑖), we have, by
Theorem 1.2.2, that the number of such 𝑓 is #𝑃(([𝑘], 𝑛)) = 𝑘𝑛. If 𝑓 is injective, then
𝑤 becomes a permutation, giving the count #𝑃([𝑘], 𝑛) = 𝑘↓𝑛 from Theorem 1.2.1. For
surjective functions, we need a new concept. If 𝐷 is a set, then the kernel of a function
𝑓∶ 𝐷 → 𝑅 is the partition ker 𝑓 of𝐷whose blocks are the nonempty subsets of the form
𝑓−1(𝑟) for 𝑟 ∈ 𝑅. For example, if 𝑓∶ {𝑎, 𝑏, 𝑐, 𝑑} → {1, 2, 3} is given by 𝑓(𝑎) = 𝑓(𝑐) = 2,

Table 1.1. The twelvefold way

𝐷 𝑅 arbitrary 𝑓 injective 𝑓 surjective 𝑓

dist. dist. 𝑘𝑛 𝑘↓𝑛 𝑘! 𝑆(𝑛, 𝑘)
indist. dist. (𝑛+𝑘−1𝑛 ) (𝑘𝑛) (𝑛−1𝑘−1)

dist. indist. ∑𝑘
𝑗=0 𝑆(𝑛, 𝑗) 𝛿(𝑛 ≤ 𝑘) 𝑆(𝑛, 𝑘)

indist. indist. 𝑝(𝑛, 𝑘) 𝛿(𝑛 ≤ 𝑘) 𝑝(𝑛, 𝑘) − 𝑝(𝑛, 𝑘 − 1)
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18 1. Basic Counting

𝑓(𝑏) = 3, and 𝑓(𝑑) = 1, then ker 𝑓 = 𝑎𝑐/𝑏/𝑑. If 𝑓 is to be surjective, then the function
can be specified by picking a partition of𝐷 for ker 𝑓 and then picking a bijection 𝑔 from
the blocks of ker 𝑓 into 𝑅. Continuing our example, 𝑓 is completely determined by its
kernel and the bijection 𝑔(𝑎𝑐) = 2, 𝑔(𝑏) = 3, and 𝑔(𝑑) = 1. The number of ways to
choose ker 𝑓 = 𝐵1/ . . . /𝐵𝑘 is 𝑆(𝑛, 𝑘) by definition. And, using the injective case with
𝑛 = 𝑘, the number of bijections 𝑔∶ {𝐵1, . . . , 𝐵𝑘} → 𝑅 is 𝑘↓𝑘= 𝑘!. So the total count is
𝑘! 𝑆(𝑛, 𝑘).

Now suppose 𝐷 is indistinguishable and 𝑅 is distinguishable where we assume
𝑅 = [𝑘]. Then one can think of 𝑓∶ 𝐷 → 𝑅 as a multiset 𝑀 = {{1𝑚1 , . . . , 𝑘𝑚𝑘 }} on 𝑅
where 𝑚𝑖 = #𝑓−1(𝑖). It follows that ∑𝑖𝑚𝑖 = #𝐷 = 𝑛. So, by Theorem 1.3.4, the
number of all such 𝑓 is

((𝑘𝑛)) = (𝑛 + 𝑘 − 1
𝑛 ).

If 𝑓 is to be injective, then we are picking an 𝑛-element subset of 𝑅 = [𝑘] giving a count
of (𝑘𝑛). If 𝑓 is to be surjective, then𝑚𝑖 ≥ 1 for all 𝑖 so that [𝑚1, . . . , 𝑚𝑘] is a composition
of 𝑛. It follows from Theorem 1.7.2 that the number of functions is 𝑞(𝑛, 𝑘) = (𝑛−1𝑘−1).

To deal with the case when 𝐷 = [𝑛] is distinguishable and 𝑅 is indistinguishable,
we introduce a useful extension of the Kronecker delta. If 𝑆 is any statement, we let

(1.9) 𝛿(𝑆) = { 1 if 𝑆 is true,
0 if 𝑆 is false.

Returning to our counting, 𝑓 is completely determined by its kernel, which is a parti-
tion of [𝑛]. If we are considering all 𝑓, then the kernel can have any number of blocks
up to and including 𝑘. Summing the corresponding Stirling numbers gives the corre-
sponding entry in Table 1.1. If 𝑓 is injective, then for such a function to exist we must
have 𝑛 ≤ 𝑘. And in that case there is only one possible kernel, namely the partition
into singleton blocks. This count can be summarized as 𝛿(𝑛 ≤ 𝑘). For surjective 𝑓 we
are partitioning [𝑛] into exactly 𝑘 blocks, giving 𝑆(𝑛, 𝑘) possibilities.

If𝐷 and 𝑅 are both indistinguishable, then the nonzero numbers of the form𝑚𝑖 =
#𝑓−1(𝑟) for 𝑟 ∈ 𝑅 completely determine 𝑓. And these numbers form a partition of
𝑛 = #𝐷 into at most 𝑘 = #𝑅 parts. Recalling the notation of Section 1.6, the total
number of such 𝑓 is 𝑝(𝑛, 𝑘). The line of reasoning for injective functions follows that
of the previous paragraph with the same resulting answer. Finally, for surjectivity we
need exactly 𝑘 parts, which is counted by 𝑝(𝑛, 𝑘) − 𝑝(𝑛, 𝑘 − 1).

1.9. Graphs and digraphs

Graph theory is a substantial part of combinatorics. We will use directed graphs to
give the postponed proof of the existence and uniqueness of the cycle decomposition
of permutations in 𝔖𝑛.

A labeled graph 𝐺 = (𝑉, 𝐸) consists of a set 𝑉 of elements called vertices and a set
𝐸 of elements called edges where an edge consists of an unordered pair of vertices. We
will write 𝑉(𝐺) and 𝐸(𝐺) for the vertex and edge set of 𝐺, respectively, if we wish to
emphasize the graph involved. Geometrically, we think of the vertices as nodes and
the edges as line segments or curves joining them. Conventionally, in graph theory an
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1.9. Graphs and digraphs 19

𝑣 𝑤

𝑥𝑦

Figure 1.7. A graph 𝐺

edge connecting vertices 𝑣 and 𝑤 is written 𝑒 = 𝑣𝑤 rather than 𝑒 = {𝑣, 𝑤}. In this case
we say that 𝑒 contains 𝑣 and 𝑤, or that 𝑒 has endpoints 𝑣 and 𝑤. We also say that 𝑣 and
𝑤 are neighbors. For example, a drawing of the graph 𝐺 with vertices 𝑉 = {𝑣, 𝑤, 𝑥, 𝑦}
and edges 𝐸 = {𝑣𝑤, 𝑣𝑥, 𝑣𝑦, 𝑤𝑥, 𝑥𝑦} is displayed in Figure 1.7. If #𝑉 = 1, then there is
only one graph with vertex set 𝑉 and such a graph is called trivial.

Call graph 𝐻 a subgraph of 𝐺, written 𝐻 ⊆ 𝐺, if 𝑉(𝐻) ⊆ 𝑉(𝐺) and 𝐸(𝐻) ⊆ 𝐸(𝐺).
In this case we also say that 𝐺 contains 𝐻. There are several types of subgraphs which
will play an important role in what follows. A walk of length ℓ in 𝐺 is a sequence of
vertices𝑊 ∶ 𝑣0, 𝑣1, . . . , 𝑣ℓ such that 𝑣𝑖−1𝑣𝑖 ∈ 𝐸 for 1 ≤ 𝑖 ≤ ℓ. We say that the walk is
from 𝑣0 to 𝑣ℓ, or is a 𝑣0–𝑣ℓ walk, or that 𝑣0, 𝑣ℓ are the endpoints of𝑊 . We call𝑊 a path
if all the vertices are distinct and we usually use letters like 𝑃 for paths. In particular,
we will use𝑊𝑛 or 𝑃𝑛 to denote a walk or a path having 𝑛 vertices, respectively. In our
example graph, 𝑃 ∶ 𝑦, 𝑣, 𝑥, 𝑤 is a path of length 3 from 𝑦 to𝑤. Notice that length refers
to the number of edges in the path, which is one less than the number of vertices. A
cycle of length ℓ in 𝐺 is a sequence of distinct vertices 𝐶 ∶ 𝑣1, 𝑣2, . . . , 𝑣ℓ such that we
have distinct edges 𝑣𝑖−1𝑣𝑖 for 1 ≤ 𝑖 ≤ ℓ, and subscripts are taken modulo ℓ so that
𝑣0 = 𝑣ℓ. Returning to our running example, 𝐶 ∶ 𝑣, 𝑥, 𝑦 is a cycle in 𝐺 of length 3. In a
cycle the length is both the number of vertices and the number of edges. The notation
𝐶𝑛 will be used for a cycle with 𝑛 vertices and we will call this an 𝑛-cycle. We also
denote by 𝐾𝑛 the complete graphwhich consists of 𝑛 vertices and all possible (𝑛2) edges
between them. A copy of a complete graph in a graph 𝐺 is often called a clique. There
is a close relationship between some of the parts of a graphwhich we have just defined.

Lemma 1.9.1. Let 𝐺 be a graph and let 𝑢, 𝑣 ∈ 𝑉 .

(a) Any walk from 𝑢 to 𝑣 contains a path from 𝑢 to 𝑣.
(b) The union of any two different paths from 𝑢 to 𝑣 contains a cycle.

Proof. We will prove (a) and leave (b) as an exercise. Let𝑊 ∶ 𝑣0, . . . , 𝑣ℓ be the walk.
We will induct on ℓ, the length of𝑊 . If ℓ = 0, then𝑊 is a path. So assume ℓ ≥ 1. If𝑊
is a path, then we are done. If not, then some vertex of𝑊 is repeated, say 𝑣𝑖 = 𝑣𝑗 for
𝑖 < 𝑗. Then we have a 𝑢–𝑣 walk𝑊 ′ ∶ 𝑣0, 𝑣1, . . . , 𝑣𝑖, 𝑣𝑗+1, 𝑣𝑗+2, . . . , 𝑣ℓ which is shorter
than𝑊 . By induction,𝑊 ′ contains a path 𝑃 and so𝑊 contains 𝑃 as well. □
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20 1. Basic Counting

To state our first graphical enumeration result, let 𝒢(𝑉) be the set of all graphs on
the vertex set 𝑉 . We will also use 𝒢(𝑉, 𝑘) to denote the set of all graphs in 𝒢(𝑉) with 𝑘
edges.

Theorem 1.9.2. For 𝑛 ≥ 1 and 𝑘 ≥ 0 we have

#𝒢([𝑛]) = 2(𝑛2)

and

#𝒢([𝑛], 𝑘) = ((
𝑛
2)
𝑘 ).

Proof. If 𝑉 = [𝑛] is given, then a graph 𝐺 with vertex set 𝑉 is completely determined
by its edge set. Since there are 𝑛 vertices, there are (𝑛2) possible edges to choose from.
So the number of 𝐺 in 𝒢([𝑛]) is the number of subsets of these edges, which, by The-
orem 1.3.1, is the given power of 2. The proof for 𝒢([𝑛], 𝑘) is similar, just using the
definition (1.4). □

Agraph is unlabeled if the vertices in𝑉 are indistinguishable. If the type of graph is
clear from the context or does not matter for the particular application at hand, we will
omit the adjectives “labeled” and “unlabeled”. The enumeration of unlabeled graphs
is much more complicated than for labeled ones. So this discussion is postponed until
Section 6.4 where we will develop the necessary tools.

If 𝐺 is a graph and 𝑣 ∈ 𝑉 , then the degree of 𝑣 is

deg 𝑣 = the number of 𝑒 ∈ 𝐸 containing 𝑣.

In our running example deg 𝑣 = deg 𝑥 = 3 and deg𝑤 = deg 𝑦 = 2. There is a nice
relationship between vertex degrees and the cardinality of the edge set. The demon-
stration of the next result illustrates an important method of proof in combinatorics,
counting in pairs.

Theorem 1.9.3. For any graph 𝐺 we have

∑
𝑣∈𝑉

deg 𝑣 = 2|𝐸|.

Proof. Consider
𝑃 = {(𝑣, 𝑒) | 𝑣 is contained in 𝑒}.

Then
#𝑃 = ∑

𝑣∈𝑉
(number of 𝑒 containing 𝑣) = ∑

𝑣∈𝑉
deg 𝑣.

On the other hand

#𝑃 = ∑
𝑒∈𝐸

(number of 𝑣 contained in 𝑒) = ∑
𝑒∈𝐸

2 = 2|𝐸|.

Equating the two counts finishes the proof. □
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𝑣 𝑤

𝑥𝑦

Figure 1.8. A digraph 𝐷

Theorem 1.9.3 is often called the Handshaking Lemma because of the following
interpretation. Suppose 𝑉 is the set of people at a party and we draw an edge between
person 𝑣 and person 𝑤 if they shake hands during the festivities. Then adding up the
number of handshakes given by each person gives twice the total number of hand-
shakes.

It is often useful to have specified directions along the edges. A labeled directed
graph, also called a digraph, is 𝐷 = (𝑉, 𝐴) where 𝑉 is a set of vertices and 𝐴 is a set
of arcs which are ordered pairs of vertices. We use the notation 𝑎 = 𝑣𝑤 for arcs and
say that 𝑎 goes from 𝑣 to 𝑤. To illustrate, the digraph with 𝑉 = {𝑣, 𝑤, 𝑥, 𝑦} and 𝐴 =
{𝑣𝑤,𝑤𝑣,𝑤𝑥, 𝑦𝑣, 𝑦𝑥} is drawn in Figure 1.8. We use 𝑉(𝐷) and𝐴(𝐷) to denote the vertex
set and arc set, respectively, of a digraph 𝐷 when we wish to be more precise. Directed
walks, paths, and cycles are defined for digraphs similarly to their undirected cousins in
graphs, just insisting the 𝑣𝑖−1𝑣𝑖 ∈ 𝐴 for 𝑖 in the appropriate range. So, in our example
digraph, 𝑃 ∶ 𝑦, 𝑣, 𝑤, 𝑥 is a directed path and 𝐶 ∶ 𝑣,𝑤 is a directed cycle. Note that
𝑤, 𝑥, 𝑦, 𝑣 is not a directed path because the arc between 𝑥 and 𝑦 goes the wrong way.

Let 𝒟(𝑉) and 𝒟(𝑉, 𝑘) be the set of digraphs and the set of digraphs with 𝑘 arcs,
respectively, having vertex set 𝑉 . The next result is proved in much the same manner
as Theorem 1.9.2 so the demonstration is omitted.

Theorem 1.9.4. For 𝑛 ≥ 1 and 𝑘 ≥ 0 we have
#𝒟([𝑛]) = 2𝑛(𝑛−1)

and

#𝒟([𝑛], 𝑘) = (𝑛(𝑛 − 1)
𝑘 ). □

In a digraph 𝐷 there are two types of degrees. Vertex 𝑣 ∈ 𝑉 has out-degree and
in-degree

odeg 𝑣 = the number of 𝑎 ∈ 𝐴 of the form 𝑎 = 𝑣𝑤,
ideg 𝑣 = the number of 𝑎 ∈ 𝐴 of the form 𝑎 = 𝑤𝑣,

respectively. In Figure 1.8, for example, odeg 𝑣 = 1 and ideg 𝑣 = 2. The next result will
permit us to finish our leftover business from Section 1.5. The union of digraphs 𝐷∪𝐸
is the digraph with vertices 𝑉(𝐷∪𝐸) = 𝑉(𝐷)∪𝑉(𝐸) and arcs 𝐴(𝐷∪𝐸) = 𝐴(𝐷)∪𝐴(𝐸).
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22 1. Basic Counting

Lemma 1.9.5. Let 𝐷 = (𝑉, 𝐴) be a digraph. We have odeg 𝑣 = ideg 𝑣 = 1 for all 𝑣 ∈ 𝑉
if and only if 𝐷 is a disjoint union of directed cycles.

Proof. The reverse implication is easy to see since the out-degree and in-degree of any
vertex 𝑣 of 𝐷 would be the same as those degrees in the directed cycle containing 𝑣.
But in such a cycle odeg 𝑣 = ideg 𝑣 = 1.

For the forward direction, pick any 𝑣 = 𝑣1 ∈ 𝑉 . Since odeg 𝑣1 = 1 there must
exist a vertex 𝑣2 with 𝑣1𝑣2 ∈ 𝐴. By the same token, there must be a 𝑣3 with 𝑣2𝑣3 ∈ 𝐴.
Continue to generate a sequence 𝑣1, 𝑣2, . . . in this manner. Since 𝑉 is finite, there must
be two indices 𝑖 < 𝑗 such that 𝑣𝑖 = 𝑣𝑗 . Let 𝑖 be the smallest such index and let 𝑗 be
the first index after 𝑖 where repetition occurs. Thus 𝑖 = 1, for if not, then we have
𝑣𝑖−1𝑣𝑖, 𝑣𝑗−1𝑣𝑖 ∈ 𝐴, contradicting the fact that ideg 𝑣𝑖 = 1. By definition of 𝑗, we have
a directed cycle 𝐶 ∶ 𝑣1, 𝑣2, . . . , 𝑣𝑗−1. Furthermore, no vertex of 𝐶 can be involved in
another arc since that would make its out-degree or in-degree too large. Continuing in
this manner, we can decompose 𝐷 into disjoint directed cycles. □

Sometimes it is useful to allow loops in a graph which are edges of the form 𝑒 = 𝑣𝑣.
Similarly, we canpermit loops as arcs𝑎 = 𝑣𝑣 in a digraph. Another possibility is thatwe
would wantmultiple edges, meaning that one could have more than one edge between
a given pair of vertices, making 𝐸 into a multiset. Multiple arcs are defined similarly.
If we make no specification for our (di)graph, then we are assuming that it has neither
loops nor multiple edges. We will now prove Theorem 1.5.1.

Proof (of Theorem 1.5.1). To any 𝜋 ∈ 𝔖𝑛 we associate its functional digraph 𝐷𝜋
which has 𝑉 = [𝑛] and an arc ⃗𝚤𝚥 ∈ 𝐴 if and only if 𝜋(𝑖) = 𝑗. Now 𝐷𝜋 is a digraph
with loops. Because 𝜋 is a function we have odeg 𝑖 = 1 for all 𝑖 ∈ [𝑛]. And because 𝜋
is a bijection we also have ideg 𝑖 = 1 for all 𝑖. The proof of the previous lemma works
equally well if one allows loops. So 𝐷𝜋 is a disjoint union of cycles. But cycles of the
digraph 𝐷𝜋 correspond to cycles of the permutation 𝜋. Thus the cycle decomposition
of𝜋 exists. It is also easy to check that the cycles of𝐷𝜋 produced by the algorithm in the
demonstration of necessity in Lemma 1.9.5 are unique. This implies the uniqueness
statement about the cycles of 𝜋 and so we are done. □

1.10. Trees

Trees are a type of graph which often occurs in practice, even in domains outside of
mathematics. For example, trees are used as data structures in computer science, or
to model evolution in genetics. A graph 𝐺 is connected if, for every pair of vertices
𝑣, 𝑤 ∈ 𝑉 , there is a walk in 𝐺 from 𝑣 to 𝑤. By Lemma 1.9.1(a), this is equivalent to
there being a path from 𝑣 to 𝑤 in 𝐺. The connected components of 𝐺 are the maximal
connected subgraphs. If 𝐺 is connected, there is only one component. Call 𝐺 acyclic
if it contains no cycles. A forest is another name for an acyclic graph. The connected
components of a forest are called trees. So a graph 𝑇 is a tree if it is both connected and
acyclic. Figure 1.9 contains five trees 𝑇1, . . . , 𝑇5.
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Figure 1.9. The Prüfer algorithm

A leaf in a graph 𝐺 is a vertex 𝑣 having deg 𝑣 = 1. The next result will show that
nontrivial trees have leaves (regardless of the time of year). Further, it should be clear
from this lemma why leaves are a useful tool for induction in trees. In order to state it,
we need the following notation. If 𝐺 is a graph and𝑊 ⊆ 𝑉 , then 𝐺 − 𝑊 is the graph
on the vertex set 𝑉 −𝑊 whose edge set consists of all edges in 𝐸 with both endpoints
in 𝑉 − 𝑊 . If 𝑊 = {𝑣} for some 𝑣, then we write 𝐺 − 𝑣 for 𝐺 − {𝑣}. In Figure 1.9,
𝑇2 = 𝑇1 − 5. Similarly, if 𝐹 ⊆ 𝐸, then 𝐺 − 𝐹 is the graph with 𝑉(𝐺 − 𝐹) = 𝑉(𝐺)
and 𝐸(𝐺 − 𝐹) = 𝐸(𝐺) − 𝐸(𝐹). If 𝐹 consists of a single edge, then we use a similar
abbreviation as for subtracting vertices.

Lemma 1.10.1. Let 𝑇 be a tree with #𝑉 ≥ 2.
(a) 𝑇 has (at least) 2 leaves.
(b) If 𝑣 is a leaf of 𝑇, then 𝑇 ′ = 𝑇 − 𝑣 is also a tree.

Proof. (a) Let 𝑃 ∶ 𝑣0, . . . , 𝑣ℓ be a path of maximum length in 𝑇. Since 𝑇 is nontrivial,
𝑣0 ≠ 𝑣ℓ. We claim that 𝑣0, 𝑣ℓ are leaves and we will prove this for 𝑣0 as the same proof
works for 𝑣ℓ. Suppose, towards a contradiction, that deg 𝑣0 ≥ 2. Then there must be a
vertex𝑤 ≠ 𝑣1 such that 𝑣0𝑤 ∈ 𝐸. We now have two possibilities. If𝑤 is not a vertex of
𝑃, then the path 𝑃′ ∶ 𝑤, 𝑣0, . . . , 𝑣ℓ is longer than 𝑃, a contradiction to the definition of
𝑃. If 𝑤 = 𝑣𝑖 for some 2 ≤ 𝑖 ≤ ℓ, then the portion of 𝑃 from 𝑣0 to 𝑣𝑖 together with the
edge 𝑣0𝑣𝑖 forms a cycle in 𝑇, again a contradiction.

(b) It is clear that 𝑇 ′ is still acyclic since removing vertices cannot create a cycle.
To show it is connected, take 𝑥, 𝑦 ∈ 𝑉(𝑇 ′). So 𝑥, 𝑦 are also vertices of 𝑇. Since 𝑇 is
connected, Lemma 1.9.1(a) implies that there is a path 𝑃 from 𝑥 to 𝑦 in 𝑇. If this path
is also in 𝑇 ′, then we will be done. But if 𝑃 goes through 𝑣, then, since there is a unique
vertex 𝑣′ adjacent to 𝑣, 𝑃would have to pass through 𝑣′ just before and just after 𝑣. This
contradicts the fact that the vertices of 𝑃 are distinct. □

There are a number of characterizations of trees. We collect some of them here as
they will be useful in the sequel.
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Theorem 1.10.2. Let 𝑇 be a graph with #𝑉 = 𝑛 and #𝐸 = 𝑚. The following are
equivalent conditions for 𝑇 to be a tree:

(a) 𝑇 is connected and acyclic.
(b) 𝑇 is acyclic and 𝑛 = 𝑚 + 1.
(c) 𝑇 is connected and 𝑛 = 𝑚 + 1.
(d) For every pair of vertices 𝑢, 𝑣 there is a unique path from 𝑢 to 𝑣.

Proof. We will prove the equivalence of (a), (b), and (c). The equivalence of (a) and
(d) is left as an exercise. To prove that (a) implies (b), it suffices to show by induction
on 𝑛 that 𝑛 = 𝑚 + 1. This is trivial if 𝑛 = 1. If 𝑛 ≥ 2, then, by Lemma 1.10.1, 𝑇 has
a leaf 𝑣. Induction applies to 𝑇 ′ = 𝑇 − 𝑣 so that its vertex and edge cardinalities are
related by 𝑛′ = 𝑚′ + 1. But 𝑛 = 𝑛′ + 1 and𝑚 = 𝑚′ + 1 so that 𝑛 = 𝑚 + 1.

To see why (b) implies (c), consider the connected components 𝑇1, . . . , 𝑇𝑘 of 𝑇.
Since 𝑇 is acyclic, each of these components is a tree. Also, from the implication (a)
⟹ (b), we have that 𝑛𝑖 = 𝑚𝑖 + 1 for 1 ≤ 𝑖 ≤ 𝑘 where 𝑛𝑖 = #𝑉(𝑇𝑖) and𝑚𝑖 = #𝐸(𝑇𝑖).
Adding these equations together and using the fact that∑𝑖 𝑛𝑖 = 𝑛 and∑𝑖𝑚𝑖 = 𝑚 we
obtain 𝑛 = 𝑚 + 𝑘. But we are given that 𝑛 = 𝑚 + 1. So we must have 𝑘 = 1 . This
means that 𝑇 only has one component and so is connected.

We prove that (c) implies (a) by contradiction. So suppose that 𝑇 contains a cycle
𝐶 and let 𝑒 = 𝑢𝑣 ∈ 𝐸(𝐶). We claim that 𝑇 − 𝑒 is still connected. For if 𝑥, 𝑦 are any
two vertices of 𝑇 − 𝑒, then there is a walk𝑊 from 𝑥 to 𝑦 in 𝑇. If𝑊 does not contain 𝑒,
then𝑊 is still in 𝑇 − 𝑒. If𝑊 does contain 𝑒, then replace 𝑒 in𝑊 with the path 𝐶 − 𝑒
to form a new walk𝑊 ′ from 𝑥 to 𝑦 in 𝑇 − 𝑒. We can keep removing edges in this way
until the resulting graph 𝑇 ′ is acyclic. Since 𝑇 ′ is still connected, it is a tree. And by
the first implication we have 𝑛′ = 𝑚′ + 1. But 𝑛′ = 𝑛 and 𝑚′ < 𝑚 so that 𝑛 < 𝑚 + 1,
the desired contradiction. □

Let 𝒯(𝑉) be the set of all trees on the vertex set 𝑉 . There are quite a number of
different proofs of the beautiful formula below for#𝒯(𝑉), many ofwhich are inMoon’s
book on the subject [64].

Theorem 1.10.3. For 𝑛 ≥ 1 we have
#𝒯([𝑛]) = 𝑛𝑛−2.

Proof. The result is trivial if 𝑛 = 1, so assume 𝑛 ≥ 2. By Theorem 1.2.2 it suffices
to find a bijection 𝑓∶ 𝒯([𝑛]) → 𝑃(([𝑛], 𝑛 − 2)). There is a famous algorithm for con-
structing𝑓which is called thePrüfer algorithm. An examplewill be found inFigure 1.9.
Given 𝑇 ∈ 𝒯([𝑛]), to determine 𝑓(𝑇) = 𝑤1 . . . 𝑤𝑛−2 we will build a sequence of trees
𝑇 = 𝑇1, 𝑇2, . . . , 𝑇𝑛−1 by removing vertices from 𝑇 as follows. Since the vertices of 𝑇
are labeled 1, . . . , 𝑛 it makes sense to talk about, e.g., a maximum vertex because of the
ordering on the integers. Given 𝑇𝑖, we find the leaf 𝑙𝑖 ∈ 𝑉(𝑇𝑖) such that 𝑙𝑖 is maximum
and let 𝑇𝑖+1 = 𝑇𝑖 − 𝑙𝑖. By the previous lemma, 𝑇𝑖+1 will also be a tree. Since 𝑙𝑖 is a leaf,
it is adjacent to a unique vertex 𝑤𝑖 in 𝑇𝑖 and we let 𝑤𝑖 be the 𝑖th element of 𝑓(𝑇). Now
each 𝑤𝑖 ∈ [𝑛] and 𝑓(𝑇) has length 𝑛 − 2 by definition. So 𝑓(𝑇) ∈ 𝑃(([𝑛], 𝑛 − 2)).
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To show that 𝑓 is a bijection, we find its inverse. Given𝑤 ∈ 𝑃(([𝑛], 𝑛−2)), we will
first construct a permutation 𝑙 = 𝑙1 . . . 𝑙𝑛−2 ∈ 𝑃([𝑛], 𝑛 − 2) where 𝑙𝑖 will turn out to be
the leaf removed from 𝑇𝑖 to form 𝑇𝑖+1. We construct the 𝑙𝑖 inductively by letting

(1.10) 𝑙𝑖 = max([𝑛] − {𝑙1, . . . , 𝑙𝑖−1, 𝑤𝑖, . . . , 𝑤𝑛−2}).

Finally we construct 𝑓−1(𝑤) = 𝑇 by letting 𝑇 have edges 𝑒𝑖 = 𝑙𝑖𝑤𝑖 for 1 ≤ 𝑖 ≤ 𝑛 − 2
as well as the edge 𝑒𝑛−1 = 𝑙𝑛−1𝑙𝑛 where [𝑛] − {𝑙1, . . . , 𝑙𝑛−2} = {𝑙𝑛−1, 𝑙𝑛}. To show that
𝑓−1(𝑤) = 𝑇 is a tree, note first that 𝑙1 is a leaf of 𝑇 because 𝑙1 is attached to 𝑤1 but
to none of the other vertices of 𝑇 by (1.10) and the definition of 𝑒𝑛−1. Consider 𝑤′ =
𝑤2 . . . 𝑤𝑛−2 and apply the algorithm for 𝑓−1 to𝑤′ using the ground set [𝑛]−{𝑙1} instead
of [𝑛]. By induction, the result is a tree 𝑇 ′. And 𝑇 is formed by adding 𝑙1 as a leaf to 𝑇 ′,
which makes 𝑇 a tree as well.

To show that 𝑓 and 𝑓−1 are inverses we will show that 𝑓−1 ∘ 𝑓 is the identity map,
leaving the proof for 𝑓 ∘ 𝑓−1 to the reader. Suppose 𝑓(𝑇) = 𝑤1 . . . 𝑤𝑛−2. Also let
the sequence of leaves removed during the construction of 𝑓(𝑇) be 𝑙′1 . . . 𝑙′𝑛−2. Then
by definition of the algorithm, the edges of 𝑇 are exactly 𝑙′𝑖𝑤𝑖 for 1 ≤ 𝑖 ≤ 𝑛 − 2
and 𝑙′𝑛−1𝑙′𝑛 where [𝑛] − {𝑙′1, . . . , 𝑙′𝑛−2} = {𝑙′𝑛−1, 𝑙′𝑛}. Comparing this with the definition
of 𝑓−1 we see that it suffices to show that 𝑙𝑖 = 𝑙′𝑖 for all 𝑖 and that this will follow if
one can prove the equality holds for 1 ≤ 𝑖 ≤ 𝑛 − 2. Since 𝑙′𝑖 is a leaf in 𝑇𝑖, it cannot
be any of the previously removed leaves 𝑙′1, . . . , 𝑙′𝑖−1. Of the remaining vertices, those
which are among 𝑤𝑖, . . . , 𝑤𝑛−2 are not currently leaves since they are attached to fu-
ture leaves which are to be removed. And conversely those not among the𝑤𝑖, . . . , 𝑤𝑛−2
must be leaves; otherwise, they would be listed as some 𝑤𝑗 for 𝑗 ≥ 𝑖 once all their
adjacent leaves were removed. Hence the leaves of 𝑇𝑖 are precisely the elements of
[𝑛] − {𝑙′1, . . . , 𝑙′𝑖−1, 𝑤𝑖, . . . , 𝑤𝑛−2}. Since we always remove the leaf of maximum value,
we see that the rule for choosing 𝑙′𝑖 is exactly the same as the one in (1.10). So 𝑙𝑖 = 𝑙′𝑖 as
desired. □

1.11. Lattice paths

Lattice paths lead to many interesting counting problems in combinatorics. They are
also important in probability and statistics; see the book of Mohanty [63] for examples.

Consider the integer lattice in the plane

ℤ2 = {(𝑥, 𝑦) | 𝑥, 𝑦 ∈ ℤ}.

A lattice path is a sequence of elements of ℤ2 written

𝑃 ∶ (𝑥0, 𝑦0), (𝑥1, 𝑦1), . . . , (𝑥ℓ, 𝑦ℓ).

Just as in graph theory, we say the path has length ℓ and goes from (𝑥0, 𝑦0) to (𝑥ℓ, 𝑦ℓ),
which are called its endpoints. Unlike graph-theoretic paths, we do not assume the
(𝑥𝑖, 𝑦𝑖) are distinct. To illustrate the notation, if we assume that the left-hand path in
Figure 1.10 starts at the origin, then it would be written

𝑃 ∶ (0, 0), (0, 1), (0, 2), (1, 2), (1, 3), (2, 3), (3, 3), (3, 4), (4, 4).
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Figure 1.10. Dyck paths

The step between (𝑥𝑖−1, 𝑦𝑖−1) and (𝑥𝑖, 𝑦𝑖) on 𝑃 is the vector 𝑠𝑖 = [𝑥𝑖 − 𝑥𝑖−1, 𝑦𝑖 − 𝑦𝑖−1].
Note the use of square versus round brackets to distinguish steps from vertices of the
path. Note that 𝑃 is determined up to translation by its steps and that it is determined
completely by its steps and initial vertex. If no initial vertex is specified, it is assumed to
be the origin. We let𝐸 = [1, 0] and𝑁 = [0, 1], calling these east and north steps, respec-
tively. The path on the left in Figure 1.10 could also be represented 𝑃 ∶ 𝑁𝑁𝐸𝑁𝐸𝐸𝑁𝐸.

For our first enumerative result, we use the notation𝒩ℰ(𝑚, 𝑛) for the set of lattice
paths from (0, 0) to (𝑚, 𝑛) only using steps north and east. We call lattice paths using
only 𝑁 and 𝐸 steps northeast paths.

Theorem 1.11.1. For𝑚, 𝑛 ≥ 0 we have

#𝒩ℰ(𝑚, 𝑛) = (𝑚 + 𝑛
𝑚 ).

Proof. Let 𝑃 be a northeast lattice path from (0, 0) to (𝑚, 𝑛). Then 𝑃 has 𝑚 + 𝑛 total
steps. And once𝑚 of them are chosen to be 𝐸, the rest must be 𝑁. The result follows.

□

We will be particularly concerned with a special type of northeast path. A Dyck
path of semilength 𝑛 is a northeast lattice path which begins at (0, 0), ends at (𝑛, 𝑛), and
never goes below the line 𝑦 = 𝑥. The first path in Figure 1.10 is of this type. Note
that 𝑛 is called the semilength because the Dyck path itself has 2𝑛 steps. We let 𝒟(𝑛)
denote the set of Dyck paths of semilength 𝑛. This should cause no confusion with
the notation 𝒟(𝑉) for the set of digraphs on the vertex set 𝑉 because in the former
notation 𝑛 is a nonnegative integer while in the latter it is a set. We now define that
Catalan numbers to be

𝐶(𝑛) = #𝒟(𝑛).

The Catalan numbers are ubiquitous in combinatorics. In fact, Stanley has written
a book [92] containing 214 different combinatorial interpretations of 𝐶(𝑛). A few of
these are listed in the exercises. The Catalan numbers satisfy a nice recursion.
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Theorem 1.11.2. We have the initial condition

𝐶(0) = 1

and recurrence relation

𝐶(𝑛) = 𝐶(0)𝐶(𝑛 − 1) + 𝐶(1)𝐶(𝑛 − 2) + 𝐶(2)𝐶(𝑛 − 3) +⋯+ 𝐶(𝑛 − 1)𝐶(0)

for 𝑛 ≥ 1.

Proof. The initial condition counts the trivial path of a single vertex. For the recursion,
take 𝑃 ∶ 𝑣0, . . . , 𝑣2𝑛 ∈ 𝒟(𝑛)where 𝑣𝑖 = (𝑥𝑖, 𝑦𝑖) for all 𝑖. Let 𝑗 > 0 be the smallest index
such that 𝑣2𝑗 is on the line 𝑦 = 𝑥. Such an index exists since 𝑣2𝑛 = (𝑛, 𝑛) satisfies
this condition. Also note that no vertex of odd subscript is on 𝑦 = 𝑥 since the number
of north steps and the number of east steps preceding that vertex cannot be equal. It
follows that 𝑃1, the portion of 𝑃 from 𝑣1 to 𝑣2𝑗−1, stays above 𝑦 = 𝑥+ 1. So the number
of choices for 𝑃1 is 𝐶(𝑗 − 1). Furthermore, if 𝑃2 is the portion of 𝑃 from 𝑣2𝑗 to 𝑣2𝑛, then
𝑃2 is (a translation of) a Dyck path of semilength 𝑛 − 𝑗. So the number of choices for
𝑃2 is 𝐶(𝑛 − 𝑗). Thus the total number of such 𝑃 is 𝐶(𝑗 − 1)𝐶(𝑛 − 𝑗). Summing over
1 ≤ 𝑗 ≤ 𝑛 finishes the proof. □

There is an explicit expression for the Catalan numbers. But to derive this formula
it will be convenient to use a second set of paths counted by 𝐶(𝑛). Call the steps 𝑈 =
[1, 1] and 𝐷 = [1, −1] up and down, respectively. An updown path is one using only
such steps. It should be clear that if we let �̃�(𝑛) be the set of updown lattice paths from
(0, 0) to (2𝑛, 0) never going below the 𝑥-axis, then#�̃�(𝑛) = #𝒟(𝑛) = 𝐶(𝑛). In fact one
can get from the paths in one set to those in the other by rotation and dilation of the
plane. The two paths in Figure 1.10 correspond under this map and the second one
would be represented as 𝑃 ∶ 𝑈𝑈𝐷𝑈𝐷𝐷𝑈𝐷.

Theorem 1.11.3. For 𝑛 ≥ 0 we have

𝐶(𝑛) = 1
𝑛 + 1(

2𝑛
𝑛 ).

Proof. We rewrite the right-hand side as

1
𝑛 + 1(

2𝑛
𝑛 ) =

(2𝑛)!
𝑛! (𝑛 + 1)! =

1
2𝑛 + 1(

2𝑛 + 1
𝑛 ).

Let 𝒫 be the set of all updown paths starting at (0, 0) and ending at (2𝑛 + 1,−1). Such
paths have 2𝑛 + 1 steps of which 𝑛 are up (forcing the other 𝑛 + 1 to be down) so that
#𝒫 = (2𝑛+1𝑛 ). Our strategy will be to find a partition 𝜌 of 𝒫 such that

(1) #𝐵 = 2𝑛 + 1 for every block 𝐵 of 𝜌 and
(2) there is a bijection between the blocks of 𝜌 and the paths in �̃�(𝑛).

It will then follow that #�̃�(𝑛) is equal to the number of blocks of 𝜌, which is
#𝒫/(2𝑛 + 1), giving the desired equality.
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To determine 𝜌, we will take any 𝑃 ∈ 𝒫 and describe the block 𝐵 containing 𝑃. We
will refer to the 𝑦-coordinate of a vertex 𝑣 of 𝑃 as its height, written ht 𝑣. Suppose 𝑃 has
step representation 𝑃 ∶ 𝑠1𝑠2 . . . 𝑠2𝑛+1. Define the 𝑟th rotation of 𝑃 to be the path

𝑃𝑟 ∶ 𝑠𝑟+1𝑠𝑟+2 . . . 𝑠2𝑛+1𝑠1𝑠2 . . . 𝑠𝑟
where all paths start at the origin. Let 𝐵 = {𝑃0, . . . , 𝑃2𝑛}. So to show that 𝐵 has the
correct cardinality, we must prove that the 𝑃𝑖 are all distinct. Suppose to the contrary
that two are equal. By renumbering if necessary, we can assume that 𝑃0 = 𝑃𝑗 for some
1 ≤ 𝑗 ≤ 2𝑛. Take 𝑗 be be minimum. Iterating this equality, we get 𝑃0 = 𝑃𝑗 = 𝑃2𝑗 = . . . .
These equalities and the fact that 𝑗 is as small as possible imply that 𝑃 = 𝑃0 is the
concatenation of 𝑃′ ∶ 𝑠1 . . . 𝑠𝑗 with itself, say 𝑘 times for some 𝑘 ≥ 2. Suppose 𝑃′ ends
at height ℎ. Then 𝑃must end at height 𝑘ℎ and so 𝑘ℎ = −1. This forces 𝑘 = 1, which is
a contradiction.

To finish the proof, we must show that the blocks of 𝜌 are in bijection with the
paths in �̃�(𝑛). Let �̃�′(𝑛) denote the set of paths obtained by appending a down step to
each path in �̃�(𝑛). So 𝜌 partitions 𝒫 ⊇ �̃�′(𝑛). Thus it suffices to show that there is a
unique path from �̃�′(𝑛) in each block 𝐵 of 𝜌. Let 𝐵 be generated by rotating a path 𝑃 as
in the previous paragraph and let 𝑃 ∶ 𝑣0 . . . 𝑣2𝑛+1 be the lattice point representation of
𝑃. Let ℎ be the minimum height of a vertex of 𝑃, and among all vertices of 𝑃 of height
ℎ let 𝑣𝑟 be the left most. We claim that 𝑃𝑟 ∈ �̃�′(𝑛) and no other 𝑃𝑠 is in this set for
𝑠 ∈ {0, 1, . . . , 𝑛} − {𝑟}. We will prove the first of these two claims and leave the second,
whose demonstration is similar, as an exercise. Since 𝑣𝑟 is translated to the origin and
has smallest height in 𝑃, the translations of all 𝑣𝑖 for 𝑖 ≥ 𝑟 will lie weakly above the 𝑥-
axis. As for the 𝑣𝑖 with 𝑖 < 𝑟, they must be translated so the 𝑣𝑟 becomes the last vertex
of 𝑃𝑟 which is of height −1. But since 𝑣𝑟 was the first vertex of minimum height in 𝑃,
the vertices before it must be translated to have height greater than −1 and so must
also lie weakly above the 𝑥-axis. It follows that only the last vertex of 𝑃𝑟 is below the
𝑥-axis, which is what we wished to prove. □

1.12. Pattern avoidance

Pattern avoidance is a relatively recent area of study in combinatorics. It has seen
strong growth in part because of its connections to algebraic geometry and computer
science. For more information about this topic, see the books of Bóna [18] or Ki-
taev [48].

Let 𝑆 be a set of integers with #𝑆 = 𝑘 and consider a permutation 𝜎 ∈ 𝑃(𝑆).
The standardization of 𝜎 is the permutation std 𝜎 ∈ 𝑃([𝑘]) obtained by replacing the
smallest element of 𝜎 by 1, the next smallest by 2, and so on. For example, if 𝜎 = 263,
then std 𝜎 = 132. Given 𝜎 ∈ 𝔖𝑛 and 𝜋 ∈ 𝔖𝑘 in one-line notation, we say that 𝜎
contains a copy of 𝜋 if there is a subsequence 𝜎′ of 𝜎 such that std 𝜎′ = 𝜋. Note that
a subsequence need not consist of consecutive elements of 𝜋. In this case, 𝜋 is called
the pattern. To illustrate, 𝜎 = 425613 contains the pattern 𝜋 = 132 since 𝜎′ = 263
standardizes to 𝜋. On the other hand, we say that 𝜎 avoids 𝜋 if it has no subsequence
𝜎′ with std 𝜎 = 𝜋. Continuing our example, one can check that 𝜎 avoids 4321 since
𝜎 does not contain a decreasing subsequence of length four. There is an equivalent

The preliminary version made available with permission of the publisher, the American Mathematical Society



1.12. Pattern avoidance 29

𝜋 =

𝜎 =

Figure 1.11. The diagrams for 𝜋 = 132 and 𝜎 = 425613

definition of pattern containment which the reader will see in the literature. If 𝑆, 𝑇 are
sets with #𝑆 = #𝑇 = 𝑘, then call 𝜎 = 𝜎1 . . . 𝜎𝑘 ∈ 𝑃(𝑆) and 𝜏 = 𝜏1 . . . 𝜏𝑘 ∈ 𝑃(𝑇) order
isomorphic if 𝜎𝑖 < 𝜎𝑗 is equivalent to 𝜏𝑖 < 𝜏𝑗 for all 𝑖, 𝑗. It is easy to see that 𝜎 contains
a copy of 𝜋 if and only if 𝜎 contains a subsequence order isomorphic to 𝜋.

To study patterns, it will be useful to have a geometric model of a permutation
analogous to its permutation matrix. Again, the integer lattice will come into play.
Given 𝜎 = 𝜎1 . . . 𝜎𝑛 ∈ 𝔖𝑛, its diagram is the set of points (𝑖, 𝜎𝑖) ∈ ℤ2 for 1 ≤ 𝑖 ≤ 𝑛.
In displaying the diagram, the lower-left corner is always assumed to have coordinates
(1, 1). Using our running example, the diagrams for 𝜋 = 132 and 𝜎 = 425613 are
shown in Figure 1.11. The points corresponding to the copy 263 of 𝜋 in 𝜎 have been
enlarged to emphasize how easily one can see pattern containment using diagrams.

From an enumerative point of view, avoidance often turns out to be easier to work
with than containment. So given 𝜋 ∈ 𝔖𝑘, we consider

Av𝑛(𝜋) = {𝜎 ∈ 𝔖𝑛 | 𝜎 avoids 𝜋}.
Note that many authors use 𝔖𝑛(𝜋) instead of Av𝑛(𝜋) for this set. Call 𝜋 and 𝜋′ Wilf
equivalent, written 𝜋 ≡ 𝜋′, if #Av𝑛(𝜋) = #Av𝑛(𝜋′) for all 𝑛 ≥ 0. It is easy to see that
this is an equivalence relation on 𝔖𝑛. We will prove that any two permutations in 𝔖3
are Wilf equivalent, although this is not as startling as it might first sound.

Certain Wilf equivalences follow easily from manipulation of diagrams. Consider
the dihedral group of the square

(1.11) 𝐷 = {𝜌0, 𝜌90, 𝜌180, 𝜌270, 𝑟0, 𝑟1, 𝑟−1, 𝑟∞}
where 𝜌𝜃 is rotation by 𝜃 degrees counterclockwise and 𝑟𝑚 is reflection across a line
of slope 𝑚. If 𝜎 contains a copy 𝜎′ of 𝜋 and 𝑓 ∈ 𝐷, then 𝑓(𝜎) contains a copy 𝑓(𝜎′)
of 𝑓(𝜋). Using 𝑓−1, we see that the converse of the previous assertion is also true. It
follows that 𝜎 avoids 𝜋 if and only if 𝑓(𝜎) avoids 𝑓(𝜋). We have proven the following
result.

Lemma 1.12.1. For any 𝜋 ∈ 𝔖𝑘 and any 𝑓 ∈ 𝐷 we have 𝜋 ≡ 𝑓(𝜋). □
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𝜎 =

𝜎′

𝜎″

𝑗

Figure 1.12. Decomposing 𝜎 ∈ Av𝑛(132)

The equivalences in this lemma are called trivial Wilf equivalences. In particular,
in 𝔖3 one sees by repeatedly applying 𝜌90 that 132 ≡ 231 ≡ 213 ≡ 312 and 123 ≡ 321.
In fact, all six permutations areWilf equivalent and their avoidance sets are counted by
the Catalan numbers. We start with 132 from the first set of equivalent permutations.

Theorem 1.12.2. For 𝑛 ≥ 0 we have
#Av𝑛(132) = 𝐶(𝑛).

Proof. Wewill induct on 𝑛, using the initial condition and recurrence relation for𝐶(𝑛)
given in Theorem 1.11.2. As usual, we concentrate on the latter. Pick 𝜎 = 𝜎1 . . . 𝜎𝑛 ∈
Av𝑛(132) and suppose 𝜎𝑗 = 𝑛. So we can write 𝜎 = 𝜎′𝑛𝜎″ where 𝜎′ = 𝜎1 . . . 𝜎𝑗−1
and 𝜎″ = 𝜎𝑗+1 . . . 𝜎𝑛. Clearly 𝜎′ and 𝜎″ must avoid 132 since they are subsequences
of 𝜎. We also claim that min𝜎′ > max𝜎″ so that we can think of the diagram of 𝜎
decomposing as in Figure 1.12. Indeed, if there is 𝑠 ∈ 𝜎′ and 𝑡 ∈ 𝜎″ with 𝑠 < 𝑡, then 𝜎
contains 𝑠𝑛𝑡, which is a copy of 132, a contradiction. Thus 𝜎′ and 𝜎″ are permutations
of {𝑛−1, 𝑛−2, . . . , 𝑛−𝑗+1} and [𝑛−𝑗], respectively, both ofwhich avoid 132. Conversely,
if the diagram of 𝜎 has the form given in Figure 1.12 with 𝜎′, 𝜎″ avoiding 132, then 𝜎
must avoid 132. This is a case-by-case proof by contradiction, considering where the
elements of a copy of 132 could lie in the diagram if one existed. We leave the details
to the reader. To finish the count, from what we have shown and induction there are
𝐶(𝑗 − 1) choices for 𝜎′ and 𝐶(𝑛 − 𝑗) for 𝜎″. Taking their product and summing over
𝑗 ∈ [𝑛] shows that there are 𝐶(𝑛) choices for 𝜎. □

Next we will tackle 123, but to do so we will need some new concepts. The left-
right minima of 𝜎 = 𝜎1 . . . 𝜎𝑛 ∈ 𝔖𝑛 are the 𝜎𝑖 satisfying 𝜎𝑖 < min{𝜎1, 𝜎2, . . . , 𝜎𝑖−1}. For
example 𝜎 = 698371542 has left-right minima 𝜎1 = 6, 𝜎4 = 3, and 𝜎6 = 1. The indices
𝑖 such that 𝜎𝑖 is a left-right minimum are called the left-right minimum positions. If
necessary to distinguish from the positions, the 𝜎𝑗 themselves are called the left-right
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minimum values. Reading the left-rightminima in order from left to right, the positions
and values always satisfy
(1.12) 1 = 𝑖1 < 𝑖2 < ⋯ < 𝑖𝑙 and 𝑚1 > 𝑚2 > ⋯ > 𝑚𝑙 = 1
for some 𝑙 ≥ 1.

We will need to determine, given a set of values and positions, whether a permu-
tation exists with left-right minima having these values and positions. To do this, we
introduce the dominance order on compositions, which is also useful in other areas
of combinatorics and representation theory. A weak composition of 𝑛 is a sequence
𝛼 = [𝛼1, . . . , 𝛼𝑙] of nonnegative integers with∑𝑖 𝛼𝑖 = 𝑛. So in weak compositions zero
is permitted as a part and we will use 0 subscripts on notation for compositions when
used for weak compositions. If 𝛼, 𝛽 ⊧0 𝑛, then 𝛼 is dominated by 𝛽, written 𝛼⊴𝛽, if we
have

𝛼1 + 𝛼2 +⋯+ 𝛼𝑗 ≤ 𝛽1 + 𝛽2 +⋯+ 𝛽𝑗
for all 𝑗 ≥ 1, where 𝛼𝑗 = 0 if 𝑗 > ℓ(𝛼) and similarly for 𝛽. To illustrate, [2, 2, 1, 1] ⊴
[3, 1, 2] because 2 ≤ 3, 2+2 ≤ 3+1, 2+2+1 ≤ 3+1+2, and 2+2+1+1 = 3+1+2+0.
Since 𝛼, 𝛽 ⊧0 𝑛 the last inequality always becomes an equality. In the next result, the
readerwill notice a similarity between the construction of 𝜄 and𝜇 and themap𝜙defined
by (1.8).

Lemma 1.12.3. Let 𝜎 ∈ 𝔖𝑛.

(a) We have 𝜎 ∈ Av𝑛(123) if and only if its subsequence of non-left-right minima
is decreasing.

(b) There exists 𝜎 ∈ Av𝑛(123) with left-right minima positions and values given
by (1.12) if and only if 𝜄⊴ 𝜇 where

𝜄 = (𝑖2 − 𝑖1 − 1, 𝑖3 − 𝑖2 − 1, . . . , 𝑖𝑙+1 − 𝑖𝑙 − 1),
𝜇 = (𝑚0 −𝑚1 − 1, 𝑚1 −𝑚2 − 1, . . . , 𝑚𝑙−1 −𝑚𝑙 − 1),

and 𝑖𝑙+1 = 𝑚0 = 𝑛 + 1. In this case, 𝜎 is unique.

Proof. (a) We will prove this statement in its contrapositive form. Suppose first that
𝜎 contains a copy 𝜎𝑖𝜎𝑗𝜎𝑘 of 123. Then 𝜎𝑗 , 𝜎𝑘 cannot be left-right minima since 𝜎𝑖 is
smaller than both and to their left in 𝜎. Since 𝜎𝑗 < 𝜎𝑘, the non-left-right minima
subsequence contains an increase. Conversely, suppose 𝜎𝑗 < 𝜎𝑘 with 𝑗 < 𝑘 and both
non-left-right minima. Let 𝜎𝑖 be the left-right minimum closest to 𝜎𝑗 on its left. We
have that 𝜎𝑖 exists since 𝜎 beginswith a left-rightminimum. Then 𝜎𝑖 < 𝜎𝑗 < 𝜎𝑘, giving
a copy of 123.

(b) Clearly if 𝜎 exists, then it must be unique since the positions and values of its
left-right minima are given by (1.12) and the rest of the elements can only be arranged
in one way by (a). We can attempt to build 𝜎 satisfying the given conditions as follows.
An example will be found following the proof. Start with a row of 𝑛 blank positions.
Now fill in the values 𝑚1 > ⋯ > 𝑚𝑙 at the positions 𝑖1 < ⋯ < 𝑖𝑙. Filling in the rest
of the positions with the elements of 𝑆 = [𝑛] − {𝑚1, . . . , 𝑚𝑙} (the set of non-left-right
minima) in decreasing order gives a 𝜎 avoiding 123 since 𝜎 is a union of two decreasing
subsequences. So the only question is whether doing this will result in a permutation
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having the𝑚𝑗 as its left-right minima. We have that𝑚1 is always a left-right minimum
regardless of the other entries. Now𝑚𝑗+1 will be the next left-right minimum after𝑚𝑗
if and only if the blanks before position 𝑖𝑗+1 are filled with elements larger than 𝑚𝑗 .
Note that 𝜄𝑗 = 𝑖𝑗+1 − 𝑖𝑗 − 1 is the number of spaces between positions 𝑖𝑗 and 𝑖𝑗+1. Also
𝜇𝑗 = 𝑚𝑗−1−𝑚𝑗−1 is the number of 𝑠 ∈ 𝑆with𝑚𝑗 < 𝑠 < 𝑚𝑗−1. It follows that 𝜄1+⋯+𝜄𝑗
is the number of blanks before position 𝑖𝑗+1 and 𝜇1+⋯+𝜇𝑗 is the number of elements
of 𝑆 greater than𝑚𝑗 . So filling in the spaces preserves the left-right minima if and only
if the inequalities for 𝜄⊴ 𝜇 are satisfied. This completes the proof. □

Suppose we want to see if there is 𝜎 ∈ Av9(123) with left-right minima 6 > 3 > 1
in positions 1 < 4 < 6. We start off with the diagram

(1.13) 𝜎 = 6 3 1 .

We wish to check whether filling the blanks with the remaining elements of [9] in
decreasing order will result in a permutation which has the initial elements as left-
right minima. One way to do this is just to fill the blanks and verify that the desired
elements become left-right minima: 𝜎 = 6 9 8 3 7 1 5 4 2. Another way is to use the
𝜄 and 𝜇 compositions. Note that 𝜄1 = 4 − 1 − 1 = 2 is the number of blanks between
𝑚1 = 6 and𝑚2 = 3 in the original diagram. Similarly 𝜇1 = 10−6−1 = 3 is the number
of elements of 𝑆 = [9]−{6, 3, 1} greater than𝑚1 = 6. In order to fill the blanks between
6 and 3 so that 6 is a left-right minimum, the numbers used must all be greater than 6.
This is possible exactly when 𝜄1 ≤ 𝜇1. Similarly 𝜄1 + 𝜄2 ≤ 𝜇1 + 𝜇2 ensures that one can
fill the blanks to the left of𝑚3 = 1with numbers greater than𝑚2 = 3, and so forth. So
checking whether 𝜄⊴ 𝜇 also determines whether 𝜎 has the correct left-right minima.

We will need an analogue of Lemma 1.12.3 for elements of Av𝑛(132). To state it,
we define the reversal of a weak composition 𝛼 = [𝛼1, 𝛼2, . . . , 𝛼𝑙] to be

𝛼𝑟 = [𝛼𝑙, 𝛼𝑙−1, . . . , 𝛼1].

Lemma 1.12.4. Let 𝜎 ∈ 𝔖𝑛.

(a) We have 𝜎 ∈ Av𝑛(132) if and only if, for every left-right minimum 𝑚, the ele-
ments of 𝜎 to the right of and greater than𝑚 form an increasing subsequence.

(b) There exists 𝜎 ∈ Av𝑛(132) with left-right minima positions and values given
by (1.12) if and only if 𝜇𝑟 ⊴ 𝜄𝑟 where 𝜄, 𝜇 are as given in Lemma 1.12.3. In this
case, 𝜎 is unique

Proof. Much of the proof of this result is similar to the demonstration of Lemma 1.12.3
and so will be left as an exercise. Here we will only present the construction of 𝜎 ∈
Av𝑛(132) from its diagram of left-right minima and blanks. Again, an example follows
the explanation. We keep the notation of the proof of the previous lemma. We start by
filling the blanks to the right of𝑚𝑙 = 1with the elements 𝑠 ∈ 𝑆 such that𝑚𝑙 < 𝑠 < 𝑚𝑙−1
in increasing order and as far left as possible (so they will be consecutive). Next we fill
in the remaining blanks to the right of𝑚𝑙−1with those 𝑠 ∈ 𝑆 such that𝑚𝑙−1 < 𝑠 < 𝑚𝑙−2
so that they form an increasing subsequence which is as far left as possible given the
spaces already filled. Continue in this manner until all blanks are occupied. □
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Suppose we wish to fill in the diagram (1.13) so that 𝜎 avoids 132. If𝑚3 < 𝑠 < 𝑚2,
then 𝑠 = 2, so we put 2 just to the right of𝑚3 = 1 to get 𝜎 = 6 3 1 2 . Similarly,
𝑚1 < 𝑠 < 𝑚2 is satisfied by 𝑠 = 4, 5 so we put these elements following 𝑚2 = 3 in
increasing order using the left-most blanks available to obtain 𝜎 = 6 3 4 1 2 5 .
Finally, we do the same for the elements greater than 𝑚1 = 6 to get the end result
𝜎 = 6 7 8 3 4 1 2 5 9.

We need one last observation before we achieve our goal of showing all elements
of 𝔖3 are Wilf equivalent. Suppose 𝛼 = [𝛼1, . . . , 𝛼𝑙] and 𝛽 = [𝛽1, . . . , 𝛽𝑙] are weak
compositions of 𝑛. We claim 𝛼 ⊴ 𝛽 if and only if 𝛽𝑟 ⊴ 𝛼𝑟. To see this, note that the
inequality𝛼1+⋯+𝛼𝑗 ≤ 𝛽1+⋯+𝛽𝑗 is equivalent to 𝑛−(𝛽1+⋯+𝛽𝑗) ≤ 𝑛−(𝛼1+⋯+𝛼𝑗).
But𝑛−(𝛼1+⋯+𝛼𝑗) = 𝛼𝑟+𝛼𝑟−1+⋯+𝛼𝑗+1 and similarly for 𝛽. Making this substitution
we get the necessary inequalities for 𝛽𝑟⊴𝛼𝑟 and all steps are reversible. Finally, we say
that a bijection 𝑓∶ 𝑆 → 𝑇 preserves property 𝑃 if 𝑠 ∈ 𝑆 having property 𝑃 is equivalent
to 𝑓(𝑠) having property 𝑃 for all 𝑠 ∈ 𝑆.

Theorem 1.12.5. For 𝑛 ≥ 0 and any 𝜋 ∈ 𝔖3 we have

#Av𝑛(𝜋) = 𝐶(𝑛).

Proof. By Theorem 1.12.2 and the discussion just before it, it suffices to show that we
have #Av𝑛(123) = 𝐶(𝑛). This will be true if we can find a bijection 𝑓∶ Av𝑛(123) →
Av𝑛(132). In fact, 𝑓will preserve the values andpositions of left-rightminima. Suppose
𝜎 ∈ Av𝑛(123) has its positions and values given by (1.12). By Lemma 1.12.3 there is a
unique such 𝜎 and we must also have 𝜄⊴𝜇. But, as noted just before this theorem, this
is equivalent to 𝜇𝑟⊴ 𝜄𝑟. So, using Lemma 1.12.4, there is a unique 𝜎′ ∈ Av𝑛(132) having
the given positions and values of its left-right minima and we let 𝑓(𝜎) = 𝜎′. Because of
the existence and uniqueness of 𝜎 and 𝜎′, this is a bijection. □

Note that the description of 𝑓 in the previous proof can be made constructive.
Given 𝜎 ∈ Av𝑛(123), we remove its non-left-right minima and rearrange them using
the algorithm in the proof of Lemma 1.12.4. So, using our running example,
𝑓(698371542) = 678341259.

Exercises

(1) Prove each of the following identities for 𝑛 ≥ 1 in two ways: one inductive and one
combinatorial.

(a)
𝑛
∑
𝑖=1

𝐹𝑖 = 𝐹𝑛+2 − 1.

(b)
𝑛
∑
𝑖=1

𝐹2𝑖 = 𝐹2𝑛+1 − 1.

(c)
𝑛
∑
𝑖=1

𝐹2𝑖−1 = 𝐹2𝑛.
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(2) Prove that if 𝑘, 𝑛 ∈ ℙ with 𝑘 ∣ 𝑛 (meaning 𝑘 divides evenly into 𝑛), then 𝐹𝑘 ∣ 𝐹𝑛.
(3) Given 𝑚 ∈ ℙ, show that the sequence of Fibonacci numbers is periodic modulo

𝑚; that is, there exists 𝑝 ∈ ℙ such that

𝐹𝑛+𝑝 ≡ 𝐹𝑛 (mod𝑚)

for all 𝑛 ≥ 0. The period modulo 𝑚 is the smallest 𝑝 such that this congruence
holds. Note that it is an open problem to find the period of the Fibonacci sequence
for an arbitrary𝑚.

(4) The Lucas numbers are defined by 𝐿0 = 2, 𝐿1 = 1, and

𝐿𝑛 = 𝐿𝑛−1 + 𝐿𝑛−2 for 𝑛 ≥ 2.

Prove the following identities for𝑚, 𝑛 ≥ 1.
(a) 𝐿𝑛 = 𝐹𝑛−1 + 𝐹𝑛+1.
(b) Let 𝒞𝑛 be the set of tilings of 𝑛 boxes arranged in a circle with dominos and

monominos. Show that #𝒞𝑛 = 𝐿𝑛.
(c) 𝐿𝑚+𝑛 = 𝐹𝑚−1𝐿𝑛 + 𝐹𝑚𝐿𝑛+1.
(d) 𝐹2𝑛 = 𝐹𝑛𝐿𝑛.

(5) Prove Theorem 1.2.2.
(6) Check that the two maps defined in the proof of Theorem 1.3.1 are inverses.
(7) (a) Prove Theorem 1.3.3(b) using equation (1.5).

(b) Give an inductive proof of Theorem 1.3.3(c).
(c) Give an inductive proof of Theorem 1.3.3(d).

(8) Let 𝑆, 𝑇 be sets.
(a) Show that 𝑆 Δ 𝑇 = (𝑆 ∪ 𝑇) − (𝑆 ∩ 𝑇).
(b) Show that (𝑆 Δ 𝑇) Δ 𝑇 = 𝑆.

(9) Given nonnegative integers satisfying 𝑛1 + 𝑛2 +⋯ + 𝑛𝑚 = 𝑛. the corresponding
multinomial coefficient is

(1.14) ( 𝑛
𝑛1, 𝑛2, . . . , 𝑛𝑚

) = 𝑛!
𝑛1! 𝑛2! . . . 𝑛𝑚!

.

We extend this definition to negative 𝑛𝑖 by letting the multinomial coefficient be
zero if any 𝑛𝑖 < 0. Note that when𝑚 = 2 we recover the binomial coefficients as

( 𝑛
𝑘, 𝑛 − 𝑘) = (𝑛𝑘).

(a) Find and prove analogues of Theorem 1.3.3(a), (b), and (c) for multinomial
coefficients.

(b) A permutation of a multiset𝑀 = {{1𝑛1 , 2𝑛2 , . . . , 𝑚𝑛𝑚 }} is a linear arrangement
of the elements of 𝑀. Let 𝑃(𝑀) denote the set of permutations of 𝑀. For
example

𝑃({{12, 22}}) = {1122, 1212, 1221, 2112, 2121, 2211}.
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1
1 1

1 0 1
1 1 1 1

1 0 0 0 1
1 1 0 0 1 1

1 0 1 0 1 0 1
1 1 1 1 1 1 1 1

Figure 1.13. Pascal’s triangle modulo 2

Prove that

#𝑃({{1𝑛1 , 2𝑛2 , . . . , 𝑚𝑛𝑚 }}) = ( 𝑛
𝑛1, 𝑛2, . . . , 𝑛𝑚

)

in three ways:
(i) combinatorially,
(ii) by induction on 𝑛,
(iii) by proving that

( 𝑛
𝑛1, 𝑛2, . . . , 𝑛𝑚

) = ( 𝑛𝑛1
)( 𝑛 − 𝑛1
𝑛2, . . . , 𝑛𝑚

)

and then inducting on𝑚.
(10) (a) Prove the Pascal triangle is fractal modulo 2. Specifically, if one replaces each

binomial coefficient by its remainder on division by 2, then, for any 𝑘 ≥ 0, the
triangle consisting of rows 0 through 2𝑘 − 1 is repeated on the left and on the
right in rows 2𝑘 through 2𝑘+1−1with an inverted triangle of zeros in between.
See Figure 1.13 for the first eight rows. Hint: Induct on 𝑘.

(b) Formulate and prove an analogous result modulo 𝑝 for any prime 𝑝.
(11) Find the inverse for the map in the proof of Theorem 1.3.4, proving that it is well-

defined and the inverse to the given function.
(12) For 𝑛 ≥ 0 define the 𝑛th Fibotorial to be the product 𝐹 !𝑛 = 𝐹1𝐹2 . . . 𝐹𝑛. Also, for

0 ≤ 𝑘 ≤ 𝑛 define a Fibonomial coefficient by

(𝑛𝑘)𝐹
= 𝐹 !𝑛
𝐹 !𝑘𝐹 !𝑛−𝑘

.

Note that from this definition it is not clear that this is an integer.
(a) Show that the Fibonomial coefficients satisfy the initial conditions (𝑛0)𝐹 =

(𝑛𝑛)𝐹 = 1 and recurrence

(𝑛𝑘)𝐹
= 𝐹𝑛−𝑘+1(

𝑛 − 1
𝑘 − 1)𝐹

+ 𝐹𝑘−1(
𝑛 − 1
𝑘 )

𝐹

for 0 < 𝑘 < 𝑛.
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(b) Show that (𝑛𝑘)𝐹 is an integer for all 0 ≤ 𝑘 ≤ 𝑛.
(c) Find a combinatorial interpretation of (𝑛𝑘)𝐹 .

(13) For 𝑛 ≥ 1 show that the Stirling numbers of the second kind have the following
values.
(a) 𝑆(𝑛, 1) = 1.
(b) 𝑆(𝑛, 2) = 2𝑛−1 − 1.
(c) 𝑆(𝑛, 𝑛) = 1.
(d) 𝑆(𝑛, 𝑛 − 1) = (𝑛2).

(e) 𝑆(𝑛, 𝑛 − 2) = (𝑛3) + 3(𝑛4).

(14) For 𝑛 ≥ 1 show that the signless Stirling numbers of the first kind have the follow-
ing values.
(a) 𝑐(𝑛, 1) = (𝑛 − 1)!.

(b) 𝑐(𝑛 + 1, 2) = 𝑛!
𝑛
∑
𝑖=1

1
𝑖 .

(c) 𝑐(𝑛, 𝑛) = 1.
(d) 𝑐(𝑛, 𝑛 − 1) = (𝑛2).

(e) 𝑐(𝑛, 𝑛 − 2) = 2(𝑛3) + 3(𝑛4).

(15) Call an integer partition 𝜆 self-conjugate if 𝜆𝑡 = 𝜆. Show that the number of self-
conjugate 𝜆 ⊢ 𝑛 equals the number of 𝜇 ⊢ 𝑛 having parts which are distinct (no
part can be repeated) and odd. Hint: Use Young diagrams and try to guess a bijec-
tion inductively by first seeing what it has to be for small 𝑛. Then try to construct a
bijection for 𝑛 + 1 which will be consistent in some way with the one for previous
values. Finally try to describe your bijection in a noninductive manner.

(16) The main diagonal of a Young diagram is the set of squares starting with the one
at the top left and moving diagonally right and down. So in Figure 1.5, the main
diagonal of 𝜆 consists of two squares. Prove the following.
(a) If 𝜆 is self-conjugate as defined in the previous exercise, then |𝜆| ≡ 𝑑 (mod 2)

where 𝑑 is the length (number of squares) of the main diagonal.
(b) Let 𝑝𝑑(𝑛) be the number of partitions of 𝑛whose diagonal has length 𝑑. Then

𝑝𝑑(𝑛) = ∑
𝑚≥0

𝑝(𝑚, 𝑑)𝑝(𝑛 − 𝑚 − 𝑑2, 𝑑).

(17) Define 𝑝𝑒(𝑛, 𝑘) to be the number of 𝜆 ⊢ 𝑛 having exactly 𝑘 parts. Prove the follow-
ing under the assumption that 𝑛 ≥ 4, where ⌊⋅⌋ is the round-down function.
(a) 𝑝𝑒(𝑛, 𝑘) = 𝑝(𝑛 − 𝑘, 𝑘).
(b) 𝑝𝑒(𝑛, 1) = 1.
(c) 𝑝𝑒(𝑛, 2) = ⌊𝑛/2⌋.
(d) 𝑝𝑒(𝑛, 𝑛 − 2) = 2.
(e) 𝑝𝑒(𝑛, 𝑛 − 1) = 1.
(f) 𝑝𝑒(𝑛, 𝑛) = 1.
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(18) Finish the proof of Theorem 1.7.1.
(19) Prove Theorem 1.7.2.
(20) Consider a line of 𝑛 copies of the integer 1. One can now put slashes in the spaces

between the 1’s and count the number of 1’s between each pair of adjacent slashes
to form a composition of 𝑛. For example, if 𝑛 = 6, then we start with 1 1 1 1 1 1.
One way of inserting slashes is 1 1/1/1 1 1, which corresponds to the composition
2 + 1 + 3 = 6. Give alternate proofs of Theorems 1.7.1 and 1.7.2 using this idea.

(21) A weak composition of 𝑛 into 𝑘 parts is a sequence of 𝑘 nonnegative integers sum-
ming to 𝑛. Find a formula for the number of weak compositions of 𝑛 into 𝑘 parts
and then prove it in three different ways:
(a) by using a variant of the map 𝜙 defined in (1.8),
(b) by finding a relation between weak compositions and compositions and then

using the statement of Theorem 1.7.2 (as opposed to their proofs as in part
(a)),

(c) by modifying the construction in the previous exercise.
(22) Show that the last two columns in Table 1.1 agree when 𝑓 is bijective, that is, when

𝑛 = 𝑘.
(23) Prove Lemma 1.9.1(b).
(24) A graph𝐺 = (𝑉, 𝐸) is regular if all of its vertices have the same degree. If deg 𝑣 = 𝑟

for all vertices 𝑣, then 𝐺 is regular of degree 𝑟.
(a) Show that if 𝐺 is regular of degree 𝑟, then

|𝐸| = 𝑟|𝑉|
2 ,

(b) Call 𝐺 bipartite if there is a set partition of 𝑉 = 𝑉1 ⊎ 𝑉2 such for all 𝑢𝑣 ∈ 𝐸 we
have 𝑢 ∈ 𝑉1 and 𝑣 ∈ 𝑉2 or vice versa. Show that a bipartite graph regular of
degree 𝑟 ≥ 1 has |𝑉1| = |𝑉2|.

(25) A graph 𝐺 is planar if it can be drawn in the plane ℝ2 without edge crossings. In
this case the regions of 𝐺 are the topologically connected components of the set-
theoretic differenceℝ2−𝐺. Let 𝑅 be the set of regions of 𝐺. If 𝑟 ∈ 𝑅, then let deg 𝑟
be the number of edges on the boundary of 𝑟. Show that

∑
𝑟∈𝑅

deg 𝑟 ≤ 2|𝐸|.

Find, with proof, a condition on the cycles of𝐺which is equivalent to having equal-
ity.

(26) Two graphs 𝐺,𝐻 are isomorphic, written 𝐺 ≅ 𝐻, if they are equal as unlabeled
graphs. The complement of a graph 𝐺 = (𝑉, 𝐸) is the graph ̄𝐺 with vertices 𝑉 and
with 𝑢𝑣 an edge of ̄𝐺 if and only if 𝑢𝑣 ∉ 𝐸. Call 𝐺 self-complementary if 𝐺 ≅ ̄𝐺.
(a) Show that there exists a self-complementary graph with 𝑛 vertices if and only

if 𝑛 ≡ 0 (mod 4) or 𝑛 ≡ 1 (mod 4).
(b) Show that in a self-complementary graphwith 𝑛 vertices where 𝑛 ≡ 1 (mod 4)

there must be at least one vertex of degree (𝑛 − 1)/2. Hint: Show that the
number of vertices of degree (𝑛 − 1)/2must be odd.

(27) Prove Theorem 1.9.4.
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(28) Prove that in any digraph 𝐷 = (𝑉, 𝐴) we have
∑
𝑣∈𝑉

ideg 𝑣 = ∑
𝑣∈𝑉

odeg 𝑣 = |𝐴|.

(29) Prove the equivalence of (a) and (d) in Theorem 1.10.2. Hint: Use Lemma 1.9.1(b).
(30) Consider a sequence of nonnegative integers 𝑑 ∶ 𝑑1, . . . , 𝑑𝑛. Call 𝑑 a degree se-

quence if there is a graph with vertices 𝑣1, . . . , 𝑣𝑛 such that deg 𝑣𝑖 = 𝑑𝑖 for all 𝑖.
(a) Let 𝑇 be a tree with 𝑛 vertices and arrange its degree sequence in weakly de-

creasing order. Prove that for 1 ≤ 𝑖 ≤ 𝑛 we have

𝑑𝑖 ≤ ⌈𝑛 − 1
𝑖 ⌉ .

(b) Let 𝑇 be a tree with 𝑛 vertices and let 𝑘 ≥ 2 be an integer. Suppose the degree
sequence of 𝑇 satisfies 𝑑𝑖 = 1 or 𝑘 for all 𝑖. Prove that 𝑑𝑖 = 𝑘 for exactly
(𝑛 − 2)/(𝑘 − 1) indices 𝑖.

(31) Finish the proof of Theorem 1.10.3.
(32) Consider 𝑛 cars 𝐶1, . . . , 𝐶𝑛 passing in this order by a line of 𝑛 parking spaces num-

bered 1, . . . , 𝑛. Each car 𝐶𝑖 has a preferred space number 𝑐𝑖 in which to park. If
𝐶𝑖 gets to space 𝑐𝑖 and it is free, then it parks. Otherwise it proceeds to the next
empty space (which will have a number greater than 𝑐𝑖) and parks there if such a
space exists. If no such space exists, it does not park. Call 𝑐 = (𝑐1, . . . , 𝑐𝑛) a parking
function of length 𝑛 if all the cars end up in a parking space.
(a) Show that 𝑐 is a parking function if and only if its unique weakly increasing

rearrangement 𝑑 = (𝑑1, . . . , 𝑑𝑛) satsifies 𝑑𝑖 ≤ 𝑖 for all 𝑖 ∈ [𝑛].
(b) Use a counting argument to show that the number of parking functions of

length 𝑛 is (𝑛 + 1)𝑛−1. Hint: Consider parking where there are 𝑛 + 1 spaces
arranged in a circular manner and 𝑛 + 1 is an allowed preference for cars.

(c) Reprove (b) by finding a bijection between parking functions of length 𝑛 and
trees on 𝑛 + 1 vertices. Hint: Let 𝑇 be a tree on 𝑛 + 1 vertices labeled 0, . . . , 𝑛
and call vertex 0 the root of the tree. Draw 𝑇 in the plane so that the vertices
connected to the root, called the root’s children, are in increasing order read
left to right. Continue to do the same thing for the children of each child of
the root, and so forth. Create a permutation 𝜋 by reading the children of the
root left to right, then the grandchildren of the root left to right, etc. Finally,
orient each edge of 𝑇 so that it points from a vertex to its parent and call this
set of arcs 𝐴. Map 𝑇 to 𝑐 = (𝑐1, . . . , 𝑐𝑛) where

𝑐𝑖 = { 1 if ⃗𝚤0 ∈ 𝐴,
1 + 𝑗 if 𝚤𝜋𝑗 ∈ 𝐴.

(33) Consider 𝐸𝑊 -lattice paths along the 𝑥-axis which are paths starting at the origin
and using steps 𝐸 = [1, 0] and𝑊 = [−1, 0].
(a) Show that if an 𝐸𝑊 -lattice path has length 𝑛 and ends at (𝑘, 0), then 𝑛 and 𝑘

have the same parity and |𝑘| ≤ 𝑛.
(b) Show that the number of 𝐸𝑊 -lattice paths of length 𝑛 ending at (𝑘, 0) is

( 𝑛
𝑛+𝑘
2
).

The preliminary version made available with permission of the publisher, the American Mathematical Society



Exercises 39

(c) Show that the number of 𝐸𝑊 -lattice paths of length 2𝑛 ending at the origin
and always staying on the nonnegative side of the axis is 𝐶(𝑛).

(34) Show that the Catalan numbers 𝐶(𝑛) also count the following objects:
(a) ballot sequences which are words 𝑤 = 𝑤1 . . . 𝑤2𝑛 containing 𝑛 ones and 𝑛

twos such that in any prefix 𝑤1 . . . 𝑤𝑖 the number of ones is always at least as
great as the number of twos,

(b) sequences of positive integers

1 ≤ 𝑎1 ≤ 𝑎2 ≤ . . . ≤ 𝑎𝑛
with 𝑎𝑖 ≤ 𝑖 for 1 ≤ 𝑖 ≤ 𝑛,

(c) triangulations of a convex (𝑛 + 2)-gon using nonintersecting diagonals,
(d) noncrossing partitions 𝜌 = 𝐵1/ . . . /𝐵𝑘 ⊢ [𝑛]where a crossing is 𝑎 < 𝑏 < 𝑐 < 𝑑

such that 𝑎, 𝑐 ∈ 𝐵𝑖 and 𝑏, 𝑑 ∈ 𝐵𝑗 for 𝑖 ≠ 𝑗.
(35) Fill in the details of the proof of Theorem 1.11.3.
(36) A stack is a first-in first-out (FIFO) data structure with two operations. One can

put something on the top of a stack, called pushing, or take something from the
top of the stack, called popping. A permutation 𝜎 = 𝜎1 . . . 𝜎𝑛 ∈ 𝔖𝑛 is considered
sorted if its elements have been rearranged to form the permutation 𝜏 = 12 . . . 𝑛.
Consider the following algorithm for sorting 𝜎. Start with an empty stack and an
empty output permutation 𝜏. At each stage there are two options. If the stack is
empty or the current first element 𝑠 of 𝜎 is smaller than the top element of the
stack, then one pushes 𝑠 onto the stack. If 𝜎 has become empty or the top element
𝑡 of the stack is smaller than the first element of 𝜎, then one pops 𝑡 from the stack
and appends it to the end of 𝜏. An example showing the sorting of 𝜎 = 3124 will

𝜏 stack 𝜎
𝜖 𝜖 3124
𝜖 3 124

1
𝜖 3 24
1 3 24

2
1 3 4
12 3 4
123 𝜖 4
123 4 𝜖
1234 𝜖 𝜖

Figure 1.14. A stack-sorting algorithm
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be found in Figure 1.14. Note that the input permutation 𝜎 is on the right and the
output permutation 𝜏 is on the left so that the head of 𝜎 and the tail of 𝜏 are nearest
the stack.
(a) Show that this algorithm sorts 𝜎 if and only if 𝜎 ∈ Av𝑛(231).
(b) Show that if there is a sequence of pushes and pops which sorts 𝜎, then it must

be the sequence given by the algorithm.
(37) Suppose 𝜋 = 𝜋1 . . . 𝜋𝑘 ∈ 𝔖𝑘. Prove the following descriptions of actions of ele-

ments of 𝐷 in terms of one-line notation.
(a) 𝑟∞(𝜋) = 𝜋𝑘 . . . 𝜋1 ≔ 𝜋𝑟, the reversal of 𝜋.
(b) 𝑟0(𝜋) = (𝑘 + 1 − 𝜋1) . . . (𝑘 + 1 − 𝜋𝑘) ≔ 𝜋𝑐, the complement of 𝜋.
(c) 𝑟1(𝜋) = 𝜋−1, the group-theoretic inverse of 𝜋.

(38) Finish the proof of Theorem 1.12.2.
(39) Given any set of permutations Π we let

Av𝑛(Π) = {𝜎 ∈ 𝔖𝑛 ∣ 𝜎 avoids all 𝜋 ∈ Π}.
If 𝜋 = 𝜋1𝜋2 . . . 𝜋𝑚 ∈ 𝔖𝑚 is a permutation and 𝑛 ∈ ℕ, then we can construct a new
permutation

𝜋 + 𝑛 = 𝜋1 + 𝑛, 𝜋2 + 𝑛, . . . , 𝜋𝑚 + 𝑛.
Given permutations𝜋, 𝜎 of disjoint sets, we denote by𝜋𝜎 the permutation obtained
by concatenating them. Define two other concatenations on 𝜋 ∈ 𝔖𝑚 and 𝜎 ∈ 𝔖𝑛,
the direct sum

𝜋⊕ 𝜎 = 𝜋(𝜎 + 𝑚)
and skew sum

𝜋⊖ 𝜎 = (𝜋 + 𝑛)𝜎.
Finally for 𝑛 ≥ 0 we use the notation

𝜄𝑛 = 12 . . . 𝑛
for the increasing permutation of length 𝑛, and

𝛿𝑛 = 𝑛 . . . 21
for the decreasing one. Prove the following.
(a) Av𝑛(213, 321) = {𝜄𝑘1 ⊕ (𝜄𝑘2 ⊖ 𝜄𝑘3) ∣ 𝑘1 + 𝑘2 + 𝑘3 = 𝑛}.
(b) Av𝑛(132, 213) = {𝜄𝑘1 ⊖ 𝜄𝑘2 ⊖⋯ ∣ ∑𝑖 𝑘𝑖 = 𝑛}.
(c) Av𝑛(132, 213, 321) = {𝜄𝑘1 ⊖ 𝜄𝑘2 ∣ 𝑘1 + 𝑘2 = 𝑛}.
(d) Av𝑛(132, 231, 312) = {𝛿𝑘1 ⊕ 𝜄𝑘2 ∣ 𝑘1 + 𝑘2 = 𝑛}.
(e) Av𝑛(132, 231, 321) = {(1 ⊖ 𝜄𝑘1) ⊕ 𝜄𝑘2 ∣ 𝑘1 + 𝑘2 = 𝑛 − 1}.
(f) Av𝑛(123, 132, 213) = {𝜄𝑘1 ⊖ 𝜄𝑘2 ⊖⋯ ∣ ∑𝑖 𝑘𝑖 = 𝑛 and 𝑘𝑖 ≤ 2 for all 𝑖}.

(40) Finish the proof of Lemma 1.12.4.
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Chapter 2

Counting with Signs

In the previous chapter, we concentrated on counting formulae where all of the terms
were positive. But there are interesting things to say when one permits negative terms
as well. This chapter is devoted to some of the principal techniques which one can use
in such a situation.

2.1. The Principle of Inclusion and Exclusion

The Principle of Inclusion and Exclusion, or PIE, is one of the classical methods for
counting using signs. After presenting the Principle itself, we will give an application
to derangements which are permutations having no fixed points.

In the Sum Rule, Lemma 1.1.1(a), we assumed that the sets 𝑆, 𝑇 are disjoint. Of
course, it is easy to see that for any finite sets 𝑆, 𝑇 we have

(2.1) |𝑆 ∪ 𝑇| = |𝑆| + |𝑇| − |𝑆 ∩ 𝑇|.

Indeed, |𝑆| + |𝑇| counts 𝑆 ∩ 𝑇 twice and so to count it only once we must subtract the
cardinality of the intersection. But one could ask if there is a similar formula for the
union of any number of sets. It turns out that it is often more useful to consider these
sets as subsets of some universal set 𝑆 and count the number of elements in 𝑆which are
not in any of the subsets, similar to the viewpoint used in pattern avoidance. To set up
notation, let 𝑆 be a set and let 𝑆1, . . . , 𝑆𝑛 ⊆ 𝑆. We wish to find a formula for |𝑆 −⋃𝑖 𝑆 𝑖|.
When 𝑛 = 1 we clearly have

|𝑆 − 𝑆1| = |𝑆| − |𝑆1|.

And for 𝑛 = 2 equation (2.1) yields

|𝑆 − (𝑆1 ∪ 𝑆2)| = |𝑆| − |𝑆1| − |𝑆2| + |𝑆1 ∩ 𝑆2|.

41
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42 2. Counting with Signs

𝑆

𝑆1

𝑆

𝑆1 𝑆2

Figure 2.1. The PIE for 𝑛 = 1, 2

Venn diagrams showing the shaded region counted for these two cases are given in Fig-
ure 2.1. The reader may have already guessed the generalization for arbitrary 𝑛. This
type of enumeration where one alternately adds and subtracts cardinalities is some-
times called a sieve.

Theorem 2.1.1 (Principle of Inclusion and Exclusion, PIE). If 𝑆 is a finite set with sub-
sets 𝑆1, . . . , 𝑆𝑛, then

(2.2)
||||
𝑆 −

𝑛

⋃
𝑖=1

𝑆 𝑖
||||
= |𝑆| − ∑

1≤𝑖≤𝑛
|𝑆 𝑖| + ∑

1≤𝑖<𝑗≤𝑛
|𝑆 𝑖 ∩ 𝑆𝑗| − ⋯ + (−1)𝑛|

𝑛

⋂
𝑖=1

𝑆 𝑖|.

Proof. For any set 𝑆 we have |𝑆| = ∑𝑠∈𝑆 1. We will use the notation |𝑆| = ∑𝑠∈𝑆 1𝑠 so
that 1𝑠 will keep track of the contribution of 𝑠 to the sum. So it suffices to show that the
coefficient of 1𝑠 in the alternating sum is one if 𝑠 ∉ ⋃𝑖 𝑆 𝑖 and zero otherwise. In the first
case, 1𝑠 only occurs in |𝑆|, giving the desired coefficient. In the second case, suppose
𝑠 ∈ 𝑆 𝑖 for exactly𝑚 ≥ 1 indices 𝑖. Now 𝑠 ∈ 𝑆 𝑖1 ∩⋯∩𝑆 𝑖𝑘 precisely when 𝑆 𝑖1 , . . . , 𝑆 𝑖𝑘 are
𝑘 of the𝑚 subsets containing 𝑠. It follows that the number of summands 1𝑠 in the sum
for 𝑘-fold intersections is (𝑚𝑘 ). So the coefficient of 1𝑠 to the right-hand side of (2.2) is

(𝑚0 ) − (𝑚1) + (𝑚2) −⋯ = 0

by Theorem 1.3.3(d). This completes the proof. □

To simplify notation we will usually write just⋃𝑆 𝑖 for⋃
𝑛
𝑖=1 𝑆 𝑖. We will also write

𝑆𝐼 in place of⋂𝑖∈𝐼 𝑆 𝑖.
As an application of the PIE, we will count permutations without fixed points.

This problem is sometimes accompanied by the following story. Suppose that 𝑛 jolly
revelers (and it is important that they be jolly) put their 𝑛 identical bowler hats on a
hat stand before dinner at a restaurant. During the meal, the hat stand gets overturned
(I told you they were jolly) so that the hats, having no identifying markings, are re-
turned at randomwhen the revelers leave. What is the probability that noman gets his
own hat back?
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2.1. The Principle of Inclusion and Exclusion 43

If one numbers themen 1, . . . , 𝑛 and similarly number the hats where hat 𝑖 belongs
to man 𝑖, then a way of returning the hats is just a permutation 𝜋 = 𝜋1 . . . 𝜋𝑛 ∈ 𝔖𝑛
where 𝜋𝑖 = 𝑗 means that man 𝑖 gets back hat 𝑗. So the condition that no man gets his
own hat means that 𝜋𝑖 ≠ 𝑖 for all 𝑖; that is, 𝜋 has no fixed points. Such a permutation
is called a derangement and the number of derangements in𝔖𝑛 is denoted 𝐷(𝑛) and is
called the 𝑛th derangement number.

We now wish to set this problem up so that we can use the PIE. In particular, we
want to define 𝑆 and subsets 𝑆1, . . . , 𝑆𝑛 so that 𝐷(𝑛) = |𝑆 −⋃𝑆 𝑖|. To do this, we think
of the problem as counting a set of elements subject to certain restrictions and then let

(i) 𝑆 be the set of objects with no restrictions and
(ii) 𝑆1, . . . , 𝑆𝑛 be subsets so that removing 𝑆 𝑖 from 𝑆 imposes the 𝑖th restriction.

We will have chosen 𝑆 and the 𝑆 𝑖 correctly if the cardinalities on the right-hand side
of (2.2) can be computed. In the case under consideration, we want to count permuta-
tions with no fixed points. So we should let 𝑆 = 𝔖𝑛, the set of all permutations without
any restriction on their fixed points. We will also let 𝑆 𝑖 be the set of 𝜋 ∈ 𝔖𝑛 with 𝜋𝑖 = 𝑖
so that we will remove those permutations having 𝑖 as a fixed point. Note that we do
not choose subsets 𝑆′𝑖 defined as the set of 𝜋 ∈ 𝔖𝑛 with 𝑖 fixed points, for if we did so,
then the 𝑆′𝑖 would be disjoint so that |𝑆 −⋃𝑆′𝑖| = |𝑆|− |𝑆′1| −⋯− |𝑆′𝑛|. Because of this,
computing the cardinalities of the 𝑆′𝑖 is about as hard as computing the cardinality of
the set difference directly and so one does not gain anything. However, our original
choice of subsets will turn out to be very nice.

We now compute the necessary cardinalities. Of course, |𝑆| = |𝔖𝑛| = 𝑛!. Next, if
𝜋 ∈ 𝑆1, then 𝜋 = 1𝜋2 . . . 𝜋𝑛 where 𝜋2 . . . 𝜋𝑛 form a permutation of 2, . . . , 𝑛. So |𝑆1| =
(𝑛 − 1)!. Clearly the same argument could be applied to any 𝑆 𝑖, so

∑
𝑖
|𝑆 𝑖| = 𝑛 ⋅ (𝑛 − 1)! = 𝑛! .

Similarly, 𝑆1∩𝑆2∩⋯∩𝑆𝑘 is the set of all permutations of the form𝜋 = 12 . . . 𝑘𝜋𝑘+1 . . . 𝜋𝑛
and there are (𝑛 − 𝑘)! ways to choose 𝜋𝑘+1, . . . , 𝜋𝑛. In fact, all the terms in the 𝑘-fold
sum have this value and there are (𝑛𝑘) such terms giving a total of

(𝑛 − 𝑘)! (𝑛𝑘) =
𝑛!
𝑘! .

Summing up, so to speak, we have proved the following.

Theorem 2.1.2. The 𝑛th derangement number is given by

𝐷(𝑛) = 𝑛! (1 − 1
1! +

1
2! −⋯+ (−1)𝑛 1𝑛!)

for 𝑛 ≥ 0. □

The reader should recognize the series in the previous result as a truncation of the
series for 1/𝑒. Since the probability that no man gets his hat back is the number of
ways this could happen over the total number of permutations for returning the hats,
or 𝐷(𝑛)/𝑛!, we get a very pretty answer to the question originally posed.
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44 2. Counting with Signs

Corollary 2.1.3. In the limit as 𝑛 → ∞, the probability that no man gets his hat back is
1/𝑒. □

It is striking that 𝑒, one of the quintessential transcendental numbers, should occur
in the solution to a combinatorial problem which, at the outset, involves only integers.

2.2. Sign-reversing involutions

Sign-reversing involutions are a powerful way of proving identities involving signs, and
even identities which do not explicitly have signs in them. As we will see, these maps
can be used to prove the PIE itself and play an important role in the Garsia–Milne
Involution Principle, which we will study in the next section.

Let 𝑆 be a (not necessarily finite) set. A function 𝜄∶ 𝑆 → 𝑆 is an involution if 𝜄2 is
the identity map on 𝑆. Equivalently, 𝜄 is a bijection such that 𝜄−1 = 𝜄. There is another
nice characterization of involutions which will be crucial once we introduce signs. For
any 𝑓∶ 𝑆 → 𝑆, its fixed point set is

Fix 𝑓 = {𝑠 ∈ 𝑆 ∣ 𝑓(𝑠) = 𝑠}.

We also say that distinct elements 𝑠, 𝑡 ∈ 𝑆 form a 2-cycle of 𝑓 if 𝑓(𝑠) = 𝑡 and 𝑓(𝑡) = 𝑠.
In this case we write (𝑠, 𝑡) or 𝑠 ↔ 𝑡 to denote the 2-cycle.

Lemma 2.2.1. Consider 𝜄∶ 𝑆 → 𝑆. The function 𝜄 is an involution if and only if 𝑆 is the
disjoint union of the fixed points and 2-cycles of 𝜄.

Proof. For the forward direction, it suffices to show that if 𝑠 ∈ 𝑆 is not a fixed point,
then it is in a 2-cycle. So suppose 𝜄(𝑠) = 𝑡. Then 𝜄(𝑡) = 𝜄2(𝑠) = 𝑠 as desired.

Conversely, suppose that 𝑆 is such a disjoint union and pick 𝑠 ∈ 𝑆. If 𝑠 ∈ Fix 𝜄,
then 𝜄2(𝑠) = 𝜄(𝑠) = 𝑠. Otherwise, 𝑠 is in a 2-cycle (𝑠, 𝑡) so that 𝜄2(𝑠) = 𝜄(𝑡) = 𝑠. So 𝜄2 is the
identity map and we are done. □

A signed set is a set 𝑆 together with a function sgn∶ 𝑆 → {+1,−1}. In this case we
let

𝑆+ = {𝑠 ∈ 𝑆 ∣ sgn 𝑠 = +1}
and similarly for 𝑆−. If 𝜄∶ 𝑆 → 𝑆 is an involution on 𝑆, thenwe say that 𝜄 is sign reversing
if sgn 𝜄(𝑠) = − sgn 𝑠 for every 𝑠 which is in a 2-cycle of 𝜄. A pictorial representation of
this situation will be found in Figure 2.2. Now suppose that 𝑆 is finite. It follows that

(2.3) ∑
𝑠∈𝑆

sgn 𝑠 = ∑
𝑠∈Fix 𝜄

sgn 𝑠.

Indeed, if 𝑠 is in a 2-cycle (𝑠, 𝜄(𝑠)), then on the left-hand side we have sgn 𝑠+sgn 𝜄(𝑠) = 0.
So all elements in 2-cycles cancel from the sum, which leaves only terms from Fix 𝜄.
This formula can be very useful if the sum on the right has far fewer terms than the
one on the left. And if all the fixed points of 𝜄 have the same sign so that the right-
hand side of (2.3) is±| Fix 𝜄|, then wemay be able to glean evenmore information. The
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𝑆+

𝑆−
Fix 𝜄

Figure 2.2. A sign-reversing involution on a set 𝑆

general method for trying to prove facts about a signed sum∑𝑘≥0(−1)𝑘𝑎𝑘 for positive
integers 𝑎𝑘 is as follows:

(i) Find a set 𝑆 enumerated by the positive sum∑𝑘 𝑎𝑘.
(ii) Sign 𝑆 so that the left-hand side of (2.3) equals∑𝑘(−1)𝑘𝑎𝑘.
(iii) Devise a sign-reversing involution 𝜄 on 𝑆 with many 2-cycles.
As our first application of sign-reversing involutions, we will reprove the formula

for the alternating sum of the binomial coefficients in Theorem (1.3.3)(d). In fact, the
original demonstration was a closet version of this technique. But now we can present
the involution proof in its full glory. We restate the identity here for ease of reference:

(2.4) ∑
𝑘
(−1)𝑘(𝑛𝑘) = 𝛿𝑛,0.

Proof. As usual, we assume 𝑛 ≥ 1 since 𝑛 = 0 is trivial. From the sum with the signs
removed, it is clear that we should let 𝑆 = 2[𝑛]. And from the way 𝑘 is being used in
the original sum, one would be inclined to let sgn 𝑠 = (−1)#𝑠 for 𝑠 ⊆ [𝑛]. We now need
to check that the left-hand sides of (2.3) and (2.4) agree. The technique we will use, of
turning a single sum into a double sum and then grouping terms, is a common one in
enumerative combinatorics. In this case

∑
𝑠∈𝑆

sgn 𝑠 = ∑
𝑠⊆[𝑛]

(−1)#𝑠

= ∑
𝑘

∑
𝑠∈([𝑛]𝑘 )

(−1)𝑘

= ∑
𝑘
(−1)𝑘(𝑛𝑘)

as desired.
As for the sign-reversing involution, we already saw it in the original demonstra-

tion of this result. Define 𝜄∶ 2[𝑛] → 2[𝑛] by 𝜄(𝑠) = 𝑠 Δ {𝑛}. As noted previously, this
is an involution. To see that it is sign reversing, we have that |𝑠 Δ {𝑛}| = |𝑠| ± 1. So

The preliminary version made available with permission of the publisher, the American Mathematical Society



46 2. Counting with Signs

sgn 𝜄(𝑠) = (−1)|𝑠|±1 = −sgn 𝑠. Finally, we just need to determine Fix 𝜄. But 𝑠 Δ {𝑛} ≠ 𝑠
for all 𝑠 ⊆ [𝑛]. Thus the right-hand side of (2.3) is the empty sum. Since this equals
zero the proof is complete. □

Given that (2.4) was a crucial tool in proving the PIE, it may not come as a surprise
that the principle itself can be proved using a sign-reversion involution. We restate the
PIE here, in part so as not to conflict with the notationwe have set up for sign-reversing
involutions. So given a finite set 𝐴 and subsets 𝐴1, . . . , 𝐴𝑛 we wish to prove

(2.5)
||||
𝐴 −

𝑛

⋃
𝑖=1

𝐴𝑖
||||
= |𝐴| − ∑

1≤𝑖≤𝑛
|𝐴𝑖| + ∑

1≤𝑖<𝑗≤𝑛
|𝐴𝑖 ∩ 𝐴𝑗| − ⋯ + (−1)𝑛

||||

𝑛

⋂
𝑖=1

𝐴𝑖
||||
.

Proof. An example illustrating the proof will be found after the demonstration. We
cannot take 𝑆 = 𝐴 since the same element of 𝐴 is counted in many of the terms on the
right side of (2.5). To take care of these multiplicities, let

(2.6) 𝑆 = {(𝑎, 𝐼) ∈ 𝐴 × 2[𝑛] | 𝑎 ∈ 𝐴𝐼},

recalling the notation

(2.7) 𝐴𝐼 =⋂
𝑖∈𝐼

𝐴𝑖.

Notice how pairs come into play here even though they are not apparent from the orig-
inal statement of the result to be proved, just as in the case of the demonstration of
Theorem 1.9.3. Note that 𝐴∅ = 𝐴. So (𝑎, ∅) is a pair for all 𝑎 ∈ 𝐴, and if 𝑎 ∉ ⋃𝐴𝑖, then
this is the only pair in which 𝑎 appears. Since the signs in (2.5) come from the number
of subsets in an intersection, we define

sgn(𝑎, 𝐼) = (−1)#𝐼 .

It follows that

∑
𝑠∈𝑆

sgn 𝑠 = ∑
(𝑎,𝐼)∈𝑆

(−1)#𝐼

= ∑
𝐼∈2[𝑛]

∑
𝑎∈𝐴𝐼

(−1)#𝐼

=
𝑛
∑
𝑘=0

∑
𝐼∈([𝑛]𝑘 )

∑
𝑎∈𝐴𝐼

(−1)𝑘

=
𝑛
∑
𝑘=0

(−1)𝑘 ∑
𝐼∈([𝑛]𝑘 )

|𝐴𝐼 |

as we wished.
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To construct an involution, define for each 𝑎 ∈ ⋃𝐴𝑖 the index

𝑚(𝑎) = max{𝑖 ∣ 𝑎 ∈ 𝐴𝑖}.
Finally, we let

𝜄(𝑎, 𝐼) = {
(𝑎, 𝐼 Δ {𝑚(𝑎)}) if 𝑎 ∈ ⋃𝐴𝑖,

(𝑎, 𝐼) otherwise.
It is clear from the definition that this is an involution whose fixed points are in bijec-
tion with the elements of 𝐴 − ⋃𝐴𝑖 and whose 2-cycles contain elements of opposite
signs. Since elements of 𝐴 − ⋃𝐴𝑖 each occur in exactly one pair, it follows that the
right side of (2.3) is just the cardinality of this set, as desired. □

To illustrate the proof, suppose 𝐴 = {𝑎, 𝑏, 𝑐, 𝑑}, 𝐴1 = {𝑎, 𝑏}, and 𝐴2 = {𝑏, 𝑐}. Then,
leaving out curly brackets and commas in the index sets 𝐼 for readability,

𝑆 = {(𝑎, ∅), (𝑎, 1), (𝑏, ∅), (𝑏, 1), (𝑏, 2), (𝑏, 12), (𝑐, ∅), (𝑐, 2), (𝑑, ∅)}.
Also 𝑚(𝑎) = 1 and 𝑚(𝑏) = 𝑚(𝑐) = 2 so that the involution creates the following
2-cycles:

(𝑎, ∅) ↔ (𝑎, 1), (𝑏, ∅) ↔ (𝑏, 2), (𝑏, 1) ↔ (𝑏, 12), (𝑐, ∅) ↔ (𝑐, 2).
The only fixed point is (𝑑, ∅) and 𝐴 − (𝐴1 ∪ 𝐴2) = {𝑑}.

It would be nice to prove something we have not seen before using our new tech-
nique. Here is an identity involving Stirling numbers of the second kind.

Theorem 2.2.2. For 𝑛 ≥ 0 we have
∑
𝑘≥0

(−1)𝑘𝑘! 𝑆(𝑛, 𝑘) = (−1)𝑛.

Proof. The first order of business will be to give a combinatorial interpretation to the
summands. A composition of a set𝑇 is a sequence of nonempty subsets 𝜌 = (𝐵1, . . . , 𝐵𝑘)
such that⨄𝑖 𝐵𝑖 = 𝑇. In this casewewrite 𝜌 ⊧ 𝑇. So the number of 𝜌 ⊧ [𝑛]with 𝑘 blocks
is 𝑘! 𝑆(𝑛, 𝑘) since we can start with any of the 𝑆(𝑛, 𝑘) partitions in 𝑆([𝑛], 𝑘) and order its
blocks in 𝑘! ways. The reader should have enough experience with signed sets at this
point to see that we are going to want to take 𝑆 to be all 𝜌 ⊧ [𝑛] with sgn 𝜌 = (−1)𝑘 if 𝜌
has 𝑘 blocks. Verifying that this gives the correct alternating sum andis easy and is left
as an exercise.

The involution will be more interesting. We will break it into two cases which
will be inverses of each other. As often, an example follows the proof. Given 𝜌 =
(𝐵1, . . . , 𝐵𝑘) ⊧ [𝑛], we say that 𝐵𝑗 is splittable if #𝐵𝑗 ≥ 2. In this case the splitting map
applied to 𝐵𝑗 is defined by

𝜎(𝐵1, . . . , 𝐵𝑘) = (𝐵1, . . . , 𝐵𝑗−1, {𝑏}, 𝐵𝑗 − {𝑏}, 𝐵𝑗+1, . . . , 𝐵𝑘)
where 𝑏 = min𝐵𝑗 . In other words 𝐵𝑗 is replaced by a pair of blocks, the first containing
its minimum element and the other all the rest of its elements. Although the notation
𝜎 does not indicate which block is to be split, this will be made clear from the context.
We will now define the part of the involution which will undo splitting. Given 𝜌, we
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say that 𝐵𝑗 can bemerged with 𝐵𝑗+1 if
(1) 𝐵𝑗 = {𝑏} for some element 𝑏 ∈ [𝑛] and
(2) 𝑏 < min𝐵𝑗+1.

In this case themerging map applied to 𝐵𝑗 is defined by

𝜇(𝐵1, . . . , 𝐵𝑘) = (𝐵1, . . . , 𝐵𝑗−1, 𝐵𝑗 ∪ 𝐵𝑗+1, 𝐵𝑗+2, . . . , 𝐵𝑘).

It should be clear that if 𝐵𝑖 can be split into 𝐵′𝑖 and 𝐵′𝑖+1, then the primed blocks can be
merged back into 𝐵𝑖 and vice versa. To define the involution 𝜄, suppose we are given
𝜌 = (𝐵1, . . . , 𝐵𝑘). We scan 𝜌 from left to right until we find the first index 𝑗, if any,
such that 𝐵𝑗 can either be split or merged with 𝐵𝑗+1. (Clearly one cannot do both since
splitting implies that #𝐵𝑗 ≥ 2 and merging that #𝐵𝑗 = 1.) Now define

𝜄(𝜌) = { 𝜎(𝜌) if 𝐵𝑗 can be split,
𝜇(𝜌) if 𝐵𝑗 can be merged.

If no such index exists, then 𝜌 will be a fixed point of 𝜄.
We have some work to do to verify that 𝜄 is an involution. Specifically, we must

show that if 𝜄(𝜌) = 𝜌′ is obtained from 𝜌 by splitting at index 𝑗, then 𝜄(𝜌′) will be ob-
tained by merging at the same index and vice versa. We will do the first case and leave
the second to the reader. First note that since no 𝐵𝑖, 𝑖 < 𝑗, could be split in 𝜌 we must
have 𝐵𝑖 = {𝑏𝑖} for some 𝑏𝑖 for each 𝑖 in this range. Furthermore, since none of these
𝐵𝑖 could be merged into 𝐵𝑖+1, we must also have 𝑏1 > 𝑏2 > ⋯ > 𝑏𝑗−1 > 𝑏𝑗 = min𝐵𝑗 .
Now in 𝜌′ we have 𝐵′𝑖 = {𝑏𝑖} for 𝑖 ≤ 𝑗 with 𝑏1 > ⋯ > 𝑏𝑗 . As a consequence, no 𝐵′𝑖
can be split or merged for 𝑖 < 𝑗 and so 𝜄(𝜌′) will merge 𝐵′𝑗 into 𝐵′𝑗+1. Thus 𝜄(𝜌′) = 𝜌 as
desired.

It is clear that 𝜄 is sign reversing since 𝜄(𝜌) has one more or one fewer block than
𝜌. So we just need to find the fixed points. But if 𝜌 ∈ Fix 𝜄, then all 𝜌’s blocks con-
tain a single element; otherwise one could be split. It follows that 𝜌 = ({𝑏1}, . . . , {𝑏𝑛}).
Furthermore, none of the blocks can be merged and so 𝑏1 > ⋯ > 𝑏𝑛. But this forces
our set composition to be 𝜌 = ({𝑛}, {𝑛 − 1}, . . . , {1}) and sgn 𝜌 = (−1)𝑛, completing the
proof. □

To illustrate, suppose 𝑛 = 8. As we have done previously, we will dispense with
brackets and commas in sets. Consider 𝜌 = (𝐵1, . . . , 𝐵5) = (5, 3, 147, 2, 68). Then 𝐵3
is splittable and splitting it results in 𝜎(𝜌) = (5, 3, 1, 47, 2, 68). Also, 𝐵4 can be merged
into 𝐵5 in 𝜌 since 𝐵4 = {2} and 2 < min𝐵5 = 6. Merging these two blocks gives
𝜇(𝜌) = (5, 3, 147, 268). To decide which operation to use we start with 𝐵1. It cannot be
split, having only one element. And it cannot be merged with 𝐵2 since 5 > min𝐵2 = 3.
Similarly 𝐵2 cannot be split or merged with 𝐵3. But we have already seen that 𝐵3 can
be split so that 𝜄(𝜌) = (5, 3, 1, 47, 2, 68) = 𝜌′. To check that 𝜄(𝜌′) = 𝜌 is similar.

Involutions involving merging and splitting often come up when finding formulae
for antipodes in Hopf algebras. One can consult the papers of Benedetti-Bergeron [7],
Benedetti-Hallam-Machacek [8], Benedetti-Sagan [9], or Bergeron-Ceballos [12] for ex-
amples.
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2.3. The Garsia–Milne Involution Principle

So far we have used sign-reversing involutions to explain cancellation in alternating
sums. But can they also furnish a bijection for proving that two given sets have the same
cardinality? The answer in certain cases is “yes” and the standard technique for doing
this is called the Garsia–Milne Involution Principle. Garsia and Milne [30] introduced
thismethod to give the first bijective proof of the Rogers–Remanujan identities, famous
formulas which involve certain sets of integer partitions. Since then the Involution
Principle has found a number of other applications. See, for example, the articles of
Remmel [73] or Wilf [100].

In order to prove the Garsia–Milne result, we will need a version of Lemma 1.9.5
which applies to a slightly wider class of digraphs. Since the demonstration of the next
result is similar to that of the earlier one, we leave the pleasure of proving it to the
reader.

Lemma 2.3.1. Let 𝐷 = (𝑉, 𝐴) be a digraph. We have odeg 𝑣, ideg 𝑣 ≤ 1 for all 𝑣 ∈ 𝑉 if
and only if 𝐷 is a disjoint union of directed paths and directed cycles. □

The basic idea of the Involution Principle is that, under suitable conditions, if one
has two signed sets each with their own sign-reversing involution, then we can use a
bijection between these sets to create a bijection between their fixed-point sets. So let
𝑆 and 𝑇 be disjoint signed sets with sign-reversing involutions 𝜄∶ 𝑆 → 𝑆 and 𝜅∶ 𝑇 →
𝑇 such that Fix 𝜄 ⊆ 𝑆+ and Fix 𝜅 ⊆ 𝑇+. Furthermore, suppose we have a bijection
𝑓∶ 𝑆 → 𝑇 which preserves signs in that sgn 𝑓(𝑠) = sgn 𝑠 for all 𝑠 ∈ 𝑆. A picture of
this setup can be found in Figure 2.3. Note that although all arrows are really double-
headed, we have only shown them in one direction because of what is to come. And
the circular arrows on the fixed points have been ignored. We now construct a map
𝐹 ∶ Fix 𝜄 → Fix 𝜅 as follows. To define 𝐹(𝑠) for 𝑠 ∈ Fix 𝜄 we first compute 𝑓(𝑠) ∈ 𝑇+.
If 𝑓(𝑠) ∈ Fix 𝜅, then we let 𝐹(𝑠) = 𝑓(𝑠). If not, we apply the functional composition
𝜙 = 𝑓 ∘ 𝜄 ∘ 𝑓−1 ∘ 𝜅 to 𝑓(𝑠). Remembering that we compose from right to left, this takes
𝑓(𝑠) to 𝑇−, 𝑆−, 𝑆+, and 𝑇+ in that order. If this brings us to an element of Fix 𝜅, then
we let 𝐹(𝑠) = 𝜙(𝑓(𝑠)). Otherwise we apply 𝜙 as many times as necessary, say 𝑚, to
arrive at an element of Fix 𝜅 and define

(2.8) 𝐹(𝑠) = 𝜙𝑚(𝑓(𝑠)).

Continuing the example in Figure 2.3 we see that 𝑓(𝑠) = 𝑢 ∉ Fix 𝜅. So we apply 𝜙,
which takes 𝑢 to 𝑣, 𝑟, 𝑞, and 𝑡 in turn. Since 𝑡 ∈ Fix 𝜅 we let 𝐹(𝑠) = 𝑡. Of course, we
have to worry whether this is all well-defined; e.g., does 𝑚 always exist? And we also
need to prove that 𝐹 is a bijection. This is taken care of by the next theorem.

Theorem 2.3.2 (Garsia–Milne Involution Principle). With the notation of the previous
paragraph, the map 𝐹 ∶ Fix 𝜄 → Fix 𝜅 is a well-defined bijection.

Proof. Recall the notion of a functional digraph as used in the proof from Section 1.9
of Theorem 1.5.1. Define the following functions by restriction of their domains:

𝑓 = 𝑓|𝑆+ , 𝑔 = 𝑓−1|𝑇− , 𝜄 = 𝜄|𝑆− , 𝜅 = 𝜅|𝑇+−Fix𝜅.
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𝑓 𝑓

𝑓−1

𝜄 𝜅

𝑆+

𝑆−

Fix 𝜄 Fix 𝜅

𝑇+

𝑇−

𝑠

𝑞

𝑟

𝑡

𝑢

𝑣

Figure 2.3. An example of the Garsia–Milne construction

Consider 𝐷 which is the union of the functional digraphs for 𝑓, 𝑔, 𝜄, and 𝜅. It is easy to
verify from the definitions that 𝑥 ∈ 𝑉(𝐷) has in-degrees and out-degrees given by the
following table depending on the subset of 𝑆 ∪ 𝑇 containing 𝑥:

subset odeg 𝑥 ideg 𝑥
Fix 𝜄 1 0
Fix 𝜅 0 1

(𝑆 − Fix 𝜄) ∪ (𝑇 − Fix 𝜅) 1 1

For example, if𝑥 ∈ Fix 𝜄, then the only arc containing𝑥 comes from𝑓 and so odeg 𝑥 = 1
and ideg 𝑥 = 0. On the other hand, if 𝑥 ∈ 𝑆+ − Fix 𝜄, then 𝑥 has an arc going out from
𝑓 and one coming in from 𝜄 giving odeg 𝑥 = ideg 𝑥 = 1.

Now 𝐷 satisfies the hypothesis of the forward direction of Lemma 2.3.1. It follows
that 𝐷 is a disjoint union of directed paths and directed cycles. Each directed path
must start at a vertex with out-degree 1 and in-degree 0 and end at a vertex with these
degrees switched. Furthermore, all other vertices have out-degree and in-degree both
1. From these observations and the chart, it follows that these paths define a 1-to-1
correspondence between the vertices of Fix 𝜄 and those of Fix 𝜅. Furthermore, from the
definition of 𝐷 we see that each path corresponds exactly to a functional composition
𝜙𝑚𝑓(𝑠) for 𝑠 ∈ Fix 𝜄 and some𝑚 ≥ 0. So 𝐹 is the bijection defined by these paths. □

Before we give an application of the previous theorem, we should mention an ap-
proach which can be useful in setting up the necessary sets and bijections. Here is one
way to try to find a bijection 𝐹 ∶ 𝑋 → 𝑌 between two finite sets 𝑋, 𝑌 .

(i) As with the PIE, construct a set 𝐴 with subsets 𝐴1, . . . , 𝐴𝑛 such that 𝑋 = 𝐴 −
⋃𝐴𝑖. Similarly construct 𝐵 and 𝐵1, . . . , 𝐵𝑛 for 𝑌 .

(ii) Use the method of our second proof of the PIE to set up a sign-reversing in-
volution 𝜄 on the set 𝑆 as given by (2.6). Similarly construct 𝜅 on a set 𝑇.
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(iii) Find a bijection 𝑓∶ 𝑆 → 𝑇 of the form

𝑓(𝑎, 𝐼) = (𝑏, 𝐼)

which is well-defined in that 𝑎 ∈ 𝐴𝐼 if and only if 𝑏 ∈ 𝐵𝐼 .

Recall that Fix 𝜄 = (𝑎, ∅) where 𝑎 ∈ 𝐴 −⋃𝐴𝑖. Thus Fix 𝜄 ⊆ 𝑆+ as needed to apply the
Involution Principle, and there is a natural bijection between Fix 𝜄 and 𝑋 . Note also
that 𝑓 is automatically sign preserving since sgn(𝑎, 𝐼) = (−1)#𝐼 = sgn(𝑏, 𝐼). So once
these three steps have been accomplished, Theorem 2.3.2 guarantees that we have a
bijection 𝑋 → 𝑌 .

As already remarked, the Involution Principle is useful in proving integer partition
identities. Say that partition 𝜆 = (𝜆1, 𝜆2, . . . , 𝜆𝑘) has distinct parts if 𝜆1 > 𝜆2 > ⋯ > 𝜆𝑘
(as opposed to the usual weakly decreasing condition). On the other hand, say that 𝜆
has odd parts if all the 𝜆𝑖 are odd. The next result is a famous theorem of Euler. As has
become traditional, an example follows the proof.

Theorem 2.3.3 (Euler). Let 𝑃𝑑(𝑛) be the set of partitions of 𝑛 with distinct parts and let
𝑃𝑜(𝑛) be the set of partitions of 𝑛 with odd parts. For 𝑛 ≥ 0 we have

#𝑃𝑑(𝑛) = #𝑃𝑜(𝑛).

Proof. It suffices to show that there is a bijection 𝑃𝑑(𝑛) → 𝑃𝑜(𝑛). To apply the PIE to
𝑃𝑑(𝑛)we can take 𝐴 = 𝑃(𝑛), the set of all partitions of 𝑛, with subsets 𝐴1, . . . , 𝐴𝑛 where

𝐴𝑖 = {𝜆 ⊢ 𝑛 ∣ 𝜆 has (at least) two copies of the part 𝑖}.

Note that 𝐴𝑖 = ∅ if 𝑖 > 𝑛/2, but this does no harm and keeps the notation simple. It
should be clear from the definitions that 𝑃𝑑(𝑛) = 𝐴 −⋃𝐴𝑖. Similarly, for 𝑃𝑜(𝑛) we let
𝐵 = 𝑃(𝑛) with subsets

𝐵𝑖 = {𝜇 ⊢ 𝑛 ∣ 𝜇 has a part of the form 2𝑖}

for 1 ≤ 𝑖 ≤ 𝑛. Again, it is easy to see that 𝑃𝑜(𝑛) = 𝐵 −⋃𝐵𝑖.
The construction of 𝑆, 𝜄, 𝑇, and 𝜅 are now exactly the same as in the second proof of

the PIE. So it suffices to construct an appropriate bijection 𝑓∶ 𝑆 → 𝑇. Given (𝜆, 𝐼) ∈ 𝑆,
we replace, for each 𝑖 ∈ 𝐼, a pair of 𝑖’s in 𝜆 by a part 2𝑖 to form𝜇. So if 𝜆 ∈ 𝐴𝑖, then𝜇 ∈ 𝐵𝑖
for all 𝑖 ∈ 𝐼 and the map 𝑓(𝜆, 𝐼) = (𝜇, 𝐼) is well-defined. It is also easy to construct 𝑓−1,
taking an even part 2𝑖 in 𝜇 and replacing it with two copies of 𝑖 to form 𝜆 as 𝑖 runs over
𝐼. Appealing to Theorem 2.3.2 finishes the proof. □
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To illustrate this demonstration, suppose we start with (6, 2, 1) ∈ 𝑃𝑑(9). For the
pairs in 𝑆 and 𝑇, we will dispense with delimiters and commas as usual. So

(621, ∅) 𝑓↦ (621, ∅) 𝜅↦ (621, 3) 𝑓
−1

↦ (3321, 3) 𝜄↦ (3321, ∅)
𝑓↦ (3321, ∅) 𝜅↦ (3321, 1) 𝑓

−1

↦ (33111, 1) 𝜄↦ (33111, 13)
𝑓↦ (621, 13) 𝜅↦ (621, 1) 𝑓

−1

↦ (6111, 1) 𝜄↦ (6111, ∅)
𝑓↦ (6111, ∅) 𝜅↦ (6111, 3) 𝑓

−1

↦ (33111, 3) 𝜄↦ (33111, ∅)
𝑓↦ (33111, ∅).

It follows that we should map (6, 2, 1) 𝐹↦ (3, 3, 1, 1, 1). Clearly one might like to find a
more efficient bijection if one exists. This issuewill be further explored in the exercises.

2.4. The Reflection Principle

The Reflection Principle is a geometricmethod for working with certain combinatorial
problems involving lattice paths. In particular, it will permit us to give a very simple
proof of the binomial coefficient formula for the Catalan numbers. It is also useful in
proving unimodality, an interesting property of real number sequences.

Consider the integer lattice ℤ2 and northeast paths in this lattice. Suppose we are
given a line in the plane of the form 𝐿 ∶ 𝑦 = 𝑥 + 𝑏 for some 𝑏 ∈ ℤ. Note that the
reflection in 𝐿 of any northeast path is again a northeast path. If 𝑃 is a path from 𝑢 to
𝑣, then we write 𝑃 ∶ 𝑢 → 𝑣 or 𝑢 𝑃→ 𝑣. Suppose 𝑃 ∶ 𝑢 → 𝑣 intersects 𝐿 and let 𝑥 be its

𝑢 𝑃1

𝑥

𝑃2

𝑣 𝐿

Υ𝐿→

𝑢 𝑃1

𝑥
𝑃′2

𝑣′

𝐿

Figure 2.4. The map Υ𝐿
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last (northeast-most) point of intersection. Then 𝑃 can be written as the concatenation

𝑃 ∶ 𝑢 𝑃1→ 𝑥 𝑃2→ 𝑣.

For example, on the left in Figure 2.4 we have the path 𝑃 = 𝐸𝐸𝐸𝑁𝑁𝑁𝑁𝐸𝑁 with 𝑃1 =
𝐸𝐸𝐸𝑁𝑁 and 𝑃2 = 𝑁𝑁𝐸𝑁. We now define a new path

Υ𝐿(𝑃) ∶ 𝑢
𝑃1→ 𝑥

𝑃′
2→ 𝑣′

where 𝑃′2 and 𝑣′ are the reflections of 𝑃2 and 𝑣 in 𝐿, respectively. Returning to our ex-
ample, 𝑃′2 = 𝐸𝐸𝑁𝐸, which is obtained from 𝑃2 by merely interchanging north and east
steps. So Υ𝐿(𝑃) = 𝐸𝐸𝐸𝑁𝑁𝐸𝐸𝑁𝐸 as on the right in Figure 2.4. This is the fundamental
map for using the Reflection Principle. To state it precisely, let𝒩ℰ(𝑢; 𝑣) denote the set
of northeast paths from 𝑢 to 𝑣 and let𝒩ℰ𝐿(𝑢; 𝑣) be the subset of paths which intersect
𝐿. If 𝑢 is omitted, then it is assumed that 𝑢 = (0, 0). Also, be sure to distinguish the
notation𝒩ℰ(𝑢; 𝑣) for the northeast paths from 𝑢 to 𝑣 and𝒩ℰ(𝑚, 𝑛) for the northeast
paths from (0, 0) to (𝑚, 𝑛). The former contains a semicolon where the latter has a
comma.

Theorem 2.4.1 (Reflection Principle). Given 𝐿 ∶ 𝑦 = 𝑥+𝑏 for 𝑏 ∈ ℤ and 𝑣 ∈ ℤ2, we let
𝑣′ be the reflection of 𝑣 in 𝐿. Then the map Υ𝐿 ∶ 𝒩ℰ𝐿(𝑢; 𝑣) → 𝒩ℰ𝐿(𝑢; 𝑣′) is a bijection.

Proof. In fact, we can show that Υ𝐿 is an involution on𝒩ℰ𝐿(𝑢; 𝑣) ∪ 𝒩ℰ𝐿(𝑢; 𝑣′). This
follows from the fact that reflection in 𝐿 is an involution and that the set of intersection
points does not change when passing from 𝑃 ∩ 𝐿 to Υ𝐿(𝑃) ∩ 𝐿. □

As a first application of Theorem 2.4.1, we will give a simpler, although not as
purely combinatorial, proof of Theorem 1.11.3. We restate the formula here for refer-
ence:

𝐶(𝑛) = 1
𝑛 + 1(

2𝑛
𝑛 ).

Proof. Recall that 𝐶(𝑛) counts the set 𝒟(𝑛) of northeast Dyck paths from (0, 0) to
(𝑛, 𝑛). From Theorem 1.11.1 we know that the total number of all northeast paths
𝑃 from the origin to (𝑛, 𝑛) is

#𝒩ℰ(𝑛, 𝑛) = (2𝑛𝑛 ).

Note that 𝑃 does not stay weakly above 𝑦 = 𝑥 if and only if 𝑃 intersects the line 𝐿 ∶
𝑦 = 𝑥−1. And by the Reflection Principle, such paths are in bijection with𝒩ℰ𝐿((0, 0);
(𝑛+1, 𝑛−1)) since (𝑛+1, 𝑛−1) is the reflection of (𝑛, 𝑛) in 𝐿. But all paths from (0, 0)
to (𝑛 + 1, 𝑛 − 1) cross 𝐿 since these two points are on opposite sides of the line. Thus,
using Theorem 1.11.1 again,

#𝒩ℰ𝐿((0, 0); (𝑛 + 1, 𝑛 − 1)) = #𝒩ℰ(𝑛 + 1, 𝑛 − 1) = ( 2𝑛
𝑛 + 1).
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So subtracting the number of non-Dyck paths from the total number of paths in
𝒩ℰ(𝑛, 𝑛) gives

𝐶(𝑛) = (2𝑛𝑛 ) − ( 2𝑛
𝑛 + 1)

= (2𝑛)!
𝑛! 𝑛! −

(2𝑛)!
(𝑛 + 1)! (𝑛 − 1)!

= (1 − 𝑛
𝑛 + 1)(

2𝑛
𝑛 )

= 1
𝑛 + 1(

2𝑛
𝑛 )

as desired. □

The Reflection Principle can also be used to prove that certain sequences have a
property called unimodality. A sequence of real numbers 𝑎0, 𝑎1, . . . , 𝑎𝑛 is said to be
unimodal if there is an index𝑚 such that

𝑎0 ≤ 𝑎1 ≤ ⋯ ≤ 𝑎𝑚 ≥ 𝑎𝑚+1 ≥ ⋯ ≥ 𝑎𝑛.
So this is the next most complicated behavior after being weakly increasing or weakly
decreasing. In fact the latter are the special cases of unimodalitywhere𝑚 = 𝑛 or𝑚 = 0.
Many sequences arising in combinatorics, algebra, and geometry are unimodal. See
the survey articles of Stanley [89], Brenti [20], or Brändén [19] for more details. The
term “unimodal” comes from probability and statistics where one thinks of the 𝑎𝑖 as
giving you the distribution of a random variable taking values in {0, 1, . . . , 𝑛}. Then a
unimodal distribution has only one hump.

We have already met a number of unimodal sequences, although we have not re-
marked on the fact. Here is the simplest.

Theorem 2.4.2. For 𝑛 ≥ 0 the sequence

(𝑛0), (
𝑛
1), . . . , (

𝑛
𝑛)

is unimodal.

Proof. Because the binomial coefficients are symmetric, Theorem 1.3.3(b), it suffices
to prove that this sequence is increasing up to its halfway point. So we want to show

(𝑛𝑘) ≤ ( 𝑛
𝑘 + 1)

for 𝑘 < ⌊𝑛/2⌋. From Theorem 1.11.1, we know that

(𝑛𝑘) = #𝒩ℰ(𝑘, 𝑛 − 𝑘) and ( 𝑛
𝑘 + 1) = #𝒩ℰ(𝑘 + 1, 𝑛 − 𝑘 − 1).

So it suffices to find an injection 𝑖 ∶ 𝒩ℰ(𝑘, 𝑛 − 𝑘) → 𝒩ℰ(𝑘 + 1, 𝑛 − 𝑘− 1). Let 𝐿 be the
perpendicular bisector of the line segment from (𝑘, 𝑛−𝑘) to (𝑘+1, 𝑛−𝑘−1). It is easy to
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check that 𝐿 has the form 𝑦 = 𝑥 + 𝑏 for 𝑏 ∈ ℤ. From the Reflection Principle, we have
a bijection Υ𝐿 ∶ 𝒩ℰ𝐿(𝑘, 𝑛 − 𝑘) → 𝒩ℰ𝐿(𝑘 + 1, 𝑛− 𝑘− 1). But since 𝑘 < ⌊𝑛/2⌋ the lattice
points (0, 0) and (𝑘, 𝑛−𝑘) are on opposite sides of𝐿 so that𝒩ℰ𝐿(𝑘, 𝑛−𝑘) = 𝒩ℰ(𝑘, 𝑛−𝑘).
Furthermore𝒩ℰ𝐿(𝑘 + 1, 𝑛 − 𝑘 − 1) ⊆ 𝒩ℰ(𝑘 + 1, 𝑛 − 𝑘 − 1). So extending the range of
Υ𝐿 provides the desired injection. □

It turns out that the Stirling number sequences

𝑐(𝑛, 0), 𝑐(𝑛, 1), . . . , 𝑐(𝑛, 𝑛) and 𝑆(𝑛, 0), 𝑆(𝑛, 1), . . . , 𝑆(𝑛, 𝑛)

are also unimodal. But this is not so easy to prove directly. One reason for this is
that these sequences are not symmetric like the one for the binomial coefficients. And
there is no known simple expression for the index𝑚where they achieve their maxima.
Instead it is better to use another property of real sequences, called log-concavity, which
can imply unimodality. This is one of the motivations for the next section.

2.5. The Lindström–Gessel–Viennot Lemma

The lemma in question is a powerful technique for dealing with certain determinan-
tal identities. It was first discovered by Lindström [57] and then used to great effect
by Gessel and Viennot [31] as well as many other authors. Like the Reflection Prin-
ciple, this method uses directed paths. On the other hand, it uses multiple paths and
is not restricted to the integer lattice. In particular, when there are two paths, then
log-concavity results can be obtained.

A sequence of real numbers 𝑎0, 𝑎1, . . . , 𝑎𝑛 is called log-concave if, for all 0 < 𝑘 < 𝑛,
we have

(2.9) 𝑎2𝑘 ≥ 𝑎𝑘−1𝑎𝑘+1.

As usual, we can extend this to all 𝑘 ∈ ℤ by letting 𝑎𝑘 = 0 for 𝑘 < 0 or 𝑘 > 𝑛. Log-
concave sequences, like unimodal ones, are ubiquitous in combinatorics, algebra, and
geometry. See the previously cited survey articles of Stanley, Brenti, and Brändén for
details. For example, a row of Pascal’s triangle or either of the Stirling triangles is log-
concave.

The name “log-concave” comes from the following scenario. Suppose that we have
a function 𝑓∶ ℝ → ℝ which is concave down. So if one takes any two points on the
graph of 𝑓, then the line segment connecting them lies weakly below 𝑓. Taking the
points to be (𝑘 − 1, 𝑓(𝑘 − 1)) and (𝑘 + 1, 𝑓(𝑘 + 1)) and comparing the 𝑦-coordinate
of the midpoint of the corresponding line segment with that coordinate on 𝑓 gives
(𝑓(𝑘 − 1) + 𝑓(𝑘 + 1))/2 ≤ 𝑓(𝑘). Now if 𝑓(𝑥) > 0 for all 𝑥 and the function log 𝑓(𝑥) is
concave down, then substituting into the previous inequality and exponentiating gives
𝑓(𝑘 − 1)𝑓(𝑘 + 1) ≤ 𝑓(𝑘)2 just like the definition of log-concavity for sequences.

It turns out that log-concavity and unimodality are related.

Proposition 2.5.1. Suppose that 𝑎0, 𝑎1, . . . , 𝑎𝑛 is a sequence of positive reals. If the se-
quence is log-concave, then it is unimodal.
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Proof. To show a sequence is unimodal it suffices to show that after its first strict de-
crease, then it continues to weakly decrease. But 𝑎𝑘−1 > 𝑎𝑘 is equivalent to 𝑎𝑘−1/𝑎𝑘 >
1 for positive 𝑎𝑘. Rewriting (2.9) as 𝑎𝑘/𝑎𝑘+1 ≥ 𝑎𝑘−1/𝑎𝑘 we see that if 𝑎𝑘−1/𝑎𝑘 > 1, then
𝑎𝑙−1/𝑎𝑙 > 1 for all 𝑙 ≥ 𝑘. So the sequence is unimodal. □

Even though log-concavity implies unimodality for positive sequences, it is para-
doxically often easier to prove log-concavity rather than proving unimodality directly.
This comes in part from the fact that the log-concave condition is a uniform one for
all 𝑘, as opposed to unimodality where one must know where the maximum of the
sequence occurs.

We can rewrite (2.9) as 𝑎2𝑘 − 𝑎𝑘−1𝑎𝑘+1 ≥ 0, or in terms of determinants as

(2.10) |||
𝑎𝑘 𝑎𝑘+1
𝑎𝑘−1 𝑎𝑘

||| ≥ 0.

To prove that the determinant is nonnegative, we could show that it counts something
and that is exactly what the Lindström–Gessel–Viennot Lemma is set up to do. Wewill
first consider the case of 2 × 2 determinants and at the end of the section indicate how
to do the general case. As a running example, we will show how to prove log-concavity
of the sequence of binomial coefficients considered in Theorem 2.4.2.

Let 𝐷 be a digraph which is acyclic in that it contains no directed cycles. Given
two vertices of 𝑢, 𝑣 ∈ 𝑉(𝐷), we let 𝒫(𝑢; 𝑣) denote the set of directed paths from 𝑢 to 𝑣.
We will assume that 𝑢, 𝑣 are always chosen so that 𝑝(𝑢; 𝑣) = #𝒫(𝑢; 𝑣) is finite even if
𝐷 itself is not. To illustrate, let 𝐷 be the digraph with vertices ℤ2 and arcs from (𝑚, 𝑛)
to (𝑚 + 1, 𝑛) and to (𝑚, 𝑛 + 1) for all𝑚, 𝑛 ∈ ℤ. Then 𝒫(𝑢; 𝑣) is just the set of northeast
lattice paths from 𝑢 to 𝑣, denoted𝒩ℰ(𝑢; 𝑣) in the previous section. We will continue
to use the notation for general paths from that section for any acyclic digraph. We also
extend that notation as follows. Given a directed path 𝑃 ∶ 𝑢 → 𝑣 and vertices 𝑥 coming
before 𝑦 on 𝑃, we let 𝑥 𝑃→ 𝑦 be the portion of 𝑃 between 𝑥 and 𝑦.

Continuing the general exposition, suppose we are given 𝑢1, 𝑢2 ∈ 𝑉 called the
initial vertices and 𝑣1, 𝑣2 ∈ 𝑉 which are the final vertices. We wish to consider determi-
nants of the form

(2.11) |||
𝑝(𝑢1; 𝑣1) 𝑝(𝑢1; 𝑣2)
𝑝(𝑢2; 𝑣1) 𝑝(𝑢2; 𝑣2)

||| = 𝑝(𝑢1; 𝑣1)𝑝(𝑢2; 𝑣2) − 𝑝(𝑢1; 𝑣2)𝑝(𝑢2; 𝑣1).

Note that 𝑝(𝑢1; 𝑣1)𝑝(𝑢2; 𝑣2) counts pairs of paths

(𝑃1, 𝑃2) ∈ 𝒫(𝑢1; 𝑣1) × 𝒫(𝑢2; 𝑣2) ≔ 𝒫12
and similarly for 𝑝(𝑢1; 𝑣2)𝑝(𝑢2; 𝑣1) and

𝒫(𝑢1; 𝑣2) × 𝒫(𝑢2; 𝑣1) ≔ 𝒫21.

Returning to our example, if we wish to show

(𝑛𝑘)
2

− ( 𝑛
𝑘 − 1)(

𝑛
𝑘 + 1) ≥ 0,
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𝑢1

𝑢2

𝑣1

𝑣2

𝑥
Ω→

𝑢1

𝑢2

𝑣1

𝑣2

𝑥

Figure 2.5. The Lindström–Gessel–Viennot Involution

then we could take

𝑢1 = (1, 0), 𝑢2 = (0, 1), 𝑣1 = (𝑘 + 1, 𝑛 − 𝑘), 𝑣2 = (𝑘, 𝑛 − 𝑘 + 1).

It follows fromTheorem 1.11.1 that 𝑝(𝑢1; 𝑣1) = 𝑝(𝑢2; 𝑣2) = (𝑛𝑘), while 𝑝(𝑢1; 𝑣2) = ( 𝑛
𝑘−1)

and 𝑝(𝑢2; 𝑣1) = ( 𝑛
𝑘+1). More specifically, if 𝑛 = 7 and 𝑘 = 3, then in Figure 2.5 we have

a pair of paths in 𝒫21 counted by (72)(
7
4) on the left and another pair in 𝒫12 counted by

(73)
2
on the right. For readablity, the grid for the integer lattice has been suppressed,

leaving only the vertices of ℤ2.
To prove that the determinant (2.11) is nonnegative, we will construct a sign-

reversing involution Ω on the set 𝒫 ≔ 𝒫12 ∪ 𝒫21 where

sgn(𝑃1, 𝑃2) = {
+1 if (𝑃1, 𝑃2) ∈ 𝒫12,

−1 if (𝑃1, 𝑃2) ∈ 𝒫21.

We will construct Ω so that every pair in 𝒫21 is in a 2-cycle with a pair in 𝒫12. Further-
more, the remaining fixed points in𝒫12 will be exactly the path pairs in𝒫 which do not
intersect. It follows that (2.11) is just the number of nonintersecting path pairs in 𝒫
and therefore must be nonnegative.

To define Ω, consider a path pair (𝑃1, 𝑃2) ∈ 𝒫. If 𝑃1 ∩ 𝑃2 is empty, then this pair
is in 𝒫12, since every pair in 𝒫21 intersects. So in this case we let Ω(𝑃1, 𝑃2) = (𝑃1, 𝑃2), a
fixed point. If 𝑃1 ∩ 𝑃2 ≠ ∅, then consider the list of intersections 𝑥1, . . . , 𝑥𝑡 in the order
in which they are encountered on 𝑃1. We claim they must also be encountered in this
order on 𝑃2. For if there were intersections 𝑥, 𝑦 such that 𝑥 comes before 𝑦 on 𝑃1 and 𝑦
comes before 𝑥 on 𝑃2, then one can show that the directed walk 𝑥 𝑃1→ 𝑦 𝑃2→ 𝑥 contains
a directed cycle, as the reader will be asked to do in the exercises. This contradicts the
assumption that 𝐷 is acyclic. So there is a well-defined notion of a first intersection
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𝑥 = 𝑥1. We now let Ω(𝑃1, 𝑃2) = (𝑃′1 , 𝑃′2 ) where

𝑃′1 = 𝑢1
𝑃1→ 𝑥 𝑃2→ 𝑣2,

𝑃′2 = 𝑢2
𝑃2→ 𝑥 𝑃1→ 𝑣1,

if (𝑃1, 𝑃2) ∈ 𝒫12, and similarly if (𝑃1, 𝑃2) ∈ 𝒫21 with 𝑣1 and 𝑣2 reversed. An illustration
of this map is shown in Figure 2.5.

Because the set of intersections in (𝑃1, 𝑃2) is the same as in (𝑃′1 , 𝑃′2 ), the first in-
tersection remains the same and this makes Ω an involution. It is also clear from its
definition that it changes sign. We have proved the following lemma and corollary.

Lemma 2.5.2. Let 𝐷 be an acyclic digraph. Let 𝑢1, 𝑢2, 𝑣1, 𝑣2 ∈ 𝑉(𝐷) be such that each
pair of paths (𝑃1, 𝑃2) ∈ 𝒫21 intersects. Then

|||
𝑝(𝑢1; 𝑣1) 𝑝(𝑢1; 𝑣2)
𝑝(𝑢2; 𝑣1) 𝑝(𝑢2; 𝑣2)

||| = number of nonintersecting pairs (𝑃1, 𝑃2) ∈ 𝒫12.

In particular, the determinant is nonnegative. □

Corollary 2.5.3. For 𝑛 ≥ 0 the sequence

(𝑛0), (
𝑛
1), . . . , (

𝑛
𝑛)

is log-concave.

Lemma 2.5.2 can be extended to 𝑛 × 𝑛 determinants as follows. Let 𝑢1, . . . , 𝑢𝑛 and
𝑣1, . . . , 𝑣𝑛 be 𝑛-tuples of distinct vertices in an acyclic digraph. For 𝜋 ∈ 𝔖𝑛, we let

𝒫𝜋 = {(𝑃1, . . . , 𝑃𝑛) ∣ 𝑃𝑖 ∶ 𝑢𝑖 → 𝑣𝜋(𝑖) for all 𝑖 ∈ [𝑛]}

and
𝒫 = ⋃

𝜋∈𝔖𝑛

𝒫𝜋.

To make 𝒫 into a signed set, recall from abstract algebra that the sign of 𝜋 ∈ 𝔖𝑛 is

sgn𝜋 = (−1)𝑛−𝑘

if 𝜋 has 𝑘 cycles in its disjoint cycle decomposition. There are other ways to define
sgn𝜋, but they are all equivalent. One crucial property of this sign function is that if
𝐴 = [𝑎𝑖,𝑗] is a matrix, then

det 𝐴 = ∑
𝜋∈𝔖𝑛

(sgn𝜋)𝑎1,𝜋(1)𝑎2,𝜋(2) . . . 𝑎𝑛,𝜋(𝑛).

Now if (𝑃1, . . . , 𝑃𝑛) ∈ 𝒫𝜋, then we let sgn(𝑃1, . . . , 𝑃𝑛) = sgn𝜋.
To extend the involution Ω, call 𝑃 = (𝑃1, . . . , 𝑃𝑛) intersecting if there is some pair

𝑃𝑖, 𝑃𝑗 which intersects. Given an intersecting 𝑃, we find the smallest 𝑖 such that 𝑃𝑖
intersects another path of 𝑃 and let 𝑥 be the first intersection of 𝑃𝑖 with another path.
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Now take the smallest 𝑗 > 𝑖 such that 𝑃𝑗 goes through 𝑥. We now let Ω(𝑃) = 𝑃′ where
𝑃′ is 𝑃 with 𝑃𝑖, 𝑃𝑗 replaced by

(2.12) 𝑃′𝑖 = 𝑢𝑖
𝑃𝑖→ 𝑥

𝑃𝑗→ 𝑣𝜋(𝑗),
𝑃′𝑗 = 𝑢𝑗

𝑃𝑗→ 𝑥 𝑃𝑖→ 𝑣𝜋(𝑖),

respectively. One now needs to check that Ω is a sign-reversing involution. As before,
nonintersecting path families 𝑃 are fixed points of Ω. Modulo the details about Ω, we
have now proved the following.

Lemma 2.5.4 (Lindström–Gessle–Viennot). Let𝐷 be an acyclic digraph. Consider two
sequences of vertices 𝑢1, . . . , 𝑢𝑛, 𝑣1, . . . , 𝑣𝑛 ∈ 𝑉(𝐷) such that every 𝑃 ∈ 𝒫𝜋 is intersecting
for 𝜋 ≠ id, the identity permutation. We have

det[𝑝(𝑢𝑖; 𝑣𝑗)]1≤𝑖,𝑗≤𝑛 = number of nonintersecting 𝑃 ∈ 𝒫id.

In particular, the determinant is nonnegative. □

This theoremalso has something to say about real sequences. Any sequence𝑎0, . . . ,
𝑎𝑛 has a corresponding Toeplitz matrix which is the infinite matrix 𝐴 = [𝑎𝑗−𝑖]𝑖,𝑗≥0. So

𝐴 =
⎡⎢⎢⎢
⎣

𝑎0 𝑎1 𝑎2 ⋯ 𝑎𝑛 0 0 0 . . .
0 𝑎0 𝑎1 𝑎2 ⋯ 𝑎𝑛 0 0 . . .
0 0 𝑎0 𝑎1 𝑎2 ⋯ 𝑎𝑛 0 . . .
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

⎤⎥⎥⎥
⎦

.

The sequence is called Pólya frequency, or PF for short, if every square submatrix of
𝐴 has a nonnegative determinant. Notice that, in particular, we get the determinants
in (2.10) so that PF implies log-concave. Lemma 2.5.4 can be used to prove that a se-
quence is PF in much the same way that Lemma 2.5.2 can be used to prove that it is
log-concave. The reader should now have no difficulty in proving the following result.

Theorem 2.5.5. For 𝑛 ≥ 0 the sequence

(𝑛0), (
𝑛
1), . . . , (

𝑛
𝑛)

is PF. □

2.6. The Matrix-Tree Theorem

We end this chapter with another application of determinants. There are many places
where these animals abide in enumerative combinatorics and a good survey will be
found in the articles of Krattenthaler [54,55]. Here wewill be concernedwith counting
spanning trees using a famous result of Kirchhoff called the Matrix-Tree Theorem.

A subgraph 𝐻 ⊆ 𝐺 is called spanning if 𝑉(𝐻) = 𝑉(𝐺). So a spanning subgraph is
completely determined by its edge set. A spanning tree 𝑇 of 𝐺 is a spanning subgraph
which is a tree. Clearly for a spanning tree to exist, 𝐺 must be connected. Let 𝒮𝑇(𝐺)
be the set of spanning trees of 𝐺. If one considers the graph 𝐺 on the left in Figure 2.6,
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𝑣 𝑤

𝑥𝑦

𝑒

𝑓 𝑔
ℎ

𝑖

𝑣 𝑤

𝑥𝑦

𝑒

𝑓 𝑔
ℎ

𝑖

Figure 2.6. A graph 𝐺, its spanning trees, and an orientation

then the list of its eight spanning trees is in the middle of the figure (shrunk to half size
so they will fit and without the vertex and edge labels). To develop the tools needed
to prove our main theorem, we first need to make some remarks about combinatorial
matrices.

We will often have occasion to create matrices whose rows and columns are in-
dexed by sets rather than numbers. If 𝑆, 𝑇 are sets, then an 𝑆 × 𝑇 matrix 𝑀 is con-
structed by giving a linear order to the elements of 𝑆 and to those of 𝑇 and using them
to index the rows and columns of𝑀, respectively. So if (𝑠, 𝑡) ∈ 𝑆 × 𝑇, then 𝑚𝑠,𝑡 is the
entry in𝑀 in the row indexed by 𝑠 and the column indexed by 𝑡. The reader may have
noted that such a matrix depends not just on 𝑆, 𝑇, but also on their linear orderings.
However, changing these orderings merely permutes rows and columns in 𝑀 which
will usually have no effect on the information we wish to extract from it.

If 𝐺 = (𝑉, 𝐸) is a graph, then there are several important matrices associated with
it. The adjacency matrix of 𝐺 is the 𝑉 × 𝑉 matrix 𝐴 = 𝐴(𝐺) with

𝑎𝑣,𝑤 = { 1 if 𝑣𝑤 ∈ 𝐸,
0 otherwise.

Using the ordering 𝑣, 𝑤, 𝑥, 𝑦, the graph on the left in Figure 2.6 has adjacency matrix

𝐴 =

𝑣 𝑤 𝑥 𝑦
𝑣
𝑤
𝑥
𝑦

⎡⎢⎢⎢
⎣

0 1 1 1
1 0 1 0
1 1 0 1
1 0 1 0

⎤⎥⎥⎥
⎦

.

The adjacency matrix is always symmetric since 𝑣𝑤 and 𝑤𝑣 denote the same edge. It
also has zeros on the diagonal since our graphs are (usually) loopless.

The preliminary version made available with permission of the publisher, the American Mathematical Society



2.6. The Matrix-Tree Theorem 61

A second matrix associated with 𝐺 is its incidence matrix, 𝐵 = 𝐵(𝐺), which is the
𝑉 × 𝐸 matrix with entries

𝑏𝑣,𝑒 = { 1 if 𝑣 is an endpoint of 𝑒,
0 otherwise.

Returning to our example, the graph has

𝐵 =

𝑒 𝑓 𝑔 ℎ 𝑖
𝑣
𝑤
𝑥
𝑦

⎡⎢⎢⎢
⎣

1 1 1 0 0
1 0 0 1 0
0 0 1 1 1
0 1 0 0 1

⎤⎥⎥⎥
⎦

.

By construction, row 𝑣 of 𝐵 contains deg 𝑣 ones, and every column contains 2 ones. We
will also need the diagonal 𝑉 ×𝑉 matrix 𝐶(𝐺)which has diagonal entries 𝑐𝑣,𝑣 = deg 𝑣.
These three matrices are nicely related.

Proposition 2.6.1. For any graph 𝐺 we have

𝐵𝐵𝑡 = 𝐴 + 𝐶.

Proof. The (𝑣, 𝑤) entry of 𝐵𝐵𝑡 is the inner product of rows 𝑣 and𝑤 of 𝐵. If 𝑣 = 𝑤, then
this is, using the notation (1.9),

∑
𝑒
𝑏2𝑣,𝑒 = ∑

𝑒
𝛿(𝑣 is an endpoint of 𝑒)2 = deg 𝑣 = 𝑐𝑣,𝑣

since 02 = 0 and 12 = 1. Similarly, if 𝑣 ≠ 𝑤, then the entry is

∑
𝑒
𝑏𝑣,𝑒𝑏𝑤,𝑒 = ∑

𝑒
𝛿(𝑣 is an endpoint of 𝑒) ⋅ 𝛿(𝑤 is an endpoint of 𝑒)

= 𝛿(𝑣𝑤 ∈ 𝐸)
= 𝑎𝑣,𝑤,

which completes the proof. □

Interestingly, to compute the number of spanning trees of 𝐺 we will have to turn
𝐺 into a digraph. An orientation of 𝐺 is a digragh 𝐷 with 𝑉(𝐷) = 𝑉(𝐺) and, for each
edge 𝑣𝑤 ∈ 𝐸(𝐺), either the arc 𝑣𝑤 or the arc 𝑤𝑣 in 𝐴(𝐷). In this case 𝐺 is called the
underlying graph of 𝐷. The digraph on the right in Figure 2.6 is an orientation of our
running example graph 𝐺. The adjacency matrix of a digraph is defined just as for
graphs and will not concern us here. But we will need the directed incidence matrix,
𝐵 = 𝐵(𝐷), defined by

𝑏𝑣,𝑎 =
⎧
⎨
⎩

−1 if 𝑎 = 𝑣𝑤 for some 𝑤,
1 if 𝑎 = 𝑤𝑣 for some 𝑤,
0 otherwise.
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For the digraph in Figure 2.6 we have

𝐵 =

𝑒 𝑓 𝑔 ℎ 𝑖
𝑣
𝑤
𝑥
𝑦

⎡⎢⎢⎢
⎣

−1 −1 1 0 0
1 0 0 1 0
0 0 −1 −1 1
0 1 0 0 −1

⎤⎥⎥⎥
⎦

.

Here are the two properties of 𝐵(𝐷) which will be important for us.

Proposition 2.6.2. Let 𝐷 be a digraph and let 𝐵 = 𝐵(𝐷).
(a) If the rows of 𝐵 are 𝐛1, . . . , 𝐛𝑛, then

𝐛1 +⋯+ 𝐛𝑛 = 𝟎
where 𝟎 is the zero vector.

(b) If 𝐷 is an orientation of a graph 𝐺, then
(2.13) 𝐵𝐵𝑡 = 𝐶(𝐺) − 𝐴(𝐺).

Proof. For (a), just note that every column of 𝐵 contains a single 1 and a single −1,
which will cancel in the sum. The proof of (b) is similar to that for Proposition 2.6.1
and so is left to the reader. □

It is interesting to note that although the matrix 𝐵 on the left-hand side of (2.13)
depends on𝐷, the right-hand side only depends on the underlying graph𝐺. Thematrix
𝐿(𝐺) = 𝐶(𝐺) − 𝐴(𝐺) is called the Laplacian of 𝐺 and controls many combinatorial
aspects of the graph. Returning to our example, we have

𝐿(𝐺) =
⎡⎢⎢⎢
⎣

3 −1 −1 −1
−1 2 −1 0
−1 −1 3 −1
−1 0 −1 2

⎤⎥⎥⎥
⎦

.

Note that the sum of the rows of 𝐿 = 𝐿(𝐺) is zero since, for all 𝑣 ∈ 𝑉 , column 𝑣
contains deg 𝑣 on the diagonal and then deg 𝑣 other nonzero entries which are all −1.
So det 𝐿 = 0. But removing the last row and column of the previous displayed matrix
and taking the determinant gives

det[
3 −1 −1

−1 2 −1
−1 −1 3

] = 8.

The reader may recall that 8 was also the number of spanning trees of 𝐺. This is not a
coincidence! But before we can prove the implied theorem, we need one more result.

Let𝑀 be an 𝑆 × 𝑇 matrix and let 𝐼 ⊆ 𝑆 and 𝐽 ⊆ 𝑇. Let𝑀𝐼,𝐽 denote the submatrix
of𝑀 whose rows are indexed by 𝐼 and columns by 𝐽. In 𝐵(𝐺) for our example graph 𝐺
with 𝐼 = {𝑣, 𝑥} and 𝐽 = {𝑓, 𝑔, 𝑖} we would have

𝐵𝐼,𝐽 = [ 1 1 0
0 1 1 ] .

The preliminary version made available with permission of the publisher, the American Mathematical Society



2.6. The Matrix-Tree Theorem 63

If 𝐼 = 𝑆−{𝑠} for some 𝑠 ∈ 𝑆 and 𝐽 = 𝑇−{𝑡} for some 𝑡 ∈ 𝑇, thenwe use the abbreviation
𝑀 ̂𝑠, ̂𝑡 for𝑀𝐼,𝐽 . In this case when 𝑆 = 𝑇 = [𝑛], the (𝑖, 𝑗) cofactor of𝑀 is

𝑚 ̂𝑖, ̂𝑗 = (−1)𝑖+𝑗 det𝑀 ̂𝑖, ̂𝑗.

We will need the following famous result about determinants called the Cauchy–
Binet Theorem. Since this is really a statement about linear algebra rather than com-
binatorics, we will just outline a proof in the exercises.

Theorem 2.6.3 (Cauchy–Binet Theorem). Let 𝑄 be an [𝑚] × [𝑛] matrix and let 𝑅 be
[𝑛] × [𝑚]. Then

det𝑄𝑅 = ∑
𝐾∈([𝑛]𝑚)

det 𝑄[𝑚],𝐾 ⋅ det 𝑅𝐾,[𝑚]. □

Note that in the special case𝑚 = 𝑛 this reduces to the well-known statement that
det𝑄𝑅 = det𝑄 ⋅ det 𝑅.

Theorem 2.6.4 (Matrix-Tree Theorem). Let 𝐺 be a graph with 𝑉 = [𝑛], 𝐸 = [𝑚], and
let 𝐿 = 𝐿(𝐺). We have for any 𝑖, 𝑗 ∈ [𝑛]

#𝒮𝑇(𝐺) = ℓ ̂𝑖, ̂𝑗 .

Proof. We will do the case when 𝑖 = 𝑗 = 𝑛 as the other cases are similar. So

ℓ�̂�,�̂� = (−1)𝑛+𝑛 det 𝐿�̂�,�̂� = det 𝐿�̂�,�̂�.

Let 𝐷 be any orientation of 𝐺 and 𝐵 = 𝐵(𝐷). By Proposition 2.6.2(b), we have that
𝐿 = 𝐶(𝐺) − 𝐴(𝐺) = 𝐵𝐵𝑡. It follows that

𝐿�̂�,�̂� = 𝐵𝑊,𝐸(𝐵𝑊,𝐸)𝑡

where𝑊 = [𝑛 − 1]. Applying the Cauchy–Binet Theorem we get

ℓ�̂�,�̂� = ∑
𝐹∈( 𝐸

𝑛−1)
det 𝐵𝑊,𝐹 ⋅ det(𝐵𝑊,𝐹)𝑡 = ∑

𝐹∈( 𝐸
𝑛−1)

(det 𝐵𝑊,𝐹)2.

So the theorem will be proved if we can show that

(2.14) det 𝐵𝑊,𝐹 = { ±1 if the edges of 𝐹 are a spanning tree of 𝐺,
0 otherwise.

Note that 𝐵𝑊,𝐹 is the incidence matrix of the digraph 𝐷𝐹 having 𝑉(𝐷𝐹) = 𝑉 and
𝐴(𝐷𝐹) = 𝐹 but with the row of vertex 𝑛 removed. We say that 𝐷𝐹 is a tree if its under-
lying graph is one.

We first consider the case when𝐷𝐹 is not a tree. We know#𝐹 = 𝑛−1 so, by Theo-
rem 1.10.2, 𝐷𝐹 must be disconnected. Thus there is a component of𝐷𝐹 not containing
the vertex 𝑛. And the sum of the row vectors of 𝐵𝑊,𝐹 corresponding to that component
is 𝟎 by Proposition 2.6.2(a). Thus det 𝐵𝑊,𝐹 = 0 in this case.
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Now suppose that 𝐷𝐹 is a tree. To prove this case of (2.14), it suffices to permute
the rows and columns of 𝐵𝑊,𝐹 so that the matrix becomes lower triangular with±1 on
the diagonal. Such a permutation corresponds to a relabeling of the vertices and edges
of 𝐷𝐹 . If 𝑛 = 1, then 𝐵𝑊,𝐹 is the empty matrix which has determinant 1. If 𝑛 > 1,
then, by Lemma 1.10.1, 𝐷𝐹 has at least two leaves. So in particular there is a leaf in
𝑊 = [𝑛 − 1]. By relabeling 𝐷𝐹 we can assume that 𝑣 = 1 is the leaf and 𝑎 = 1 is the
sole arc containing 𝑣. It follows that the first row of 𝐵𝑊,𝐹 has ±1 in the (1, 1) position
and zeros elsewhere. Now we consider 𝐷𝐹 − 𝑣 and recurse to finish constructing the
matrix. □

We can use this theorem to rederive Cayley’s result, Theorem 1.10.3, enumerating
all trees on a given vertex set. To do so, consider the complete graph 𝐾𝑛 with vertex
set 𝑉 = [𝑛]. Clearly the number of trees on 𝑛 vertices is the same as the number of
spanning trees of 𝐾𝑛. The Laplacian 𝐿(𝐾𝑛) consists of 𝑛 − 1 down the diagonal with
−1 everywhere else. So 𝐿�̂�,�̂� is the same matrix but with dimensions (𝑛 − 1) × (𝑛 − 1).
Add all the rows of this matrix to the first row. The result is a first rowwhich is all ones
since every column consists of an 𝑛−1 as well as 𝑛−2minus ones in some order. Next
add the first row to each of the other rows. This will cancel all the minus ones in those
rows as well as changing each diagonal entry from 𝑛− 1 to 𝑛. Now the matrix is upper
triangular and, since elementary row operations do not change the determinant, we
have that ℓ�̂�,�̂� is the product of the diagonal entries which consist of a one and 𝑛 − 2
copies of 𝑛. Cayley’s Theorem follows.

Exercises

(1) Let 𝑛 be a positive integer and let 𝑝1, . . . , 𝑝𝑘 be distinct primes. Prove that the
number of integers between 1 and 𝑛 not divisible by any of the 𝑝𝑖 is

𝑛 − ∑
1≤𝑖≤𝑘

⌊ 𝑛𝑝𝑖
⌋ + ∑

1≤𝑖<𝑗≤𝑘
⌊ 𝑛
𝑝𝑖𝑝𝑗

⌋ −⋯+ (−1)𝑘 ⌊ 𝑛
𝑝1𝑝2 . . . 𝑝𝑘

⌋ .

(2) Let 𝐴(𝑛) be the number of 𝜌 ⊢ [𝑛] such that 𝑖 and 𝑖 + 1 never occur in the same
block of 𝜌 for any 𝑖 ∈ [𝑛 − 1].
(a) Show that

𝐴(𝑛) =
𝑛−1
∑
𝑖=0

(−1)𝑖(𝑛 − 1
𝑖 )𝐵(𝑛 − 𝑖)

where 𝐵(𝑛) is the 𝑛th Bell number.
(b) Find and prove a similar identity involving the Stirling numbers of the second

kind.
(c) Show that part (a) follows from part (b).

(3) Fix positive integers 𝑘 ≤ 𝑛. Use the Principle of Inclusion and Exclusion to find
a formula for the number of compositions 𝛼 = [𝛼1, . . . , 𝛼𝑘] ⊧ 𝑛 with the property
that 𝛼𝑖 ≥ 2 for all 𝑖 ∈ [𝑘].
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(4) Prove that for 𝑛 ≥ 3 we have
𝐷(𝑛) = (𝑛 − 1)(𝐷(𝑛 − 1) + 𝐷(𝑛 − 2))

in two ways:
(a) by using Theorem 2.1.2,
(b) by a combinatorial argument.

(5) Prove that for 𝑛 ≥ 1 we have
𝐷(𝑛) = 𝑛𝐷(𝑛 − 1) + (−1)𝑛.

(6) Call two positive integers 𝑘, 𝑛 relatively prime if gcd(𝑘, 𝑛) = 1 where gcd is the
greatest common divisor. The Euler totient function, also called the Euler phi func-
tion, is

𝜙(𝑛) = #{𝑘 ∈ [𝑛] ∣ gcd(𝑘, 𝑛) = 1}.
Using the PIE, show that

𝜙(𝑛) = 𝑛 ∏
𝑝
(1 − 1

𝑝)

where the product is over all primes 𝑝 dividing 𝑛.
(7) Given another proof of Lemma 2.2.1 when 𝑆 is finite by using Theorem 1.5.1.
(8) Fix a set 𝐴 and subsets 𝐴1, . . . , 𝐴𝑛 ⊆ 𝐴. Define 𝐴𝐼 for 𝐼 ⊆ [𝑛] by (2.7). Show that

𝐴∅ = 𝐴.
(9) Prove that for the (signed) Stirling numbers of the first kind

∑
𝑘
𝑠(𝑛, 𝑘) = { 1 if 𝑛 = 0 or 1,

0 if 𝑛 ≥ 2,

using a sign-reversing involution.
(10) Fill in the details of the proof of Theorem 2.2.2.
(11) Consider permutations 𝜋 ∈ 𝑃(𝑆) and 𝜎 ∈ 𝑃(𝑇)where 𝑆∩𝑇 = ∅. The set of shuffles

of 𝜋 and 𝜎 is
𝜋 ⧢ 𝜎 = {𝜏 ∈ 𝑃(𝑆 ⊎ 𝑇) ∣ 𝜋 and 𝜎 are subwords of 𝜏}.

For example

31 ⧢ 24 = {3124, 3214, 3241, 2314, 2341, 2431}.
We take linear combinations of permutations as if they were vectors. For example

6(3124) − 7(3241) − 9(3124) + (3241) = −3(3124) − 6(3241).
And a set of permutations represents the sum of all the elements in the set with
coefficient one. So we would also write

31 ⧢ 24 = 3124 + 3214 + 3241 + 2314 + 2341 + 2431
and let the context determine whether 31 ⧢ 24 means the set or the sum. Show
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that

∑
𝑘≥1

(−1)𝑘 ∑
𝑤1⋅𝑤2⋅. . .⋅𝑤𝑘=12. . .𝑛

𝑤1 ⧢𝑤2 ⧢⋯⧢𝑤𝑘 = (−1)𝑛(𝑛 . . . 21),

where the sum is over all concatenations 𝑤1 ⋅ 𝑤2 ⋅ . . . ⋅ 𝑤𝑘 = 12 . . . 𝑛. For example,
when 𝑛 = 3, then the concatenations are

123 = 1 ⋅ 2 ⋅ 3 = 1 ⋅ 23 = 12 ⋅ 3 = 123.

Hint: Consider a permutation 𝑣 contained in a shuffle 𝑤1 ⧢ 𝑤2 ⧢⋯⧢ 𝑤𝑘. Find
the largest index 𝑗 ≥ 0, if any, such that
(i) |𝑤1| = |𝑤2| = ⋯ = |𝑤𝑗| = 1 (which implies that 𝑤𝑖 = 𝑖 for 𝑖 ∈ [𝑗]) and
(ii) 𝑗 . . . 21 is a subword of 𝑣.
Use the relative positions of 𝑗 and 𝑗 + 1 in 𝑣 together with merging and splitting to
find a copy of 𝑣 in another shuffle of opposite sign.

(12) Prove Lemma 2.3.1.
(13) Here is a way to obtain a direct bijection 𝑔∶ 𝑃𝑑(𝑛) → 𝑃𝑜(𝑛). Consider 𝜆 ∈ 𝑃𝑑(𝑛).

Each part 𝑝 of 𝜆 can be uniquely written as 𝑝 = 𝑞2𝑟 for some odd 𝑞 and integer
𝑟 ≥ 0. Replace 𝑝 by 2𝑟 copies of 𝑞 to get a partition 𝜇 = 𝑔(𝜆). For example, if
𝜆 = (6, 4, 1), then 6 = 3 ⋅ 21 = 3 + 3, 4 = 1 ⋅ 22 = 1 + 1 + 1 + 1, and 1 = 1 ⋅ 20 = 1.
So 𝑔(6, 4, 1) = (3, 3, 1, 1, 1, 1, 1).
(a) Prove that 𝑔 is a bijection.
(b) Prove that 𝑔 is the same as the bijection obtained using the Involution Princi-

ple in the proof of Theorem 2.3.3.
(14) Call a graph 𝐺 rooted if each component has a distinguished vertex called the root

of that component. Say that two unlabled, rooted graphs 𝐺1 = (𝑉1, 𝐸1) and 𝐺2 =
(𝑉2, 𝐸2) are equal if there is a bijection 𝑓 ∶ 𝑉1 → 𝑉2 which preserves both the roots
(𝑟 is a root of 𝐺1 if and only if 𝑓(𝑟) is a root of 𝐺2) and edges (𝑣𝑤 ∈ 𝐸1 if and only
if 𝑓(𝑣)𝑓(𝑤) ∈ 𝐸2). Call a rooted tree 𝑇 even if there is some edge 𝑟𝑣, where 𝑟 is the
root, such that removing this edge from 𝑇 and making 𝑣 the root of its component
results in a graph with two equal components. Call a rooted forest distinct if all of
its component trees are not equal.
(a) Use the Garsia–Milne Involution principle to find a bijection between the

rooted forests on 𝑛 vertices with no component tree being even and the rooted
forests on 𝑛 vertices which are distinct.

(b) Describe a bijection for (a) using the ideas from Exercise 13.
(c) Show that the bijections in (a) and (b) are actually the same.

(15) One can generalize Theorem 2.3.3 in the following way. Fix a positive integer 𝑚.
Let 𝑃<𝑚(𝑛) be the set of 𝜆 ⊢ 𝑛 where each part is repeated fewer than𝑚 times. Let
𝑃≢𝑚(𝑛) be the set of 𝜆 ⊢ 𝑛 such that none of the parts is divisible by𝑚.
(a) Show that 𝑃<2(𝑛) = 𝑃𝑑(𝑛) and 𝑃≢2(𝑛) = 𝑃𝑜(𝑛).
(b) Prove that #𝑃<𝑚(𝑛) = #𝑃≢𝑚(𝑛) by generalizing the bijection of the previous

exercise.
(c) Reprove that #𝑃<𝑚(𝑛) = #𝑃≢𝑚(𝑛) using the Involution Principle.
(d) Show that the bijections in (b) and (c) are the same.
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(16) Let 𝒮 = (𝑆; 𝑆1, . . . , 𝑆𝑛) where 𝑆 is a finite set and 𝑆1, . . . , 𝑆𝑛 are subsets. Similarly
define𝒯 = (𝑇; 𝑇1, . . . , 𝑇𝑛). Call 𝒮 and𝒯 sieve equivalent if#𝑆𝐼 = #𝑇𝐼 for all 𝐼 ⊆ [𝑛].
(a) Use the PIE to show that if 𝒮 and 𝒯 are sieve equivalent, then

||||
𝑆 −

𝑛

⋃
𝑖=1

𝑆 𝑖
||||
=
||||
𝑇 −

𝑛

⋃
𝑖=1

𝑇𝑖
||||
.

(b) Show that if 𝒮 and 𝒯 are sieve equivalent, then the Involution Principle can
be used to construct a bijection proving (a).

(17) (a) Check that the line 𝐿 used in the proof of Theorem 2.4.2 has the correct form.
Use this equation to verify that (0, 0) and (𝑘, 𝑛 − 𝑘) are on opposite sides of 𝐿.

(b) Give a second proof of this theoremusing the factorial expression for binomial
coefficients.

(c) Give a third proof of this theorem using induction.
(18) Consider lattice paths of length 𝑛, starting at the origin and ending at (𝑥, 𝑦) and

using steps 𝑁, 𝐸, 𝑆,𝑊 where 𝑆 = [0, −1] and𝑊 = [−1, 0]. Let 𝑟 = (𝑛 − 𝑥 − 𝑦)/2
and 𝑠 = (𝑛 + 𝑥 − 𝑦)/2.
(a) Show that the number of such paths is given by

(𝑛𝑟)(
𝑛
𝑠).

Hint: Find a bijection with pairs of 𝐸𝑊 -lattice paths which are defined in
Exercise 33 of Chapter 1.

(b) Show that the number of such paths staying weakly above the 𝑥-axis is

(𝑛𝑟)(
𝑛
𝑠) − ( 𝑛

𝑟 − 1)(
𝑛

𝑠 − 1).

(c) Show that for integers 𝑛, 𝑟 ≥ 0 the sequence

(𝑛𝑟)(
𝑛
0), (

𝑛
𝑟 − 1)(

𝑛
1), . . . , (

𝑛
0)(

𝑛
𝑟)

is unimodal.
(19) Let 𝐷 be a digraph.

(a) Show that any directed walk from 𝑢 to 𝑣 with 𝑢 ≠ 𝑣 contains a directed path
from 𝑢 to 𝑣.

(b) Show that any directedwalk of length at least 2 from 𝑢 to 𝑣with 𝑢 = 𝑣 contains
a directed cycle.

(20) Show that for 𝑛 ∈ ℕ the sequence

(𝑛0), (
𝑛
1), . . . , (

𝑛
𝑛)

is log concave by using the formula for a binomial coefficient in terms of factorials.
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(21) Let 𝑎0, 𝑎1, . . . , 𝑎𝑛 be a sequence of positive reals. Show that the sequence is log-
concave if and only if for all 0 < 𝑘 ≤ 𝑙 < 𝑛 we have

𝑎𝑘𝑎𝑙 ≥ 𝑎𝑘−1𝑎𝑙+1.

Hint: Use the ideas in the proof of Proposition 2.5.1.
(22) (a) Let 𝑡(𝑛, 𝑘) be a triangular array of real numbers for 0 ≤ 𝑘 ≤ 𝑛. Call the ar-

ray log-concave in 𝑘 if the sequence 𝑡(𝑛, 0), . . . , 𝑡(𝑛, 𝑛) is log-concave for all 𝑛.
Suppose that the 𝑡(𝑛, 𝑘) satisfy the recursion

𝑡(𝑛, 𝑘) = 𝑎(𝑛, 𝑘)𝑡(𝑛 − 1, 𝑘 − 1) + 𝑏(𝑛, 𝑘)𝑡(𝑛 − 1, 𝑘)

for 𝑛 ≥ 1 where 𝑎(𝑛, 𝑘), 𝑏(𝑛, 𝑘), 𝑡(𝑛, 𝑘) are nonnegative reals and 𝑎(𝑛, 𝑘) =
𝑏(𝑛, 𝑘) = 𝑡(𝑛, 𝑘) = 0 for 𝑘 < 0 or 𝑘 > 𝑛. Also assume that
(i) 𝑎(𝑛, 𝑘) and 𝑏(𝑛, 𝑘) are log-concave in 𝑘 and
(ii) 𝑎(𝑛, 𝑘− 1)𝑏(𝑛, 𝑘+ 1)+𝑎(𝑛, 𝑘+ 1)𝑏(𝑛, 𝑘− 1) ≤ 2𝑎(𝑛, 𝑘)𝑏(𝑛, 𝑘) for 𝑛 ≥ 1.

Prove that 𝑡(𝑛, 𝑘) is log-concave in 𝑘.
(b) Use part (a) to prove that (𝑛𝑘), 𝑐(𝑛, 𝑘) (unsigned Stirling numbers of the first

kind), and 𝑆(𝑛, 𝑘) (Stirling numbers of the second kind) are all log-concave in
𝑘.

(23) Suppose 0 ≤ 𝑘 < 𝑛. Prove in two ways that

(𝑛𝑘)
2

≥ (𝑛 − 1
𝑘 )(𝑛 + 1

𝑘 ),

by using the expression for binomial coefficients in terms of factorials and by using
lattice paths.

(24) Check thatΩ as defined for general path families 𝑃 = (𝑃1, . . . , 𝑃𝑛) is a sign-reversing
involution.

(25) Prove Theorem 2.5.5.
(26) Consider the sequence 𝑐(𝑛, 0), . . . , 𝑐(𝑛, 𝑛) of signless Stirling numbers of the first

kind.
(a) Use Lemma 2.5.2 to prove that this sequence is log-concave. Hint: Try to con-

struct 𝐷 with 𝑉 = ℤ2 such that the number of paths from (0, 0) to (𝑛, 𝑘) is
𝑐(𝑛, 𝑘). It will be helpful to use multiple, but distinguishable, arcs.

(b) Use Lemma 2.5.4 to show that, in fact, this is a PF sequence.
(27) (a) Find a sequence of positive reals which is unimodal but not log-concave.

(b) Find a sequence of positive reals which is log-concave but not PF.
(28) (a) Show that the (𝑣, 𝑤) entry of 𝐴(𝐺)𝑛 is the number of walks going from 𝑣 to 𝑤

of length 𝑛.
(b) Show that a similar result holds for digraphs.

(29) Use the matrix 𝐵(𝐺) to prove the Handshaking Lemma, Theorem 1.9.3.
(30) Prove Proposition 2.6.2(b).
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Figure 2.7. The graph 𝐺6

(31) Give two proofs of Theorem 2.6.3 as follows.
(a) Give one proof using the Lindström–Gessle–Viennot Lemma.
(b) Give a second demonstration based on the outline below.

(i) Show that if𝑚 > 𝑛, then both sides are zero.
(ii) Assume that 𝑚 ≤ 𝑛, write out the entries of 𝑄𝑅, and expand about the

columns of the product using multilinearity to show that
det𝑄𝑅 = ∑

𝜋∈𝑃(([𝑛],𝑚))
(det 𝑄•,𝜋)𝑟𝜋1,1𝑟𝜋2,2 . . . 𝑟𝜋𝑚,𝑚

where 𝑄•,𝜋 is the matrix whose 𝑗th column is the 𝜋𝑗 column of 𝑄.
(iii) Show that in the previous sum, det𝑄•,𝜋 = 0 if 𝜋 contains a repeated

entry.
(iv) Show that if 𝐾 ∈ ([𝑛]𝑚 ), then det𝑄[𝑚],𝐾 can be factored out of all the

terms in the sum where 𝜋 is a permutation of 𝐾 and that what remains
sums to det 𝑅𝐾,[𝑚].

(32) Prove the case of Theorem 2.6.4 where 𝑖 = 1 and 𝑗 = 2.
(33) Let 𝐺𝑛 be the graph with vertex set 𝑉 = [𝑛] and edge set

𝐸 = {12, 13, 14, . . . , 1𝑛, 23}.
Graph 𝐺6 is displayed in Figure 2.7. Find the number of spanning trees of 𝐺𝑛 in
two ways: by a direct count and by using the Matrix-Tree Theorem.

(34) The complete bipartite graph, 𝐾𝑚,𝑛, has 𝑉 = {𝑣1, . . . , 𝑣𝑚, 𝑤1, . . . , 𝑤𝑛} and edge set
consisting of 𝑣𝑖𝑤𝑗 for all 𝑖, 𝑗 (and no other edges). Show that

#𝒮𝑇(𝐾𝑚,𝑛) = 𝑚𝑛−1𝑛𝑚−1.
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Chapter 3

Counting with Ordinary
Generating Functions

This chapter introduces one of the most powerful techniques in the enumerator’s tool-
kit: generating functions. Wilf [101] wrote a whole book devoted to their properties.
There are several types of generating functions and we will start with the simplest,
which are called ordinary generating functions. In Chapters 4, 7, and 8 we will deal
with other types. The basic idea in all cases is to take a sequence of numbers in which
we are interested and replace it by an algebraic object, namely a polynomial or power
series. The advantage of doing this is that one can then bring a host of algebraic tech-
niques to bear in order to study the original sequence. This makes it possible to give
proofs of results about the sequence which have the following advantages:

(1) The proofs can be very short.
(2) Many demonstrations can be done by straightforward manipulations which

do not require the cleverness of other approaches.
(3) Sometimes no other method is known for obtaining a given result.

3.1. Generating polynomials

Let 𝑥 be a variable. A sequence

(3.1) 𝑎0, 𝑎1, 𝑎2, . . . , 𝑎𝑛
of complex numbers has ordinary generating polynomial

𝑓(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 +⋯+ 𝑎𝑛𝑥𝑛 =
𝑛
∑
𝑘=0

𝑎𝑘𝑥𝑘.

Here, “ordinary” is to distinguish this generating polynomial from other types. Since
we will only be dealing with the ordinary case in this chapter, we will usually drop
the adjective. Note that 𝑓(𝑥) is an element of the algebra ℂ[𝑥] of polynomials in 𝑥

71
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72 3. Counting with Ordinary Generating Functions

with complex coefficients. We will also often call 𝑓(𝑥) the generating function for the
sequence (3.1) since it is a special case of the generating function for a sequence with
a countable, but perhaps not finite, number of terms. This more general setting will be
discussed in Section 3.3.

To begin with a simple example, consider the sequence of binomial coefficients
found in a row of Pascal’s triangle

(𝑛0), (
𝑛
1), (

𝑛
2), . . . , (

𝑛
𝑛).

The corresponding generating function is

𝑓(𝑥) =
𝑛
∑
𝑘=0

(𝑛𝑘)𝑥
𝑘.

In particular, when 𝑛 = 4 we get

𝑓(𝑥) = 1 + 4𝑥 + 6𝑥2 + 4𝑥3 + 𝑥4 = (1 + 𝑥)4.

The power of this generating function is that it can be expressed as a product which
is just the well-known Binomial Theorem. We will give two proofs of this result, one
combinatorial and one using algebraic manipulations.

Theorem 3.1.1 (Binomial Theorem). For 𝑛 ∈ ℕ we have
𝑛
∑
𝑘=0

(𝑛𝑘)𝑥
𝑘 = (1 + 𝑥)𝑛.

Proof (Combinatorial). Consider expanding the product

(1 + 𝑥)𝑛 =
𝑛

⏞⎴⎴⎴⎴⎴⎴⏞⎴⎴⎴⎴⎴⎴⏞(1 + 𝑥)(1 + 𝑥)⋯ (1 + 𝑥)

using the distributive law. One obtains a term 𝑥𝑘 in the expansion by picking the 𝑥 in
𝑘 of the factors and picking the 1 in the remaining 𝑛 − 𝑘. But the number of ways of
choosing 𝑘 objects from 𝑛 objects is (𝑛𝑘). So that is the coefficient of 𝑥

𝑘 in the product
and we are done. □

Proof (Algebraic). Wewill induct on 𝑛. The result is clearly true for 𝑛 = 0 so assume
𝑛 ≥ 1. Note that, because of our conventions for binomial coefficients, we can write
the generating function as

𝑛
∑
𝑘=0

(𝑛𝑘)𝑥
𝑘 =

∞
∑

𝑘=−∞
(𝑛𝑘)𝑥

𝑘.

The advantage of doing this is that we will not have to worry about boundary cases
when 𝑘 = 0 or 𝑘 = 𝑛 and so we will suppress the limits. Now using the binomial
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recursion in Theorem 1.3.3(a), reindexing, and induction

∑
𝑘
(𝑛𝑘)𝑥

𝑘 = ∑
𝑘
(𝑛 − 1
𝑘 − 1)𝑥

𝑘 +∑
𝑘
(𝑛 − 1

𝑘 )𝑥𝑘

= 𝑥∑
𝑘
(𝑛 − 1
𝑘 − 1)𝑥

𝑘−1 +∑
𝑘
(𝑛 − 1

𝑘 )𝑥𝑘

= 𝑥∑
𝑘
(𝑛 − 1

𝑘 )𝑥𝑘 +∑
𝑘
(𝑛 − 1

𝑘 )𝑥𝑘

= 𝑥(1 + 𝑥)𝑛−1 + (1 + 𝑥)𝑛−1

= (1 + 𝑥)𝑛

as desired. □

The first proof illustrates the use of the Product Rule for weight-generating func-
tions which will be discussed in Section 3.4. The second proof is an example of the
point made in the chapter introduction about how proofs involving generating func-
tions can be based on routine manipulations. And the trick of extending the domain of
summation is one which we will often use to simplify demonstrations. We now wish
to give an illustration of how a generating function, once derived, can be used to give
simple proofs of other results. In particular, setting 𝑥 = 1 in the Binomial Theorem we
immediately get

𝑛
∑
𝑘=0

(𝑛𝑘) = (1 + 1)𝑛 = 2𝑛,

which is part (c) of Theorem 1.3.3. Similarly, letting 𝑥 = −1 in Theorem 3.1.1 gives
𝑛
∑
𝑘=0

(−1)𝑘(𝑛𝑘) = (1 − 1)𝑛 = 0𝑛 = 𝛿0,𝑛,

which is Theorem 1.3.3(d).
We end this section by stating the generating function for the Stirling numbers of

the first kind. This result can be proved similarly to the algebraic proof of the Binomial
Theorem so its demonstration will be left as an exercise. Finding a generating func-
tion for the Stirling numbers of the second kind will have to wait until after we have
discussed formal power series in Section 3.3.

Theorem 3.1.2. For 𝑛 ∈ ℕ we have

𝑛
∑
𝑘=0

𝑐(𝑛, 𝑘)𝑥𝑘 = 𝑥(𝑥 + 1)(𝑥 + 2) . . . (𝑥 + 𝑛 − 1). □

Note that by setting 𝑥 = 1 in the previous displayed equation we obtain the special
case

#𝑃([𝑛]) = ∑
𝑘
𝑐(𝑛, 𝑘) = 𝑛! .

The preliminary version made available with permission of the publisher, the American Mathematical Society



74 3. Counting with Ordinary Generating Functions

So this proposition can be considered a generalization of Theorem 1.2.1. Such exten-
sions are called 𝑞-analogues and will be discussed in the next section.

3.2. Statistics and 𝑞-analogues

One way of constructing generating functions is through the use of statistics and 𝑞-
analogues. Because of connections with the theory of hypergeometic series, the vari-
able 𝑞 is usually used for these generating functions. This is a mnemonic choice since
sometimes, as we will see below, 𝑞 stands for the power of a prime 𝑝. There is no for-
mal definition of a 𝑞-analogue, so we will start with an example which will illustrate
the meta-definition we will eventually give.

A statistic on a set 𝑆 is a function st∶ 𝑆 → ℕ. Because the range of a statistic is ℕ
we can define, for finite 𝑆, a corresponding generating polynomial

𝑓(𝑞) = ∑
𝑠∈𝑆

𝑞st 𝑠.

This generating function is sometimes called the distribution of st over 𝑆 because it can
also be written

𝑓(𝑞) = ∑
𝑘≥0

𝑎𝑘𝑞𝑘

where 𝑎𝑘 is the number of 𝑠 ∈ 𝑆 satisfying st 𝑠 = 𝑘 and this parallels the distribution of
a random variable in probability theory. One of the most famous statistics on permu-
tations is the inversion number. A permutation 𝜋 = 𝜋1 . . . 𝜋𝑛 ∈ 𝑃([𝑛]) has inversion
set

Inv𝜋 = {(𝑖, 𝑗) ∣ 𝑖 < 𝑗 and 𝜋𝑖 > 𝜋𝑗}.
One can think of this as the set of pairs of indices where the corresponding elements
of 𝜋 are out of their natural increasing order. Note that one uses pairs of indices rather
than the elements of 𝜋 because this makes it easier to generalize this concept to words
where repetitions are allowed. For example, if 𝜋 = 𝜋1𝜋2𝜋3𝜋4𝜋5 = 41532, then

Inv𝜋 = {(1, 2), (1, 4), (1, 5), (3, 4), (3, 5), (4, 5)}.
The inversion number of 𝜋 is just

inv 𝜋 = # Inv𝜋.
We will often use the convention of beginning functions having to do with sets with
uppercase letters and their corresponding cardinalities with lowercase. Continuing
our example, inv 41532 = 6. Clearly inv∶ 𝑃([𝑛]) → ℕ is a statistic and it has a very
interesting generating polynomial.

Theorem 3.2.1. For 𝑛 ≥ 0 we have
∑

𝜋∈𝑃([𝑛])
𝑞inv𝜋 = (1)(1 + 𝑞)(1 + 𝑞 + 𝑞2)⋯ (1 + 𝑞 + 𝑞2 +⋯+ 𝑞𝑛−1).

Proof. We will induct on 𝑛, omitting the trivial base case. Every 𝜋 ∈ 𝑃([𝑛]) can be
obtained uniquely from a 𝜎 ∈ 𝑃([𝑛−1]) by inserting 𝑛 into one of the 𝑛 spaces between
the elements of 𝜎 (including the space before 𝜎1 and the space after 𝜎𝑛−1). Let 𝜎𝑖 be
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the result of placing 𝑛 in the 𝑖th space from the right where the space after 𝜎𝑛−1 is
considered space zero. Then clearly

inv 𝜎𝑖 = 𝑖 + inv 𝜎.
Using this equation and induction we see that

∑
𝜋∈𝑃([𝑛])

𝑞inv𝜋 = ∑
𝜍∈𝑃([𝑛−1])

𝑛−1
∑
𝑖=0

𝑞inv𝜍𝑖

= ∑
𝜍∈𝑃([𝑛−1])

𝑞inv𝜍 ⋅
𝑛−1
∑
𝑖=0

𝑞𝑖

= (1 + 𝑞)(1 + 𝑞 + 𝑞2)⋯ (1 + 𝑞 + 𝑞2 +⋯+ 𝑞𝑛−1)
as we wished to prove. □

Note that by plugging 𝑞 = 1 into this result one obtains
#𝑃([𝑛]) = ∑

𝜋∈𝑃([𝑛])
1 = 𝑛! ,

which is the second statement in Theorem 1.2.1.
Now that we have met some 𝑞-analogues (although they have not been named as

such), their meta-definition shouldmakemore sense. A 𝑞-analogue of a combinatorial
object 𝒪 is an object 𝒪(𝑞) such that

lim
𝑞→1

𝒪(𝑞) = 𝒪.

Note that 𝒪 could be many things: a number, a definition, or a theorem. For example,
one of the standard 𝑞-analogues of 𝑛 ∈ ℕ is the polynomial

(3.2) [𝑛]𝑞 = 1 + 𝑞 + 𝑞2 +⋯+ 𝑞𝑛−1.
Clearly [𝑛]1 = 𝑛. Another possible 𝑞-analogue of 𝑛 is the rational function (1 − 𝑞𝑛)/
(1 − 𝑞). In this case one cannot just substitute 𝑞 = 1 but must take a limit. Of course,
this quotient and [𝑛]𝑞 are equal when 𝑞 ≠ 1. Another 𝑞-analogue is the 𝑞-factorial

[𝑛]𝑞! = [1]𝑞[2]𝑞 . . . [𝑛]𝑞.
So Theorem 3.2.1 can be restated as

∑
𝜋∈𝑃([𝑛])

𝑞inv𝜋 = [𝑛]𝑞! .

Note that we will sometimes write [𝑛]𝑞 as just [𝑛]. This could cause confusion with the
use of [𝑛] as a set, so we will only use this simplification if it is clear which of the two
possible meanings is meant. Similarly, we will often drop the 𝑞 subscript from other
𝑞-analogues when convenient.

There is another famous statistic which has [𝑛]𝑞! as its distribution. The descent
set of 𝜋 ∈ 𝑃([𝑛]) is
(3.3) Des𝜋 = {𝑖 ∣ 𝜋𝑖 > 𝜋𝑖+1}
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with corresponding descent number des 𝜋 = #Des𝜋. Equivalently 𝑖 ∈ Des 𝜋 if and
only if (𝑖, 𝑖+1) ∈ Inv𝜋. We also define the ascent set, Asc𝜋, and ascent number, asc 𝜋,
analogously by reversing the inequality in definition (3.3). Using our previous example
we have Des 41532 = {1, 3, 4} and des 41532 = 3. Themajor index of 𝜋 is

maj 𝜋 = ∑
𝑖∈Des𝜋

𝑖.

So maj 41532 = 1 + 3 + 4 = 8. The term “major index” was coined by Dominique
Foata [26] in honor of Percy MacMahon who first studied this statistic [61] and was a
major in the British army.

Theorem 3.2.2. For 𝑛 ≥ 0 we have
∑

𝜋∈𝑃([𝑛])
𝑞maj𝜋 = [𝑛]𝑞! .

Proof. We start as in the proof of Theorem 3.2.1 but now number the spaces of 𝜎
differently. First number the spaces between 𝜎𝑖 and 𝜎𝑖+1 where 𝑖 is a descent, as
well as the space after 𝜎𝑛−1, from right to left starting with zero. Now number the
remaining spaces, including the one before 𝜎1, from left to right with the numbers
des 𝜎 + 1, des 𝜎 + 2, . . . , 𝑛 − 1. An example follows this proof.

Let 𝜎(𝑗) denote the result of placing 𝑛 in space 𝑗 with this maj labeling. We claim
that

(3.4) maj 𝜎(𝑗) = 𝑗 +maj 𝜎.
Indeed, if space 𝑗 is in a descent or at the end of 𝜎, then inserting 𝑛 just moves the 𝑗
descents to the right of and including the given descent one position to the right. By
definition of major index, this adds a total of 𝑗 tomaj 𝜎. If space 𝑗 is in an ascent or at
the beginning of 𝜎, then inserting 𝑛 creates a new descent as well as moving descents
to the right of the space one position to the right. It is easy to check for these 𝑗 that
if inserting 𝑛 in space 𝑗 caused maj 𝜎 to increase by 𝑗, then inserting 𝑛 in place 𝑗 + 1
increases maj 𝜎 by 𝑗 + 1. So, by induction, equation (3.4) continues to hold in this
range of 𝑗. The completion of the proof is now done exactly as in the demonstration of
Theorem 3.2.1. □

Continuing on with 𝜎 = 41532 having maj 𝜎 = 8, the spaces are labeled using
subscripts as follows:

44315523120.
Inserting 6 into each space in turn gives

𝑗 0 1 2 3 4 5

𝜎(𝑗) 415326 415362 415632 461532 641532 416532

maj 𝜎(𝑗) 8 9 10 11 12 13

It turns out that there are many permutation statistics whose distribution is [𝑛]𝑞!
and these statistics were dubbed Mahonian by Foata. One can consult the article of
Babson and Steingrímsson [3] for a list of Mahonian statistics.
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Having found 𝑞-analogues involving permutations, the reader may suspect that
they also exist for combinations. For integers 0 ≤ 𝑘 ≤ 𝑛, define the 𝑞-binomial coeffi-
cients or Gaussian polynomials to be

[ 𝑛
𝑘 ]

𝑞
=

[𝑛]𝑞!
[𝑘]𝑞! [𝑛 − 𝑘]𝑞!

.

As usual, we let this function be zero if 𝑘 < 0 or 𝑘 > 𝑛. For example

[ 4
2 ] = [4]!

[2]! [2]!

= [4][3]
[2][1]

= (1 + 𝑞 + 𝑞2 + 𝑞3)(1 + 𝑞 + 𝑞2)
(1 + 𝑞)

= 1 + 𝑞 + 2𝑞2 + 𝑞3 + 𝑞4.(3.5)

It is not at all clear from the definition just given that this is actually a polynomial in
𝑞 rather than just a rational function. But this follows easily using induction and our
next result. Note that this theorem gives two 𝑞-analogues for the ordinary binomial re-
cursion. This illustrates a general principle that 𝑞-analogues are not necessarily unique
as we have also seen in the inv and maj interpretations of [𝑛]𝑞!.

Theorem 3.2.3. We have
[ 0
𝑘 ]

𝑞
= 𝛿0,𝑘

and, for 𝑛 ≥ 1,

[ 𝑛
𝑘 ]

𝑞
= 𝑞𝑘 [ 𝑛 − 1

𝑘 ]
𝑞
+ [ 𝑛 − 1

𝑘 − 1 ]
𝑞

= [ 𝑛 − 1
𝑘 ]

𝑞
+ 𝑞𝑛−𝑘 [ 𝑛 − 1

𝑘 − 1 ]
𝑞
.

Proof. The initial condition is trivial. We will prove the first recursion for the 𝑞-
binomial, leaving the other as an exercise. Using the definition in terms of 𝑞-factorials
and finding a common denominator gives

𝑞𝑘 [ 𝑛 − 1
𝑘 ] + [ 𝑛 − 1

𝑘 − 1 ] = [𝑛 − 1]!
[𝑘]! [𝑛 − 𝑘]! (𝑞

𝑘[𝑛 − 𝑘] + [𝑘])

= [𝑛 − 1]!
[𝑘]! [𝑛 − 𝑘]! ⋅ [𝑛]

= [ 𝑛
𝑘 ]

as desired. □
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Figure 3.1. The Young diagrams for (5, 5, 2, 1) ⊇ (3, 2, 2)

We will now give a 𝑞-analogue of the Binomial Theorem (Theorem 3.1.1). Let 𝑞, 𝑡
be two variables.

Theorem 3.2.4. For 𝑛 ≥ 0 we have

(3.6) (1 + 𝑡)(1 + 𝑞𝑡)(1 + 𝑞2𝑡)⋯ (1 + 𝑞𝑛−1𝑡) =
𝑛
∑
𝑘=0

𝑞(𝑘2) [ 𝑛
𝑘 ]

𝑞
𝑡𝑘.

Proof. We will induct on 𝑛 where the case 𝑛 = 0 is easy to check. For 𝑛 > 0 we can
use the second recursion in the previous result and the induction hypothesis to write

∑
𝑘
𝑞(𝑘2) [ 𝑛

𝑘 ]
𝑞
𝑡𝑘 = ∑

𝑘
𝑞(𝑘2) [ 𝑛 − 1

𝑘 ]
𝑞
𝑡𝑘 +∑

𝑘
𝑞(𝑘2)+𝑛−𝑘 [ 𝑛 − 1

𝑘 − 1 ]
𝑞
𝑡𝑘

= (1 + 𝑡)(1 + 𝑞𝑡)⋯ (1 + 𝑞𝑛−2𝑡) + 𝑞𝑛−1𝑡∑
𝑘
𝑞(𝑘−12 ) [ 𝑛 − 1

𝑘 − 1 ]
𝑞
𝑡𝑘−1

= (1 + 𝑡)(1 + 𝑞𝑡)⋯ (1 + 𝑞𝑛−2𝑡) + 𝑞𝑛−1𝑡(1 + 𝑡)(1 + 𝑞𝑡)⋯ (1 + 𝑞𝑛−2𝑡)

= (1 + 𝑡)(1 + 𝑞𝑡)⋯ (1 + 𝑞𝑛−1𝑡),
which is what we wished to prove. □

There are many combinatorial interpretations of the 𝑞-binomial coefficients. We
will content ourselves with presenting two of them here. If 𝜆 = (𝜆1, . . . , 𝜆𝑘) and 𝜇 =
(𝜇1, . . . , 𝜇𝑙) are integer partitions, then we say that 𝜆 contains 𝜇, written 𝜆 ⊇ 𝜇, if 𝑘 ≥ 𝑙
and 𝜆𝑖 ≥ 𝜇𝑖 for 𝑖 ≤ 𝑙. Equivalently, the Young diagram of 𝜆 contains the Young diagram
of 𝜇 if they are placed so that their northwest corners align. As an example, (5, 5, 2, 1) ⊇
(3, 2, 2) and Figure 3.1 shows the diagram of 𝜆with the squares of 𝜇 shaded inside. The
notation𝜇 ⊆ 𝜆 should be self-explanatory. Given𝜇 ⊆ 𝜆, one also has the corresponding
skew partition
(3.7) 𝜆/𝜇 = {(𝑖, 𝑗) ∈ 𝜆 ∣ (𝑖, 𝑗) ∉ 𝜇}.
The cells of the skew partition in Figure 3.1 are white.
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The 𝑘× 𝑙 rectangle is the integer partition whose multiplicity notation is (𝑘𝑙). Con-
sider the set of partitions contained in this rectangle

ℛ(𝑘, 𝑙) = {𝜆 ∣ 𝜆 ⊆ (𝑘𝑙)}.

Recalling that |𝜆| is the sum of the parts of 𝜆, we consider the generating function
∑𝜆∈ℛ(𝑘,𝑙) 𝑞|𝜆|. For example, if 𝑘 = 𝑙 = 2, then we have

𝜆 ⊆ (22) ∅ (1) (2) (12) (2, 1) (22)
𝑞|𝜆| 1 𝑞 𝑞2 𝑞2 𝑞3 𝑞4 ,

which gives
∑

𝜆∈ℛ(2,2)
𝑞|𝜆| = 1 + 𝑞 + 2𝑞2 + 𝑞3 + 𝑞4.

The reader will have noticed the similarity to (3.5), which is not an accident.

Theorem 3.2.5. For 𝑘, 𝑙 ≥ 0 we have

∑
𝜆∈ℛ(𝑘,𝑙)

𝑞|𝜆| = [ 𝑘 + 𝑙
𝑘 ]

𝑞
.

Proof. We induct on 𝑘 where the case 𝑘 = 0 is left to the reader. If 𝑘 > 0 and 𝜆 ⊆ (𝑘𝑙),
then there are two possibilities. Either 𝜆1 < 𝑘 in which case 𝜆 ⊆ ((𝑘 − 1)𝑙) or 𝜆1 = 𝑘
so that 𝜆 can be written as 𝜆 = (𝑘, 𝜆′) where 𝜆′ is the partition containing the parts of
𝜆 other than 𝜆1. So 𝜆′ ⊆ (𝑘𝑙−1). Notice that in this case |𝜆| = |𝜆′| + 𝑘. We now use
induction and Theorem 3.2.3 to obtain

∑
𝜆∈ℛ(𝑘,𝑙)

𝑞|𝜆| = ∑
𝜆∈ℛ(𝑘−1,𝑙)

𝑞|𝜆| + ∑
𝜆′∈ℛ(𝑘,𝑙−1)

𝑞|𝜆′|+𝑘

= [ 𝑘 + 𝑙 − 1
𝑘 − 1 ] + 𝑞𝑘 [ 𝑘 + 𝑙 − 1

𝑘 ]

= [ 𝑘 + 𝑙
𝑘 ] ,

which finishes the proof. □

For our second combinatorial interpretation of the Gaussian polynomials we will
need some linear algebra. Let 𝑞 be a prime power and let 𝔽𝑞 be the Galois field with 𝑞
elements. Let 𝑉 be a vector space of dimension dim𝑉 = 𝑛 over 𝔽𝑞. We will use𝑊 ≤ 𝑉
to indicate that𝑊 is a subspace of 𝑉 . Let

[ 𝑉
𝑘 ] = {𝑊 ≤ 𝑉 ∣ dim𝑊 = 𝑘}.

The subspaces of dimension 𝑘 are in bijective correspondence with 𝑘 × 𝑛 row-reduced
echelon matrices of full rank, that is, with no zero rows. For example, if 𝑛 = 4 and
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𝑘 = 2, then the possible matrices are

[ 0 0 1 0
0 0 0 1 ] , [ 0 1 ∗ 0

0 0 0 1 ] , [ 0 1 0 ∗
0 0 1 ∗ ] ,

[ 1 ∗ ∗ 0
0 0 0 1 ] , [ 1 ∗ 0 ∗

0 0 1 ∗ ] , [ 1 0 ∗ ∗
0 1 ∗ ∗ ] ,

where the stars represent arbitrary elements of 𝔽𝑞. So the number of subspaces corre-
sponding to one of these star diagrams is 𝑞𝑠 where 𝑠 is the number of stars. Thus

#[ 𝔽4𝑞
2 ] = 1 + 𝑞 + 2𝑞2 + 𝑞3 + 𝑞4,

which should look very familiar at this point! Note however that, in contrast to previ-
ous cases, this actually represents an integer rather than a polynomial since 𝑞 is a prime
power. Of course, this example generalizes. Because of this result people sometimes
talk half-jokingly about sets being vector spaces over the (nonexistent) Galois fieldwith
one element.

Theorem 3.2.6. If 𝑉 is a vector space over 𝔽𝑞 of dimension 𝑛, then

#[ 𝑉
𝑘 ] = [ 𝑛

𝑘 ]
𝑞
.

Proof. Given𝑊 ≤ 𝑉 with dim𝑊 = 𝑘, we first count the number of possible ordered
bases (𝐯1, 𝐯2, . . . , 𝐯𝑘) for𝑊 . Note that since dim𝑉 = 𝑛 we have #𝑉 = #𝔽𝑛𝑞 = 𝑞𝑛. We
can pick any nonzero vector for 𝐯1 so the number of choices is 𝑞𝑛 − 1. For 𝐯2 we can
choose any vector in 𝑉 which is not in the span of 𝐯1, which gives 𝑞𝑛 − 𝑞 possibilities.
Continuing in this way, the total count will be

(𝑞𝑛 − 1)(𝑞𝑛 − 𝑞)(𝑞𝑛 − 𝑞2) . . . (𝑞𝑛 − 𝑞𝑘−1).

By a similar argument, the number of different ordered bases which span a given𝑊 of
dimension 𝑘 is

(𝑞𝑘 − 1)(𝑞𝑘 − 𝑞)(𝑞𝑘 − 𝑞2) . . . (𝑞𝑘 − 𝑞𝑘−1).
So the number of possible𝑊 ’s is

(𝑞𝑛 − 1)(𝑞𝑛 − 𝑞) . . . (𝑞𝑛 − 𝑞𝑘−1)
(𝑞𝑘 − 1)(𝑞𝑘 − 𝑞) . . . (𝑞𝑘 − 𝑞𝑘−1) =

𝑞(𝑘2)(𝑞𝑛 − 1)(𝑞𝑛−1 − 1) . . . (𝑞𝑛−𝑘+1 − 1)
𝑞(𝑘2)(𝑞𝑘 − 1)(𝑞𝑘−1 − 1) . . . (𝑞 − 1)

= (𝑞 − 1)𝑘[𝑛][𝑛 − 1] . . . [𝑛 − 𝑘 + 1]
(𝑞 − 1)𝑘[𝑘][𝑘 − 1] . . . [1]

= [ 𝑛
𝑘 ] ,

as advertised. □
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There is a beautiful proof of this result due to Knuth [50] using row-reduced eche-
lon matrices as in the previous example. The reader will be asked to supply the details
in the exercises.

3.3. The algebra of formal power series

We now wish to generalize the concept of generating function from finite to count-
ably infinite sequences. To do so, we will have to use power series. But we wish to
avoid the questions of convergence which come up when using analytic power series.
Instead, we will work in the algebra of formal power series. This will mean that we
have to be careful since, in an algebra, one is only permitted to apply an operation like
addition or multiplication a finite number of times. But there is another concept of
convergence which will take care of this issue. We should note that there is a whole
branch of combinatorics which uses analytic techniques to extract useful information
about a sequence, such as its rate of growth, from the corresponding power series. For
information about this approach, see the book of Flajolet and Sedgewick [25].

A formal power series is an expression of the form

𝑓(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 +⋯ =
∞
∑
𝑛=0

𝑎𝑛𝑥𝑛,

where the 𝑎𝑛 are complex numbers. We also say that 𝑓(𝑥) is the ordinary generating
function or ogf for the sequence 𝑎𝑛, 𝑛 ≥ 0. Often we will leave out the adjective “ordi-
nary” in this chapter since we will not have met any other type of generating function
yet.

Note that these series are considered formal in the sense that the powers of 𝑥 are
just place holders and we are not permitted to substitute a value for 𝑥. Because of this
rule, analytic convergence is not an issue and we can happily talk about formal power
series such as ∑𝑛≥0 𝑛! 𝑥𝑛 which converge nowhere except at 𝑥 = 0. We will use the
notation

ℂ[[𝑥]] = {∑
𝑛≥0

𝑎𝑛𝑥𝑛 ∣ 𝑎𝑛 ∈ ℂ for all 𝑛 ≥ 0} .

The set is an algebra, the algebra of formal power series, under the three operations of
addition, scalar multiplication, and multiplication defined by

∑
𝑛≥0

𝑎𝑛𝑥𝑛 + ∑
𝑛≥0

𝑏𝑛𝑥𝑛 = ∑
𝑛≥0

(𝑎𝑛 + 𝑏𝑛)𝑥𝑛,

𝑐 ∑
𝑛≥0

𝑎𝑛𝑥𝑛 = ∑
𝑛≥0

(𝑐𝑎𝑛)𝑥𝑛,

∑
𝑛≥0

𝑎𝑛𝑥𝑛 ⋅ ∑
𝑛≥0

𝑏𝑛𝑥𝑛 = ∑
𝑛≥0

𝑐𝑛𝑥𝑛,

where 𝑐 ∈ ℂ and

𝑐𝑛 =
𝑛
∑
𝑘=0

𝑎𝑘𝑏𝑛−𝑘.
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The reader may object that, as mentioned earlier, in an algebra one is only permit-
ted a finite number of additions yet the very elements of ℂ[[𝑥]] seem to involve infin-
itely many. But this is an illusion. Remember that 𝑥 is a formal parameter so that the
expression∑𝑛 𝑎𝑛𝑥𝑛 is onlymeant to be amnemonic devicewhich gives intuition to the
definitions of the three algebra operations, especially that of multiplication. We could
just as easily have defined ℂ[[𝑥]] to be the set of all complex vectors (𝑎0, 𝑎1, 𝑎2, . . . )
subject to the operation of vector addition

(𝑎0, 𝑎1, 𝑎2, . . . ) + (𝑏0, 𝑏1, 𝑏2, . . . ) = (𝑎0 + 𝑏0, 𝑎1 + 𝑏1, 𝑎2 + 𝑏2, . . . )

and similarly for the other two. What is true is that one is only permitted to add or
multiply a finite number of elements of ℂ[[𝑥]]. So one can only perform operations
which will alter the coefficient of a given power of 𝑥 a finite number of times.

Now given a sequence of complex numbers 𝑎0, 𝑎1, 𝑎2, . . . , we associate with it the
ordinary generating function

𝑓(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 +⋯ ∈ ℂ[[𝑥]].

Wewill sometimes say that this series counts the objects enumerated by the 𝑎𝑛 if appro-
priate. As with generating polynomials, the reason for doing so is to exploit properties
of ℂ[[𝑥]] to obtain information about the original sequence. We will often write this
generating function as∑𝑛 𝑎𝑛𝑥𝑛, assuming the that range of indices is 𝑛 ≥ 0.

Let us start with a simple example. Consider the sequence 1, 1, 1, . . . with generat-
ing function∑𝑛 𝑥𝑛. We would like to simplify this as a geometric series to

(3.8) 1 + 𝑥 + 𝑥2 +⋯ = 1
1 − 𝑥 .

But what does the right-hand side even mean since 1/(1 − 𝑥) appears to be a rational
function and so not an element of ℂ[[𝑥]]? The way out of this conundrum is to re-
member that given an element 𝑎 in an algebra 𝐴, it is possible for 𝑎 to have an inverse,
namely an element 𝑎−1 such that 𝑎 ⋅ 𝑎−1 = 1 where 1 is the identity element of 𝐴. So
to prove (3.8) in this setting we must show that∑𝑛 𝑥𝑛 and 1 − 𝑥 are inverses. This is
easily done by using the distributive law:

(1 − 𝑥)(1 + 𝑥 + 𝑥2 +⋯) = (1 + 𝑥 + 𝑥2 +⋯) − 𝑥(1 + 𝑥 + 𝑥2 +⋯)
= (1 + 𝑥 + 𝑥2 +⋯) − (𝑥 + 𝑥2 + 𝑥3 +⋯)
= 1.

This example illustrates a general principle that often well-known results about
analytic power series carry over to their formal counterparts, although someworkmay
be required to check that this is true. For the most part, we will assume the truth of a
standard formula in this setting without further comment. But it would be wise to also
give a couple of examples to show that caution may be needed. One illustration is that
the expression 1/𝑥 has no meaning in ℂ[[𝑥]] because 𝑥 does not have an inverse. For
suppose we have 𝑥𝑓(𝑥) = 1 for some formal power series 𝑓(𝑥). Then on the left-hand
side the constant coefficient is 0 while on the right it is 1, a contradiction.
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As another example, consider the sequence 1/𝑛! for 𝑛 ≥ 0. We would like to write

𝑒𝑥 = ∑
𝑛≥0

𝑥𝑛
𝑛!

for the corresponding generating function but, again, run into the problem that 𝑒𝑥 is
not a priori an element of ℂ[[𝑥]]. The solution this time is to define 𝑒𝑥 to be a formal
symbol which stands for this power series. Then, of course, to be complete we would
need to verify formally that all the usual rules of exponents hold such as 𝑒2𝑥 = (𝑒𝑥)2.
We will not take the time to do this. But we will point out a case where the rules do not
hold. In particular, in ℂ[[𝑥]] one cannot write

𝑒1+𝑥 = 𝑒𝑒𝑥.
This is because the left-hand side is not well-defined. Indeed, when expanding
∑𝑛(1+𝑥)𝑛/𝑛! there are infinitely many additions needed to compute the coefficient of
any given power of 𝑥 which, as we have already noted, is not permitted.

Althoughwewill not verify every specific analytic identity needed for formal power
series in this text, it would be good to have some general results about which operations
are permitted in ℂ[[𝑥]]. First we deal with the issue of when a formal power series is
invertible.

Theorem 3.3.1. If 𝑓(𝑥) = ∑𝑛 𝑎𝑛𝑥𝑛, then 𝑓(𝑥)−1 exists in ℂ[[𝑥]] if and only if 𝑎0 ≠ 0.

Proof. For the forward direction, suppose 𝑓(𝑥)𝑔(𝑥) = 1 where 𝑔(𝑥) = ∑𝑛 𝑏𝑛𝑥𝑛. Tak-
ing the constant coefficient on both sides gives 𝑎0𝑏0 = 1. So 𝑎0 ≠ 0.

Now assume 𝑎0 ≠ 0. We will construct an inverse 𝑔(𝑥) = ∑𝑛 𝑏𝑛𝑥𝑛. We want
𝑓(𝑥)𝑔(𝑥) = 1. Comparing coefficients of 𝑥𝑛 on both sides we see that we wish to have
𝑎0𝑏0 = 1 and, for 𝑛 ≥ 1,

𝑎0𝑏𝑛 + 𝑎1𝑏𝑛−1 +⋯+ 𝑎𝑛𝑏0 = 0.
Since 𝑎0 ≠ 0 we can take 𝑏0 = 1/𝑎0. By the same token, when 𝑛 ≥ 1 we can solve for
𝑏𝑛 in the previous displayed equation giving a recursive formula for its value. Thus we
can construct such a 𝑔(𝑥) and are done. □

Our example with 𝑒𝑥 shows that we also need to be careful about substitution. We
wish to define the substitution of 𝑔(𝑥) into 𝑓(𝑥) = ∑𝑛 𝑎𝑛𝑥𝑛 to be

𝑓(𝑔(𝑥)) = ∑
𝑛≥0

𝑎𝑛𝑔(𝑥)𝑛.

But now the right-hand side is an infinite sum of formal power series, not just formal
variables. To be able to talk about such sums, we need to introduce a notion of conver-
gence in ℂ[[𝑥]].

It will be convenient to have the notation that for a formal power series 𝑓(𝑥)
[𝑥𝑛]𝑓(𝑥) = the coefficient of 𝑥𝑛 in 𝑓(𝑥),

which we have usually been calling 𝑎𝑛. Suppose that we have a sequence 𝑓0(𝑥), 𝑓1(𝑥),
𝑓2(𝑥), . . . of formal power series. We say that this sequence converges to 𝑓(𝑥) ∈ ℂ[[𝑥]]
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and write
lim
𝑘→∞

𝑓𝑘(𝑥) = 𝑓(𝑥),

if, for any 𝑛, the coefficient of 𝑥𝑛 in the sequence is eventually constant and equals the
coefficient of 𝑥𝑛 in 𝑓(𝑥). Formally, given 𝑛, there exists a corresponding 𝐾 such that
[𝑥𝑛]𝑓𝑘(𝑥) = [𝑥𝑛]𝑓(𝑥) for all 𝑘 ≥ 𝐾. Otherwise we say that the sequence diverges or
that the limit does not exist.

As an illustration, consider the sequence

𝑓0(𝑥) = 1, 𝑓1(𝑥) = 1 + 𝑥, 𝑓2(𝑥) = 1 + 𝑥 + 𝑥2, . . .

so that 𝑓𝑘(𝑥) = 1 + 𝑥 +⋯+ 𝑥𝑘. Then this sequence has a limit; namely

lim
𝑘→∞

𝑓𝑘(𝑥) = ∑
𝑛≥0

𝑥𝑛 = 1
1 − 𝑥 .

To prove this, note that given 𝑛 we can let 𝐾 = 𝑛. So for 𝑘 ≥ 𝑛 we have [𝑥𝑛]𝑓𝑘 =
[𝑥𝑛]𝑓𝑛 = 1. On the other hand, consider the sequence

𝑓0(𝑥) = 1 + 𝑥, 𝑓1(𝑥) = 1/2 + 𝑥/2, 𝑓2(𝑥) = 1/4 + 𝑥/4, . . .

and in general 𝑓𝑘(𝑥) = 1/2𝑘 + 𝑥/2𝑘. This sequence does not converge in ℂ[[𝑥]] since
for any 𝑛we have that [𝑥]𝑓𝑘(𝑥) is always different for different 𝑘. This is in contrast to
the analytic situation where this sequence converges to zero.

As in analysis, we now use convergence of sequences to define convergence of
series. Given 𝑓0(𝑥), 𝑓1(𝑥), 𝑓2(𝑥), . . . , we say that their sum exists and converges to 𝑓(𝑥),
written∑𝑘≥0 𝑓𝑘(𝑥) = 𝑓(𝑥), if

lim
𝑘→∞

𝑠𝑘(𝑥) = 𝑓(𝑥)

where

(3.9) 𝑠𝑘(𝑥) = 𝑓0(𝑥) + 𝑓1(𝑥) +⋯+ 𝑓𝑘(𝑥)

is the 𝑘th partial sum. Divergence is defined as expected. Note that this definition
is consistent with our notation for formal power series since given a sequence 𝑎0, 𝑎1,
𝑎2, . . . , we can let 𝑓𝑘(𝑥) = 𝑎𝑘𝑥𝑘 and then prove that∑𝑘≥0 𝑓𝑘(𝑥) = 𝑓(𝑥) where 𝑓(𝑥) =
∑𝑘≥0 𝑎𝑘𝑥𝑘.

To state a criterion for convergence of series, it will be useful to define theminimum
degree of 𝑓(𝑥) = ∑𝑛 𝑎𝑛𝑥𝑛 to be

mdeg𝑓(𝑥) = smallest 𝑛 such that 𝑎𝑛 ≠ 0

if 𝑓(𝑥) ≠ 0, and let mdeg𝑓(𝑥) = ∞ if 𝑓(𝑥) = 0. It turns out that to show a sum of
power series converges, it suffices to take a limit of integers.

Theorem 3.3.2. Given 𝑓0(𝑥), 𝑓1(𝑥), 𝑓2(𝑥), . . . ∈ ℂ[[𝑥]], then ∑𝑘≥0 𝑓𝑘(𝑥) exists if and
only if

lim
𝑘→∞

(mdeg 𝑓𝑘(𝑥)) = ∞.
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Proof. We will prove the forward direction, leaving the other implication as an exer-
cise. We are given that the sequence 𝑠𝑘(𝑥) as defined by (3.9) converges. So given 𝑛,
there is a 𝐾 such that

[𝑥𝑛]𝑠𝐾(𝑥) = [𝑥𝑛]𝑠𝐾+1(𝑥) = [𝑥𝑛]𝑠𝐾+2(𝑥) = ⋯ .
But for 𝑗 ≥ 0 we have

𝑠𝐾+𝑗(𝑥) = 𝑠𝐾(𝑥) + 𝑓𝐾+1(𝑥) + 𝑓𝐾+2(𝑥) +⋯+ 𝑓𝐾+𝑗(𝑥).
It follows that [𝑥𝑛]𝑓𝑘(𝑥) = 0 for 𝑘 > 𝐾. Now given 𝑛, take 𝑁 to be the maximum of all
the 𝐾-values associated to integers less than or equal to 𝑛. From what we have shown,
this forcesmdeg𝑓𝑘(𝑥) > 𝑛 for 𝑛 > 𝑁. But by definition of a limit of real numbers, this
means lim𝑘→∞(mdeg 𝑓𝑘(𝑥)) = ∞. □

We are now on a firm footing with our definition of substitution as we know what
it means for a sum of power series to converge. We can use the previous result to give
a simple criterion for convergence when substituting one generating function into an-
other.
Theorem 3.3.3. Given 𝑓(𝑥), 𝑔(𝑥) ∈ ℂ[[𝑥]], then the composition 𝑓(𝑔(𝑥)) exists if and
only if

(1) 𝑓(𝑥) is a polynomial or
(2) 𝑔(𝑥) has zero constant term.

Proof. If 𝑓(𝑥) is a polynomial, then 𝑓(𝑔(𝑥)) is a finite sum and so obviously converges.
So assume 𝑓(𝑥) = ∑𝑛 𝑎𝑛𝑥𝑛 is not polynomial.

If 𝑔(𝑥) has no constant term, we havemdeg 𝑎𝑛𝑔(𝑥)𝑛 ≥ 𝑛. So the limit in the previ-
ous theorem is infinity and 𝑓(𝑔(𝑥)) is well-defined.

To finish the proof, consider the remaining case where [𝑥0]𝑔(𝑥) ≠ 0. Since 𝑓(𝑥)
is not a polynomial, there are an infinite number of 𝑛 such that 𝑎𝑛 ≠ 0. But for these
𝑛 we havemdeg 𝑎𝑛𝑔(𝑥)𝑛 = 0. So the desired limit cannot be infinity and 𝑓(𝑔(𝑥)) does
not exist in ℂ[[𝑥]]. □

We will also find it useful to consider certain infinite products. We approach their
convergence just as we did for infinite sums. Given a sequence 𝑓0(𝑥), 𝑓1(𝑥), 𝑓2(𝑥), . . . ,
we say that their product exists and converges to 𝑓(𝑥), written∏𝑘≥0 𝑓𝑘(𝑥) = 𝑓(𝑥), if

lim
𝑘→∞

𝑝𝑘(𝑥) = 𝑓(𝑥)

where
𝑝𝑘(𝑥) = 𝑓0(𝑥)𝑓1(𝑥) . . . 𝑓𝑘(𝑥).

We have the following result whose proof is similar enough to that of Theorem 3.3.2
that we will leave it to the reader.
Theorem3.3.4. Let𝑓0(𝑥), 𝑓1(𝑥), 𝑓2(𝑥), . . . be power serieswith zero constant terms. Then
∏𝑘≥0(1 + 𝑓𝑘(𝑥)) exists if and only if

lim
𝑘→∞

(mdeg 𝑓𝑘(𝑥)) = ∞. □
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Let us end this section by showing how the previous result can give simple ver-
ifications that a product does or does not exist. Consider∏𝑘≥1(1 + 𝑥𝑘). In this case
𝑓𝑘(𝑥) = 𝑥𝑘 andmdeg 𝑥𝑘 = 𝑘. So the desired limit is infinity and this product exists. As
we will see in Section 3.5, it counts integer partitions with distinct parts. By contrast,
the product∏𝑘≥0(1 + 𝑥/2𝑘) does not converge sincemdeg 𝑥/2𝑘 = 1.

3.4. The Sum and Product Rules for ogfs

Just as for sets there is a SumRule and aProductRule for ordinary generating functions.
In order to state these results, we need the idea of a weight-generating function. This
approach makes it possible to construct generating functions for various sequences in
a very combinatorial manner. As a first application, we make a more deep exploration
of the Binomial Theorem.

Let 𝑆 be a set. Then a weighting of 𝑆 is a function wt∶ 𝑆 → ℂ[[𝑥]]. Most often if
𝑠 ∈ 𝑆, then wt 𝑠 will just be a monomial reflecting some property of 𝑠. For example, if
st is any statistic on 𝑆, then we could take wt 𝑠 = 𝑥st 𝑠. For a more concrete illustration
whichwewill continue to use throughout this section, let 𝑆 = 2[𝑛] and define for 𝑇 ∈ 𝑆
(3.10) wt𝑇 = 𝑥|𝑇|.
Given a weighted set 𝑆, we can form the corresponding weight-generating function

𝑓(𝑥) = 𝑓𝑆(𝑥) = ∑
𝑠∈𝑆

wt 𝑠.

Wemust be careful that this sum exists in ℂ[[𝑥]], and if it does, then we say 𝑆 is a sum-
mable set. Of course, when 𝑆 is finite then it is automatically summable. To illustrate
for 𝑆 = 2[3] we have

𝑇 ∅ {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}

wt 𝑇 1 𝑥 𝑥 𝑥 𝑥2 𝑥2 𝑥2 𝑥3

so that
𝑓𝑆(𝑥) = 1 + 3𝑥 + 3𝑥2 + 𝑥3.

More generally, for 𝑆 = 2[𝑛] we have
𝑓𝑆(𝑥) = ∑

𝑇∈2[𝑛]
𝑥|𝑇|

=
𝑛
∑
𝑘=0

∑
𝑇∈([𝑛]𝑘 )

𝑥𝑘

=
𝑛
∑
𝑘=0

(𝑛𝑘)𝑥
𝑘

and we have recovered the generating function for a row of Pascal’s triangle.
The following theorem will permit us to manipulate weight-generating functions

with ease. For the SumRule, if 𝑆, 𝑇 are disjoint weighted sets, thenweweight 𝑢 ∈ 𝑆⊎𝑇
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using 𝑢’s weight in 𝑆 or in 𝑇 depending on whether 𝑢 ∈ 𝑆 or 𝑢 ∈ 𝑇, respectively. For
arbitrary 𝑆, 𝑇 we weight 𝑆 × 𝑇 by letting

wt(𝑠, 𝑡) = wt 𝑠 ⋅ wt 𝑡.

Lemma 3.4.1. Let 𝑆, 𝑇 be summable sets.
(a) (Sum Rule) The set 𝑆 ∪ 𝑇 is summable. If 𝑆 ∩ 𝑇 = ∅, then

𝑓𝑆⊎𝑇(𝑥) = 𝑓𝑆(𝑥) + 𝑓𝑇(𝑥).
(b) (Product Rule) The set 𝑆 × 𝑇 is summable and

𝑓𝑆×𝑇(𝑥) = 𝑓𝑆(𝑥) ⋅ 𝑓𝑇(𝑥).

Proof. (a) Since 𝑆 is summable, given any 𝑛 ∈ ℕ, there are only a finite number of
𝑠 ∈ 𝑆 such that wt 𝑠 has a nonzero coefficient of 𝑥𝑛. And the same is true of 𝑇. It
follows that only finitely many elements of 𝑆 ∪ 𝑇 have such a coefficient, which mean
this set is summable. To prove the desired equality, we compute as follows:

𝑓𝑆⊎𝑇(𝑥) = ∑
ᵆ∈𝑆⊎𝑇

wt 𝑢 = ∑
ᵆ∈𝑆

wt 𝑢 + ∑
ᵆ∈𝑇

wt 𝑢 = 𝑓𝑆(𝑥) + 𝑓𝑇(𝑥).

(b) The statement about summability of 𝑆 × 𝑇 is safely left as an exercise. Com-
puting the weight-generating function gives

𝑓𝑆×𝑇(𝑥) = ∑
(𝑠,𝑡)∈𝑆×𝑇

wt(𝑠, 𝑡) = ∑
𝑠∈𝑆

wt 𝑠 ⋅ ∑
𝑡∈𝑇

wt 𝑡 = 𝑓𝑆(𝑥) ⋅ 𝑓𝑇(𝑥),

so we are done. □

We can now use these rules to derive various generating functions in a straight-
forward manner. We begin by reproving the Binomial Theorem as stated in Theo-
rem 3.1.1. We have already seen that the summation side is the weight-generating
function for 𝑆 = 2[𝑛]. For the product side, it will be useful to reformulate 𝑆 in terms
of multiplicity notation. Specifically, consider

𝑆′ = {𝑇 ′ = (1𝑚1 , 2𝑚2 , . . . , 𝑛𝑚𝑛) ∣ 𝑚𝑖 = 0 or 1 for all 𝑖}
weighted by

wt𝑇 ′ = 𝑥∑𝑖𝑚𝑖 .
Clearly we have a bijection 𝑓∶ 𝑆 → 𝑆′ given by 𝑓(𝑇) = (1𝑚1 , 2𝑚2 , . . . , 𝑛𝑚𝑛) where

𝑚𝑖 = { 0 if 𝑖 ∉ 𝑇,
1 if 𝑖 ∈ 𝑇.

(In fact, this is themap used in the proof of Theorem 1.3.1.) Furthermore, this bijection
is weight preserving in that wt𝑓(𝑇) = wt 𝑇. As a concrete example, if 𝑛 = 5 and 𝑇 =
{2, 4, 5}, then 𝑓(𝑇) = (10, 21, 30, 41, 51) and wt𝑓(𝑇) = 𝑥3 = wt𝑇. The advantage of
using 𝑆′ is that it is clearly a weighted product of the sets {𝑖0, 𝑖1} for 𝑖 ∈ [𝑛] where
wt 𝑖0 = 1 and wt 𝑖1 = 𝑥. So we can write, where for distinct elements 𝑎 and 𝑏 we use
the shorthand 𝑎 ⊎ 𝑏 for {𝑎} ⊎ {𝑏},

𝑆′ = {10, 11} × {20, 21} ×⋯ × {𝑛0, 𝑛1} = (10 ⊎ 11) × (20 ⊎ 21) ×⋯ × (𝑛0 ⊎ 𝑛1).
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Translating this expression using both parts of Lemma 3.4.1, we obtain
𝑛
∑
𝑘=0

(𝑛𝑘)𝑥
𝑘 = 𝑓𝑆(𝑥)

= 𝑓𝑆′(𝑥)
= (wt 10 + wt 11)(wt 20 + wt 21)⋯ (wt 𝑛0 + wt 𝑛1)
= (1 + 𝑥)𝑛.

Since this was the reader’s first example of the use of weight-generating functions,
we were careful to write out all the details. However, in practice one is usually more
concise, for example, making no distinction between 𝑆 and 𝑆′ with the understanding
that they yield the sameweight-generating function and so can be considered the same
set in this situation. We also usually omit checking summability, assuming that such
details could be filled in if necessary. We are now ready for amore substantial example,
namely the Binomial Theorem for negative exponents.

Theorem 3.4.2. If 𝑛 ∈ ℕ, then
1

(1 − 𝑥)𝑛 = ∑
𝑘≥0

((𝑛𝑘))𝑥
𝑘.

Proof. The summation side suggests that we should consider
𝑆 = {𝑇 ∣ 𝑇 is a multiset on [𝑛]}

with weight function given by (3.10). We are rewarded for our choice since

𝑓𝑆(𝑥) = ∑
𝑇∈𝑆

wt𝑇 = ∑
𝑘≥0

∑
𝑇∈(([𝑛]𝑘 ))

𝑥𝑘 = ∑
𝑘≥0

((𝑛𝑘))𝑥
𝑘.

We now write
𝑆 = {(1𝑚1 , 2𝑚2 , . . . , 𝑛𝑚𝑛) ∣ 𝑚𝑖 ≥ 0 for all 𝑖}
= (10 ⊎ 11 ⊎ 12 ⊎ . . . ) × (20 ⊎ 21 ⊎ 22 ⊎ . . . ) ×⋯ × (𝑛0 ⊎ 𝑛1 ⊎ 𝑛2 ⊎ . . . )

with weight function wt 𝑖𝑘 = 𝑥𝑘. Using Lemma 3.4.1 yields
𝑓𝑆(𝑥) = (wt 10 + wt 11 + wt 12 +⋯)⋯(wt 𝑛0 + wt 𝑛1 + wt 𝑛2 +⋯)

= (1 + 𝑥 + 𝑥2 +⋯)𝑛

= 1
(1 − 𝑥)𝑛

and the theorem is proved. □

There are several remarkswhich should bemade about this result. First of all, con-
trast it with our first version of the Binomial Theorem. In Theorem 3.1.1 we are count-
ing subsets of [𝑛]where repeated elements are not allowed and the resulting generating
function is (1 + 𝑥)𝑛. In Theorem 3.4.2 we are counting multisets on [𝑛] so that repeti-
tions are allowed and these are counted by 1/(1 − 𝑥)𝑛. We will see another example of
this in the next section.
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We can also make Theorem 3.4.2 look almost exactly like Theorem 3.1.1. Indeed,
if 𝑛 ≤ 0, then by Theorem 3.4.2 and equation (1.6) (with −𝑛 substituted for 𝑛) we have

(1 + 𝑥)𝑛 = 1
(1 − (−𝑥))−𝑛 = ∑

𝑘≥0
((−𝑛𝑘 ))(−𝑥)𝑘 = ∑

𝑘≥0
(𝑛𝑘)𝑥

𝑘.

This is exactly like Theorem 3.1.1 except that we have an infinite series whereas for
positive 𝑛 we have a polynomial.

Analytically, the Binomial Theorem makes sense for any 𝑛 ∈ ℂ as long as |𝑥| < 1
so that the series converges. In ℂ[[𝑥]] one can make sense of (1 + 𝑥)𝑛 for any rational
𝑛 ∈ ℚ; see Exercise 12 of this chapter, and prove the following.
Theorem 3.4.3. For any 𝑛 ∈ ℚ we have

(1 + 𝑥)𝑛 = ∑
𝑘≥0

(𝑛𝑘)𝑥
𝑘. □

3.5. Revisiting integer partitions

The theory of integer partitions is one place where ordinary generating functions have
played a central role. In this context and others it will be necessary to consider infinite
products. But then, as we have seen in the previous section, we must take care that
these products converge. There is a corresponding restriction on the sets which we
can use to construct weight-generating functions. We begin by discussing this matter.

Let 𝑆 be a weighted set. We say that 𝑆 is rooted if there is an element 𝑟 ∈ 𝑆 called
the root satisfying

(1) wt 𝑟 = 1 and
(2) if 𝑠 ∈ 𝑆 − {𝑟}, then wt 𝑠 has zero constant term.

For example, the sets (𝑛0, 𝑛1, 𝑛2, . . . ) used in the proof of Theorem 3.4.2 were rooted
with 𝑟 = 𝑛0 since wt 𝑛0 = 1 and wt 𝑛𝑘 = 𝑥𝑘 for 𝑘 ≥ 1. Given a sequence 𝑆1, 𝑆2, 𝑆3 . . .
of rooted sets with 𝑆 𝑖 having root 𝑟𝑖, their direct sum is defined to be

𝑆1 ⊕ 𝑆2 ⊕ 𝑆3 ⊕⋯
= {(𝑠1, 𝑠2, 𝑠3, . . . ) ∣ 𝑠𝑖 ∈ 𝑆 𝑖 for all 𝑖 and 𝑠𝑖 ≠ 𝑟𝑖 for only finitely many 𝑖}.

Note that when the number of 𝑆 𝑖 is finite, then their direct sum is the same as their
product. But when their number is infinite the root condition kicks in. Note that,
because of this condition, we have a well-defined weighting on⊕𝑖≥1𝑆 𝑖 given by

wt(𝑠1, 𝑠2, 𝑠3, . . . ) =∏
𝑖≥1

wt 𝑠𝑖

since the product has only finitely many factors not equal to 1. In addition, the Product
Rule in Lemma 3.4.1 has to bemodified appropriately to get convergence. But the proof
is similar to the former result and so is left as an exercise.

Theorem 3.5.1. Let 𝑆1, 𝑆2, 𝑆3, . . . be a sequence of summable, rooted sets such that
lim
𝑖→∞

[mdeg(𝑓𝑆𝑖 (𝑥) − 1)] = ∞.
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Then the direct sum 𝑆1 ⊕ 𝑆2 ⊕ 𝑆3 ⊕⋯ is summable and

𝑓𝑆1⊕𝑆2⊕𝑆3⊕⋯(𝑥) =∏
𝑖≥1

𝑓𝑆𝑖 (𝑥). □

We will now prove a theorem of Euler giving the generating function for 𝑝(𝑛), the
number of integer partitions of 𝑛. The reader should contrast the proof with that given
for counting multisets in Theorem 3.4.2, which has evident parallels.

Theorem 3.5.2. We have
∑
𝑛≥0

𝑝(𝑛)𝑥𝑛 =∏
𝑖≥1

1
1 − 𝑥𝑖 .

Proof. Motivated by the sum side we consider the set 𝑆 of all integer partitions 𝜆 of all
numbers 𝑛 ≥ 0 with weight

(3.11) wt 𝜆 = 𝑥|𝜆|,

recalling that |𝜆| is the sum of the parts of 𝜆. It follows that

𝑓𝑆(𝑥) = ∑
𝜆∈𝑆

wt 𝜆 = ∑
𝑛≥0

∑
|𝜆|=𝑛

𝑥𝑛 = ∑
𝑛≥0

𝑝(𝑛)𝑥𝑛.

We now express 𝑆 as a direct sum, using multiplicity notation, as

𝑆 = {(1𝑚1 , 2𝑚2 , 3𝑚3 , . . . ) ∣ 𝑚𝑖 ≥ 0 for all 𝑖 and only finitely many𝑚𝑖 ≠ 0}
= (10 ⊎ 11 ⊎ 12 ⊎⋯) ⊕ (20 ⊎ 21 ⊎ 22 ⊎⋯) ⊕ (30 ⊎ 31 ⊎ 32 ⊎⋯) ⊕⋯ .

Note that since we want the exponent on wt 𝜆 to be the sum of its parts, and 𝑖𝑘 repre-
sents a part 𝑖 repeated 𝑘 times, we must take

wt 𝑖𝑘 = 𝑥𝑖𝑘

in contrast to theweight used in the proof of Theorem3.4.2. Translating into generating
functions by using the previous theorem gives

𝑓𝑆(𝑥) =∏
𝑖≥1

(wt 𝑖0 + wt 𝑖1 + wt 𝑖2 + wt 𝑖3 +⋯)

=∏
𝑖≥1

(1 + 𝑥𝑖 + 𝑥2𝑖 + 𝑥3𝑖 +⋯)

=∏
𝑖≥1

1
1 − 𝑥𝑖 ,

which is the desired result. □

The reader will notice that the previous proof actually shows much more. In par-
ticular, the factor 1/(1 − 𝑥𝑖) is responsible for keeping track of the parts equal to 𝑖 in 𝜆.
We can make this precise as follows.
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Proposition 3.5.3. Given 𝑛 ∈ ℕ and 𝑃 ⊆ ℙ, let 𝑝𝑃(𝑛) be the number of partitions of 𝑛
all of whose parts are in 𝑃.

(a) We have
∑
𝑛≥0

𝑝𝑃(𝑛)𝑥𝑛 =∏
𝑖∈𝑃

1
1 − 𝑥𝑖 .

(b) In particular, for 𝑘 ∈ ℙ,

∑
𝑛≥0

𝑝[𝑘](𝑛)𝑥𝑛 =
1

(1 − 𝑥)(1 − 𝑥2)⋯ (1 − 𝑥𝑘) .

Proof. For (a), one uses the ideas in the proof of Theorem 3.5.2 except that the ele-
ments of 𝑆 only contain components of the form 𝑟𝑚𝑟 for 𝑟 ∈ 𝑃. And (b) follows imme-
diately from (a). □

Instead of restricting the set of parts of a partition, we can restrict the number of
parts. Recall that 𝑝(𝑛, 𝑘) is the number of 𝜆 ⊢ 𝑛 with length ℓ(𝜆) ≤ 𝑘.

Corollary 3.5.4. For 𝑘 ≥ 0 we have

∑
𝑛≥0

𝑝(𝑛, 𝑘)𝑥𝑛 = 1
(1 − 𝑥)(1 − 𝑥2)⋯ (1 − 𝑥𝑘) .

Proof. From the previous result, it suffices to show that there is a size-preserving bi-
jection between the partitions counted by 𝑝[𝑘](𝑛) and those counted by 𝑝(𝑛, 𝑘). The
map 𝜆 → 𝜆𝑡 is such a map. Indeed, 𝜆 only uses parts in [𝑘] if and only if 𝜆1 ≤ 𝑘. In
terms of Young diagrams, this means that the first row of 𝜆 has length at most 𝑘. It
follows that the first column of 𝜆𝑡 has length at most 𝑘, which is equivalent to 𝜆𝑡 having
at most 𝑘 parts. □

In the previous section we pointed out a relationship between the generating func-
tions for sets and for multisets. The same holds for integer partitions. Let 𝑝𝑑(𝑛) be the
number of partitions of 𝑛 into distinct parts as defined in Section 2.3.

Theorem 3.5.5. We have
∑
𝑛≥0

𝑝𝑑(𝑛)𝑥𝑛 =∏
𝑖≥1

(1 + 𝑥𝑖).

Proof. Up to now we have been writing out most of the gory details of our proofs by
weight-generating function as the reader gets familiar with the method. But by now
it should be sufficient just to write out the highlights. We begin by letting 𝑆 be all
partitions of all 𝑛 ∈ ℕ into distinct parts and using the weighting in (3.11). It is routine
to show that 𝑓𝑆(𝑥) results in the sum side of the theorem. To get the product side we
write

𝑆 = {(1𝑚1 , 2𝑚2 , 3𝑚3 , . . . ) ∣ 𝑚𝑖 = 0 or 1 for all 𝑖, only finitely many𝑚𝑖 ≠ 0}
=⨁

𝑖≥1
(𝑖0 ⊎ 𝑖1).
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The generating function translation is

𝑓𝑆(𝑥) =∏
𝑖≥1

(1 + 𝑥𝑖)

and we are done. □

Asmentioned in the introduction to this chapter, one of the reasons for using gen-
erating functions is that they can give quick and easy proofs for various results. Here
is an example where we reprove Euler’s distinct parts-odd parts result, Theorem 2.3.3,
which we restate here for convenience. Let 𝑝𝑜(𝑛) be the number of partitions of 𝑛 into
parts all of which are odd.

Theorem 3.5.6 (Euler). For all 𝑛 ≥ 0,
𝑝𝑜(𝑛) = 𝑝𝑑(𝑛).

Proof. It suffices to show that these two sequence have the same generating function.
Using Theorems 3.5.3(a) and 3.5.5 as well as multiplying by a strange name for one, we
get

∑
𝑛≥0

𝑝𝑑(𝑛)𝑥𝑛 = (1 + 𝑥)(1 + 𝑥2)(1 + 𝑥3)⋯

= (1 + 𝑥)(1 + 𝑥2)(1 + 𝑥3)⋯ (1 − 𝑥)(1 − 𝑥2)(1 − 𝑥3)⋯
(1 − 𝑥)(1 − 𝑥2)(1 − 𝑥3)⋯

= (1 − 𝑥2)(1 − 𝑥4)(1 − 𝑥6)⋯
(1 − 𝑥)(1 − 𝑥2)(1 − 𝑥3)⋯

= 1
(1 − 𝑥)(1 − 𝑥3)(1 − 𝑥5)⋯

= ∑
𝑛≥0

𝑝𝑜(𝑛)𝑥𝑛,

which completes this short and slick proof. □

3.6. Recurrence relations and generating functions

The reader may have noticed that many of the combinatorial sequences described in
Chapter 1 satisfy recurrence relations. If one has a sequence defined by a recursion,
then generating functions can often be used to find an explicit expression for the terms
of the sequence. It is also possible to glean information from the generating function
derived from a recurrence which is hard to extract from the recurrence itself. This
section is devoted to exploring these ideas.

We start with a simple algorithm using generating functions to solve a recurrence
relation. Given a sequence 𝑎0, 𝑎1, 𝑎2, . . . defined by a recursion and boundary condi-
tions, we wish to find a self-contained formula for the 𝑛th term.
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(1) Multiply the recurrence by 𝑥𝑛; usually a good choice for 𝑛 is the largest index
of all the terms in the recurrence. Sum over all 𝑛 ≥ 𝑑 where 𝑑 is the smallest
index for which the recurrence is valid.

(2) Let
𝑓(𝑥) = ∑

𝑛≥0
𝑎𝑛𝑥𝑛

and express the equation in step (1) in terms of 𝑓(𝑥) using the boundary con-
ditions.

(3) Solve for 𝑓(𝑥).
(4) Find 𝑎𝑛 as the coefficient of 𝑥𝑛 in 𝑓(𝑥).

We note that partial fraction expansion can be a useful way to accomplish step (4).
For a simple example, suppose that our sequence is defined by 𝑎0 = 2 and 𝑎𝑛 =

3𝑎𝑛−1 for 𝑛 ≥ 1. Calculating the first few values we get 𝑎1 = 2⋅3, 𝑎2 = 2⋅32, 𝑎3 = 2⋅33.
So it is easy to guess and then prove by induction that 𝑎𝑛 = 2 ⋅ 3𝑛. We would now
like to obtain this result using generating functions. Step (1) is easy as we just write
𝑎𝑛𝑥𝑛 = 3𝑎𝑛−1𝑥𝑛 and then sum to get

∑
𝑛≥1

𝑎𝑛𝑥𝑛 = ∑
𝑛≥1

3𝑎𝑛−1𝑥𝑛.

Letting 𝑓(𝑥) be as in step (2) we see that
∑
𝑛≥1

𝑎𝑛𝑥𝑛 = 𝑓(𝑥) − 𝑎0 = 𝑓(𝑥) − 2

and
∑
𝑛≥1

3𝑎𝑛−1𝑥𝑛 = 3𝑥 ∑
𝑛≥1

𝑎𝑛−1𝑥𝑛−1 = 3𝑥𝑓(𝑥)

where the last equality is obtained by substituting 𝑛 for 𝑛 − 1 in the sum. For step (3)
we have

(3.12) 𝑓(𝑥) − 2 = 3𝑥𝑓(𝑥) ⟹ 𝑓(𝑥) − 3𝑥𝑓(𝑥) = 2 ⟹ 𝑓(𝑥) = 2
1 − 3𝑥 .

As far as step (4), we can now expand 1/(1− 3𝑥) as a geometric series (that is, use (3.8)
and substitute 3𝑥 for 𝑥) to obtain

𝑓(𝑥) = 2 ∑
𝑛≥0

3𝑛𝑥𝑛 = ∑
𝑛≥0

2 ⋅ 3𝑛𝑥𝑛.

Extracting the coefficient of 𝑥𝑛 we see that 𝑎𝑛 = 2 ⋅ 3𝑛 as expected.
In the previous example, it was easier to guess the formula for 𝑎𝑛 and then prove it

by induction rather than use generating functions. However, there are times when it is
impossible to guess the solution this way, but generating functions still give a straight-
forwardmethod for obtaining the answer. An example of this is given by the Fibonacci
sequence. Our result will be slightly nicer if we use the definition of this sequence
given by (1.1). Following the algorithm, we write

∑
𝑛≥2

𝐹𝑛𝑥𝑛 = ∑
𝑛≥2

(𝐹𝑛−1 + 𝐹𝑛−2)𝑥𝑛.
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94 3. Counting with Ordinary Generating Functions

Writing 𝑓(𝑥) = ∑𝑛≥0 𝐹𝑛𝑥𝑛 we obtain

∑
𝑛≥2

𝐹𝑛𝑥𝑛 = 𝑓(𝑥) − 𝐹0 − 𝐹1𝑥 = 𝑓(𝑥) − 𝑥

and
∑
𝑛≥2

(𝐹𝑛−1 + 𝐹𝑛−2)𝑥𝑛 = 𝑥(𝑓(𝑥) − 𝐹0) + 𝑥2𝑓(𝑥) = (𝑥 + 𝑥2)𝑓(𝑥).

Setting the expressions for the left and right sides equal and solving for 𝑓(𝑥) yields

𝑓(𝑥) = 𝑥
1 − 𝑥 − 𝑥2 .

For the last step we wish to use partial fractions and so must factor 1 − 𝑥 − 𝑥2.
Using the quadratic formula, we see that the denominator has roots

𝑟1 =
−1 + √5

2 and 𝑟2 =
−1 − √5

2 .

It follows that

1 − 𝑥 − 𝑥2 = (1 − 𝑥
𝑟1
)(1 − 𝑥

𝑟2
)

since both sides vanish at 𝑥 = 𝑟1, 𝑟2 and both sides have constant term 1. So we have
the partial fraction decomposition

(3.13) 𝑓(𝑥) = 𝑥

(1 − 𝑥
𝑟1
)(1 − 𝑥

𝑟2
)
= 𝐴

(1 − 𝑥
𝑟1
)
+ 𝐵

(1 − 𝑥
𝑟2
)

for constants 𝐴, 𝐵. Clearing denominators gives

𝑥 = 𝐴(1 − 𝑥
𝑟2
) + 𝐵(1 − 𝑥

𝑟1
).

Setting 𝑥 = 𝑟1 reduces this equation to 𝑟1 = 𝐴(1 − 𝑟1/𝑟2) and solving for 𝐴 shows that
𝐴 = 1/√5. Similarly letting 𝑥 = 𝑟2 yields 𝐵 = −1/√5. Plugging these values back
into (3.13) and expanding the series,

𝑓(𝑥) = 1
√5

⋅ ∑
𝑛≥0

𝑥𝑛
𝑟𝑛1

− 1
√5

⋅ ∑
𝑛≥0

𝑥𝑛
𝑟𝑛2
.

By rationalizing denominators one can check that 1/𝑟1 = (1 + √5)/2 and 1/𝑟2 =
(1 − √5)/2. So taking the coefficient of 𝑥𝑛 on both sides of the previous displayed
equation gives

(3.14) 𝐹𝑛 =
1
√5

(1 + √5
2 )

𝑛

− 1
√5

(1 − √5
2 )

𝑛

.

This example shows the true power of the generating function method. It would
be impossible to guess the formula in (3.14) from just computing values of 𝐹𝑛. In fact,
it is not even obvious that the right-hand side is an integer!

Our algorithm can be used to derive generating functions in the case where one
has a triangle of numbers rather than just a sequence. Here we illustrate this using the

The preliminary version made available with permission of the publisher, the American Mathematical Society



3.6. Recurrence relations and generating functions 95

Stirling numbers. Recall that the signless Stirling numbers of the first kind satisfy the
recurrence relation and boundary conditions in Theorem 1.5.2. Translating these to
the signed version gives 𝑠(0, 𝑘) = 𝛿0,𝑘 and

𝑠(𝑛, 𝑘) = 𝑠(𝑛 − 1, 𝑘 − 1) − (𝑛 − 1)𝑠(𝑛 − 1, 𝑘)
for 𝑛 ≥ 1. We wish to find the generating function 𝑓𝑛(𝑥) = ∑𝑘 𝑠(𝑛, 𝑘)𝑥𝑘 where we are
using the fact that 𝑠(𝑛, 𝑘) = 0 for 𝑘 < 0 or 𝑘 > 𝑛 to sum over all integers 𝑛. Applying
our algorithm we have

𝑓𝑛(𝑥) = ∑
𝑘
𝑠(𝑛, 𝑘)𝑥𝑘

= ∑
𝑘
[𝑠(𝑛 − 1, 𝑘 − 1) − (𝑛 − 1)𝑠(𝑛 − 1, 𝑘)]𝑥𝑘

= 𝑥𝑓𝑛−1(𝑥) − (𝑛 − 1)𝑓𝑛−1(𝑥)
= (𝑥 − 𝑛 + 1)𝑓𝑛−1(𝑥),

giving us a recursion for the sequence of generating functions 𝑓𝑛(𝑥). From the bound-
ary condition for 𝑠(0, 𝑘) we have 𝑓0(𝑥) = 1. It is now easy to guess a formula for 𝑓𝑛(𝑥)
bywriting out the first few values and proving that pattern holds by induction to obtain
the theorem below, which also follows easily from Theorem 3.1.2.

Theorem 3.6.1. For 𝑛 ≥ 0 we have

∑
𝑘
𝑠(𝑛, 𝑘)𝑥𝑘 = 𝑥(𝑥 − 1)⋯ (𝑥 − 𝑛 + 1). □

In an entirely analogous manner, one can obtain a generating function for the
Stirling numbers of the second kind. Because of the similarity, the proof is left to the
reader.

Theorem 3.6.2. For 𝑘 ≥ 0 we have

∑
𝑛
𝑆(𝑛, 𝑘)𝑥𝑛 = 𝑥𝑘

(1 − 𝑥)(1 − 2𝑥)⋯ (1 − 𝑘𝑥) . □

Comparing the previous two results, the reader will note a similar relationship as
between generating functions for objects without repetitions (sets, distinct partitions)
and those where repetitions are allowed (multisets, ordinary partitions). As already
mentioned, this will be explained in Section 3.9.

So far, all the generating functions we have derived from recurrences have been
rational functions. This is because the recursions are linear and we will prove a gen-
eral result to this effect in the next section. We will end this section by illustrating that
more complicated generating functions, for example algebraic ones, do arise in prac-
tice. Let us consider the Catalan numbers 𝐶(𝑛) and the generating function 𝑐(𝑥) =
∑𝑛≥0 𝐶(𝑛)𝑥𝑛. Using the recursion and boundary condition in Theorem 1.11.2 and
computing in the way we have become accustomed to, we obtain

𝑐(𝑥) = 1 + ∑
𝑛≥1

𝐶(𝑛)𝑥𝑛 = 1 + ∑
𝑛≥1

( ∑
𝑖+𝑗=𝑛−1

𝐶(𝑖)𝐶(𝑗))𝑥𝑛 = 1 + 𝑥𝑐(𝑥)2.
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96 3. Counting with Ordinary Generating Functions

Writing 𝑥𝑐(𝑥)2 − 𝑐(𝑥) + 1 = 0 and solving for 𝑐(𝑥) using the quadratic formula yields

𝑐(𝑥) = 1 ± √1 − 4𝑥
2𝑥 .

Two things seem to be wrong with this formula for 𝑐(𝑥). First of all, we don’t
know whether the plus or minus solution is the correct one. And second, we seem
to have left the ring of formal power series because we are dividing by 𝑥 which has no
inverse. Both of these can be solved simultaneously by choosing the sign so that the
numerator has no constant term. Then one can divide by 𝑥 simply by reducing the
power of each term in the top by one. By Theorem 3.4.3 we see that the generating
function for √1 − 4𝑥 = (1 − 4𝑥)1/2 has constant term (1/20 ) = 1. So the correct sign is
negative and we have proved the following.

Theorem 3.6.3. We have

∑
𝑛≥0

𝐶(𝑛)𝑥𝑛 = 1 − √1 − 4𝑥
2𝑥 . □

One can use this generating function to rederive the explicit expression for 𝐶(𝑛) in
Theorem 1.11.3, and the reader will be asked to carry out the details in the exercises.

3.7. Rational generating functions and linear recursions

The reader may have noticed in the previous section that, both in the initial example
and for the Fibonacci sequence, the solution of the recursion for 𝑎𝑛 was a linear combi-
nation of functions of the form 𝑟𝑛 where 𝑟 varied over the reciprocals of the roots of the
denominator of the corresponding generating function. This happens for a wide vari-
ety of recursions which we will study in this section. Before giving a theorem which
characterizes this situation, wewill study onemore example to illustrate what can hap-
pen.

Consider the sequence defined by 𝑎0 = 1, 𝑎1 = −4, and

(3.15) 𝑎𝑛 = 4𝑎𝑛−1 − 4𝑎𝑛−2 for 𝑛 ≥ 2.

Following the usual four-step program, we have, for 𝑓(𝑥) = ∑𝑛≥0 𝑎𝑛𝑥𝑛,

𝑓(𝑥) − 1 + 4𝑥 = ∑
𝑛≥2

𝑎𝑛𝑥𝑛

= 4𝑥 ∑
𝑛≥2

𝑎𝑛−1𝑥𝑛−1 − 4𝑥2 ∑
𝑛≥2

𝑎𝑛−2𝑥𝑛−2

= 4𝑥(𝑓(𝑥) − 1) − 4𝑥2𝑓(𝑥).

Solving for 𝑓(𝑥) and evaluating the constants in the partial fraction expansion yields

𝑓(𝑥) = 1 − 8𝑥
1 − 4𝑥 + 4𝑥2 =

1 − 8𝑥
(1 − 2𝑥)2 =

4
1 − 2𝑥 − 3

(1 − 2𝑥)2 .
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3.7. Rational generating functions and linear recursions 97

Taking the coefficient of 𝑥𝑛 on both sides using the Theorem 3.4.2 (interchanging the
roles of 𝑛 and 𝑘) together with the fact that

(3.16) ((𝑘𝑛)) = (𝑛 + 𝑘 − 1
𝑛 ) = (𝑛 + 𝑘 − 1

𝑘 − 1 )

gives a final answer of

(3.17) 𝑎𝑛 = 4 ⋅ 2𝑛 − 3(𝑛 + 1
1 )2𝑛 = (1 − 3𝑛)2𝑛.

So now, instead of a constant times 𝑟𝑛 we have a polynomial in 𝑛 as the coefficient. And
that polynomial has degree less than themultiplicity of 1/𝑟 as a root of the denominator.
These observations generalize.

Consider a sequence of complex numbers 𝑎𝑛 for 𝑛 ≥ 0. We say that the sequence
satisfies a (homogeneous) linear recursion of degree 𝑑 with constant coefficients if there
is a 𝑑 ∈ ℙ and constants 𝑐1, . . . , 𝑐𝑑 ∈ ℂ with 𝑐𝑑 ≠ 0 such that

(3.18) 𝑎𝑛+𝑑 + 𝑐1𝑎𝑛+𝑑−1 + 𝑐2𝑎𝑛+𝑑−2 +⋯+ 𝑐𝑑𝑎𝑛 = 0.

To simplify things later, we have put all the terms of the recursion on the left-hand side
of the equation and made 𝑎𝑛+𝑑 the term of highest index rather than 𝑎𝑛. One can also
consider the nonhomogeneous case where one has a summand 𝑐𝑑+1 which does not
multiply any term of the sequence, but we will have no cause to do so here. It turns
out that the sequences satisfying a recursion (3.18) are exactly the ones having rational
generating functions.

Theorem 3.7.1. Given a sequence 𝑎𝑛 for 𝑛 ≥ 0 and 𝑑 ∈ ℙ, the following are equivalent.

(a) The sequence satisfies (3.18).
(b) The generating function 𝑓(𝑥) = ∑𝑛≥0 𝑎𝑛𝑥𝑛 has the form

(3.19) 𝑓(𝑥) = 𝑝(𝑥)
𝑞(𝑥)

where

(3.20) 𝑞(𝑥) = 1 + 𝑐1𝑥 + 𝑐2𝑥2 +⋯+ 𝑐𝑑𝑥𝑑

and deg 𝑝(𝑥) < 𝑑.
(c) We can write

𝑎𝑛 =
𝑘
∑
𝑖=1

𝑝𝑖(𝑛)𝑟𝑛𝑖

where the 𝑟𝑖 are distinct, nonzero complex numbers satisfying

(3.21) 1 + 𝑐1𝑥 + 𝑐2𝑥2 +⋯+ 𝑐𝑑𝑥𝑑 =
𝑘
∏
𝑖=1

(1 − 𝑟𝑖𝑥)𝑑𝑖

and 𝑝𝑖(𝑛) is a polynomial with deg 𝑝𝑖(𝑛) < 𝑑𝑖 for all 𝑖.
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98 3. Counting with Ordinary Generating Functions

Proof. We first prove the equivalence of (a) and (b). Showing that (a) implies (b) is
essentially an application of our algorithm. Multiplying (3.18) by 𝑥𝑛+𝑑 and summing
over 𝑛 ≥ 0 gives

0 = ∑
𝑛≥0

𝑎𝑛+𝑑𝑥𝑛+𝑑 + 𝑐1𝑥 ∑
𝑛≥0

𝑎𝑛+𝑑−1𝑥𝑛+𝑑−1 +⋯+ 𝑐𝑑𝑥𝑑 ∑
𝑛≥0

𝑎𝑛𝑥𝑛

= [𝑓(𝑥) −
𝑑−1
∑
𝑛=0

𝑎𝑛𝑥𝑛] + 𝑐1𝑥 [𝑓(𝑥) −
𝑑−2
∑
𝑛=0

𝑎𝑛𝑥𝑛] +⋯+ 𝑐𝑑𝑥𝑑𝑓(𝑥)

= 𝑞(𝑥)𝑓(𝑥) − 𝑝(𝑥)
where 𝑞(𝑥) is given by (3.20) and 𝑝(𝑥) is the sum of the remaining terms, which implies
deg 𝑝(𝑥) < 𝑑. Solving for 𝑓(𝑥) completes this direction.

To prove (b) implies (a), cross multiply (3.19) and use (3.20) to write
𝑝(𝑥) = 𝑞(𝑥)𝑓(𝑥) = (1 + 𝑐1𝑥 + 𝑐2𝑥2 +⋯+ 𝑐𝑑𝑥𝑑)𝑓(𝑥).

Since deg 𝑝(𝑥) < 𝑑 we have that [𝑥𝑛+𝑑]𝑝(𝑥) = 0 for all 𝑛 ≥ 0. So taking the coefficient
of 𝑥𝑛+𝑑 on both sides of the previous displayed equation gives the recursion (3.18).

We now show that (b) and (c) are equivalent. The fact that (b) implies (c) again
follows from the algorithm. Specifically, using equations (3.19), (3.20), and (3.21), as
well as partial fraction expansion, we have

(3.22) 𝑓(𝑥) = 𝑝(𝑥)
∏𝑘

𝑖=1(1 − 𝑟𝑖𝑥)𝑑𝑖
=

𝑘
∑
𝑖=1

𝑑𝑖
∑
𝑗=1

𝐴𝑖,𝑗
(1 − 𝑟𝑖𝑥)𝑗

for certain constants 𝐴𝑖,𝑗 . But by Theorem 3.4.2 and equation (3.16) we have that

[𝑥𝑛] 1
(1 − 𝑟𝑖𝑥)𝑗

= ((𝑗𝑛))𝑟
𝑛
𝑖 = (𝑛 + 𝑗 − 1

𝑗 − 1 )𝑟𝑛𝑖

where
(𝑛 + 𝑗 − 1

𝑗 − 1 ) = (𝑛 + 𝑗 − 1)(𝑛 + 𝑗 − 2)⋯ (𝑛 + 1)
(𝑗 − 1)!

is a polynomial in 𝑛 of degree 𝑗 −1 for any given 𝑗. Now taking the coefficient of 𝑥𝑛 on
both sides of (3.22) gives

𝑎𝑛 =
𝑘
∑
𝑖=1

[
𝑑𝑖
∑
𝑗=1

𝐴𝑖,𝑗(
𝑛 + 𝑗 − 1
𝑗 − 1 )] 𝑟𝑛𝑖 .

Calling the polynomial inside the brackets 𝑝𝑖(𝑛), we have derived the desired expan-
sion.

The proof that (c) implies (b) essentially reverses the steps of the forward direction.
So it is left as an exercise. □

Wenote that the preceding theorem is not just of theoretical significance but is also
very useful computationally. In particular, because of the equivalence of (a) and (c),
one can solve a linear, constant coefficient recursion in a more direct manner without
having to deal with generating functions. To illustrate, suppose we have a sequence
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3.8. Chromatic polynomials 99

satisfying (3.18). Then we know that the solution in (c) is in terms of the 𝑟𝑖 which are
the reciprocals of the roots of 𝑞(𝑥) as given by (3.20). To simplify things, we consider
the polynomial

𝑟(𝑥) = 𝑥𝑑𝑞(1/𝑥) = 𝑥𝑑 + 𝑐1𝑥𝑑−1 + 𝑐2𝑥𝑑−2 +⋯+ 𝑐𝑑.

Comparisonwith (3.21) shows that the 𝑟𝑖 are the roots of 𝑟(𝑥). We nowfind the𝑝𝑖(𝑛) by
solving for the coefficients of these polynomials using the initial conditions. To be quite
concrete, consider again the example (3.15) with which we began this section. Since
𝑎𝑛−4𝑎𝑛−1+4𝑎𝑛−2 = 0 for 𝑛 ≥ 2we factor 𝑟(𝑥) = 𝑥2−4𝑥+4 = (𝑥−2)2. So 𝑎𝑛 = 𝑝(𝑛)2𝑛
where deg 𝑝(𝑛) < 2. It follows that 𝑝(𝑛) = 𝐴+𝐵𝑛 for constants𝐴, 𝐵. Plugging in 𝑛 = 0
we get 1 = 𝑎0 = 𝐴20 = 𝐴. Now letting 𝑛 = 1 gives −4 = 𝑎1 = (1 + 𝐵)21 or 𝐵 = −3.
Thus 𝑎𝑛 is again given as in (3.17). But this solution is clearly simpler than the first one
given. This is called themethod of undetermined coefficients. Of course, the advantage
of using generating functions is that they can be used to solve recursions even when
they are not linear and constant coefficient.

There is a striking resemblance between the theory we have developed in this sec-
tion and the method of undetermined coefficients for solving linear differential equa-
tions with constant coefficients. This is not an accident and thematerial in this section
may be considered as part of the theory of finite differenceswhich is a discrete analogue
of the theory of differential equations. Wewill havemore to say about finite differences
when we study Möbius inversion in Section 5.5.

3.8. Chromatic polynomials

Sometimes generating functions or polynomials appear in unexpected ways. We now
illustrate this phenomenon using the chromatic polynomial of a graph.

Let𝐺 = (𝑉, 𝐸) be a graph. A (vertex) coloring of𝐺 from a set 𝑆 is a function 𝑐∶ 𝑉 →
𝑆. We refer to 𝑆 as the color set. Figure 3.2 contains a graph which we will be using as
our running example together with two colorings using the set 𝑆 = {white, gray, black}.
We say that 𝑐 is proper if, for all edges 𝑢𝑣 ∈ 𝐸 we have 𝑐(𝑢) ≠ 𝑐(𝑣). The first coloring
in Figure 3.2 is proper while the second is not since the edge 𝑣𝑥 has both endpoints
colored gray. The chromatic number of𝐺, denoted 𝜒(𝐺), is the minimum cardinality of
a set 𝑆 such that there is a proper coloring 𝑐∶ 𝑉 → 𝑆. In our example,𝜒(𝐺) = 3 because
we have displayed a proper coloring with three colors in Figure 3.2 (black, white, and
gray), and one cannot use fewer colors because of the triangle 𝑢𝑣𝑥.

𝐺 =

𝑥 𝑤

𝑢 𝑣

Figure 3.2. A graph and two colorings
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The chromatic number is an important invariant in graph theory. But by its defini-
tion, it belongs more to extremal combinatorics (which studies structures which mini-
mize or maximize a constraint) than the enumerative side of the subject. Although we
will not havemuchmore to say about 𝜒(𝐺) here, we would be remiss if we did not state
one of the most famous mathematical theorems in which it plays a part. Call a graph
planar if it can be drawn in the plane without any pair of edges crossing.

Theorem 3.8.1 (The Four Color Theorem). If 𝐺 is planar, then

𝜒(𝐺) ≤ 4. □

Note that this result is in stark contrast to ordinary graphs which can have arbitrar-
ily large chromatic number. Complete graphs, for example, have 𝜒(𝐾𝑛) = 𝑛. The Four
Color Theorem caused quite a stir when it was proved in 1977 by Appel and Haken
(with the help of Koch) [1,2]. For one thing, it had been the Four Color Conjecture for
over 100 years. Also their proof was the first to make heavy use of computers to do the
calculations for all the various cases and the demonstration could not be completely
checked by a human.

We now turn to the enumerating graph colorings. Let 𝑡 ∈ ℕ. The chromatic poly-
nomial of 𝐺 is defined to be

𝑃(𝐺; 𝑡) = the number of proper colorings 𝑐∶ 𝑉 → [𝑡].
This concept was introduced by George Birkhoff [13]. It is not clear at this point why
𝑃(𝐺; 𝑡) should be called a polynomial, but let us compute it for the graph in Figure 3.2.
Consider coloring the vertices of 𝐺 in the order 𝑢, 𝑣, 𝑤, 𝑥. There are 𝑡 choices for the
color of 𝑢. This leaves 𝑡 − 1 possibilities for 𝑣 since it cannot be the same color as 𝑢. By
the same token, the number of choices for 𝑤 is 𝑡 − 1. Finally, 𝑥 can be colored in 𝑡 − 2
ways since it cannot have the colors of 𝑢 or 𝑣 and these are different. So the final count
is

(3.23) 𝑃(𝐺) = 𝑃(𝐺; 𝑡) = 𝑡(𝑡 − 1)(𝑡 − 1)(𝑡 − 2) = 𝑡4 − 4𝑡3 + 5𝑡2 − 2𝑡.
This is a polynomial in 𝑡, the number of colors! Before proving that this is always the
case, we have a couple of remarks. First of all, there is a close relationship between
𝑃(𝐺; 𝑡) and 𝜒(𝐺); namely 𝑃(𝐺; 𝑡) = 0 if 0 ≤ 𝑡 < 𝜒(𝐺) but 𝑃(𝐺; 𝜒(𝐺)) > 0. This follows
from the definitions of 𝑃 and 𝜒 since the latter is the smallest nonnegative integer for
which proper colorings of 𝐺 exist and the former counts such colorings. Secondly, it is
not always possible to compute 𝑃(𝐺; 𝑡) in the manner above and express it as a product
of factors 𝑡 − 𝑘 for integers 𝑘. For example, consider the cycle 𝐶4 with vertices labeled
clockwise as 𝑢, 𝑣, 𝑤, 𝑥. If we try to use thismethod to compute 𝑃(𝐶4; 𝑡), then everything
is fine until we get to coloring 𝑥, for 𝑥 is adjacent to both 𝑢 and𝑤. Butwe cannot be sure
whether 𝑢 and 𝑤 have the same color or not since they themselves are not adjacent.

It turns out that the same ideas can be used both for proving that 𝑃(𝐺; 𝑡) is always
a polynomial in 𝑡 and to rectify the difficulty in computing 𝑃(𝐶4; 𝑡). Consider a graph
𝐺 = (𝑉, 𝐸) and an edge 𝑒 ∈ 𝐸. The graph obtained by deleting 𝑒 from𝐺 is denoted𝐺⧵𝑒
and has vertices 𝑉 and edges 𝐸 − {𝑒}. The middle graph in Figure 3.3 is obtained from
our running example by deleting 𝑒 = 𝑣𝑥. The graph obtained by contracting 𝑒 in 𝐺 is
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𝐺 = 𝑒
𝑥 𝑤

𝑢 𝑣

𝐺 ⧵ 𝑒 =

𝑥 𝑤

𝑢 𝑣

𝐺/𝑒 =

𝑤

𝑢

𝑣𝑒

Figure 3.3. Deletion and contraction

denoted 𝐺/𝑒 and is obtained by shrinking 𝑒 to a new vertex 𝑣𝑒, making 𝑣𝑒 adjacent to
the vertices which were adjacent to either endpoint of 𝑒 and leaving all other vertices
and edges of 𝐺 the same. Contracting 𝑣𝑥 in our example graph results in the graph on
the right in Figure 3.3. The next lemma is crucial in the study of 𝑃(𝐺; 𝑡). It is ideally
set up for induction on #𝐸 since both 𝐺 ⧵ 𝑒 and 𝐺/𝑒 have fewer edges than 𝐺.

Lemma 3.8.2 (Deletion-Contraction Lemma). If 𝐺 is a graph, then for any 𝑒 ∈ 𝐸 we
have

𝑃(𝐺; 𝑡) = 𝑃(𝐺 ⧵ 𝑒; 𝑡) − 𝑃(𝐺/𝑒; 𝑡).

Proof. We will prove this in the form 𝑃(𝐺 ⧵ 𝑒) = 𝑃(𝐺) + 𝑃(𝐺/𝑒). Suppose 𝑒 = 𝑢𝑣.
Since 𝑒 is no longer present in 𝐺 ⧵ 𝑒, its proper colorings are of two types: those where
𝑐(𝑢) ≠ 𝑐(𝑣) and those where 𝑐(𝑢) = 𝑐(𝑣). If 𝑐(𝑢) ≠ 𝑐(𝑣), then properly coloring 𝐺 ⧵ 𝑒 is
the same as properly coloring 𝐺. So there are 𝑃(𝐺) colorings of the first type. There is
also a bijection between the proper colorings of 𝐺 ⧵ 𝑒 where 𝑐(𝑢) = 𝑐(𝑣) and those of
𝐺/𝑒; namely color 𝑣𝑒 with the common color of 𝑢 and 𝑣 and leave all the other colors
the same. It follows that there are 𝑃(𝐺/𝑒) colorings of the second type and the lemma
is proved. □

We can now easily show that 𝑃(𝐺; 𝑡) lives up to its name.

Theorem 3.8.3. We have that 𝑃(𝐺; 𝑡) is a polynomial in 𝑡 for any graph 𝐺.

Proof. We induct on #𝐸. If 𝐺 has no edges, then clearly 𝑃(𝐺; 𝑡) = 𝑡#𝑉 which is a
polynomial in 𝑡. If #𝐸 ≥ 1, then pick 𝑒 ∈ 𝐸. By deletion-contraction 𝑃(𝐺; 𝑡) =
𝑃(𝐺 ⧵ 𝑒; 𝑡) − 𝑃(𝐺/𝑒; 𝑡). And by induction we have that both 𝑃(𝐺 ⧵ 𝑒; 𝑡) and 𝑃(𝐺/𝑒; 𝑡)
are polynomials in 𝑡. Thus the same is true of their difference. □

We can also use Lemma 3.8.2 to compute the chromatic polynomial of 𝐶4. Recall
our notation of 𝑃𝑛 and 𝐾𝑛 for paths and complete graphs on 𝑛 vertices, respectively.
Now picking any edge 𝑒 ∈ 𝐸(𝐶4) we can use deletion-contraction and then determine
the polynomials of the resulting graphs via coloring vertex by vertex to obtain

𝑃(𝐶4) = 𝑃(𝑃4) − 𝑃(𝐾3) = 𝑡(𝑡 − 1)3 − 𝑡(𝑡 − 1)(𝑡 − 2) = 𝑡(𝑡 − 1)(𝑡2 − 3𝑡 + 3).
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Note that the quadratic factor has complex roots, thus substantiating our claim that
𝑃(𝐺) does not always have roots which are integers.

One can use induction and Lemma 3.8.2 to prove a host of results about 𝑃(𝐺; 𝑡).
Since these demonstrations are all similar, we will leave them to the reader. We will
use a nonstandard way of writing down the coefficients of this polynomial, which will
turn out to be convenient later.

Theorem 3.8.4. Let 𝐺 = (𝑉, 𝐸) and write
𝑃(𝐺; 𝑡) = 𝑎0𝑡𝑛 − 𝑎1𝑡𝑛−1 + 𝑎2𝑡𝑛−2 −⋯+ (−1)𝑛𝑎𝑛.

(a) 𝑛 = #𝑉 .
(b) mdeg 𝑃(𝐺; 𝑡) = the number of components of 𝐺.
(c) 𝑎𝑖 ≥ 0 for all 𝑖 and 𝑎𝑖 > 0 for 0 ≤ 𝑖 ≤ 𝑛 −mdeg 𝑃(𝐺; 𝑡).
(d) 𝑎0 = 1 and 𝑎1 = #𝐸. □

Now that we know 𝑃(𝐺; 𝑡) is a polynomial we can ask if there is any combinatorial
interpretation for its coefficients, the reverse of our approach up to now, which has
been to start with a sequence and then find its generating function. Put a total order
on the edge set 𝐸, writing 𝑒 < 𝑓 if 𝑒 is less than 𝑓 in this order and similarly for other
notation. If 𝐶 is a cycle in 𝐺, then the corresponding broken circuit 𝐵 is the set of edges
obtained from 𝐸(𝐶) by removing the smallest edge in the total order. Returning to
the graph in Figure 3.2, let 𝑏 = 𝑢𝑣, 𝑐 = 𝑢𝑥, 𝑑 = 𝑣𝑤, 𝑒 = 𝑣𝑥 and impose the order
𝑏 < 𝑐 < 𝑑 < 𝑒. The only cycle has edges 𝑏, 𝑐, 𝑒 and the corresponding broken circuit
is 𝐵 = {𝑐, 𝑒} which are the edges of a path. Say that a set of edges 𝐴 ⊆ 𝐸 contains no
broken circuit or is an NBC set if 𝐴 6⊇ 𝐵 for any broken circuit 𝐵. Let

NBC𝑘 = NBC𝑘(𝐺) = {𝐴 ⊆ 𝐸 ∣ #𝐴 = 𝑘 and 𝐴 is an NBC set}
and nbc𝑘 = nbc𝑘(𝐺) = #NBC𝑘(𝐺). In our example graph

𝑘 NBC𝑘(𝐺) nbc𝑘(𝐺)
0 { ∅ } 1
1 { {𝑏}, {𝑐}, {𝑑}, {𝑒} } 4
2 { {𝑏, 𝑐}, {𝑏, 𝑑}, {𝑏, 𝑒}, {𝑐, 𝑑}, {𝑑, 𝑒} } 5
3 { {𝑏, 𝑐, 𝑑}, {𝑏, 𝑑, 𝑒} } 2
4 ∅ 0

Comparison of the last column of this table with the coefficients of 𝑃(𝐺; 𝑡) presages
our next result, which is due to Whitney [99]. It is surprising that the conclusion does
not depend on the total order given to the edges. The proof we give is based on the
demonstration of Blass and Sagan [16].

Theorem 3.8.5. If #𝑉 = 𝑛, then, given any ordering of 𝐸,

𝑃(𝐺; 𝑡) =
𝑛
∑
𝑘=0

(−1)𝑘 nbc𝑘(𝐺) 𝑡𝑛−𝑘.

Proof. Identify each 𝐴 ∈ NBC𝑘(𝐺)with the associated spanning subgraph. Then 𝐴 is
acyclic since any cycle contains a broken circuit. It follows from Theorem 1.10.2 that
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𝐺 =

𝑥 𝑤

𝑢 𝑣

Figure 3.4. Two orientations of a graph

𝐴 is a forest with 𝑛 − 𝑘 component trees. Hence nbc𝑘(𝐺) 𝑡𝑛−𝑘 is the number of pairs
(𝐴, 𝑐) where 𝐴 ∈ NBC𝑘(𝐺) and 𝑐∶ 𝑉 → [𝑡] is a coloring constant on each component
of 𝐴. We call such a coloring 𝐴-improper. Make the set of such pairs into a signed
set by letting sgn(𝐴, 𝑐) = (−1)#𝐴. So the theorem will be proved if we exhibit a sign-
reversion involution 𝜄 on these pairs whose fixed points have positive sign and are in
bijection with the proper coloring of 𝐺.

Define the fixed points of 𝜄 to be the (𝐴, 𝑐) such that 𝐴 = ∅ and 𝑐 is proper. These
pairs clearly have the desired characteristics. For any other pair, 𝑐 is not a proper color-
ing so there must be an edge 𝑒 = 𝑢𝑣with 𝑐(𝑢) = 𝑐(𝑣). Let 𝑒 be the smallest such edge in
the total order. Now define 𝜄(𝐴, 𝑐) = (𝐴Δ{𝑒}, 𝑐) ≔ (𝐴′, 𝑐). It is clear that 𝜄 reverses signs.
And it is an involution because 𝑐 does not change, and so the smallest monochromatic
edge is the same in a pair and its image. We just need to check that 𝜄 is well-defined. If
𝐴′ = 𝐴 − {𝑒}, then obviously 𝐴 is still an NBC set and 𝑐 is 𝐴′-improper. If 𝐴′ = 𝐴 ∪ {𝑒},
then, since 𝑒 joined two vertices of the same color, 𝑐 is still 𝐴′-improper. But assume,
towards a contradiction, that 𝐴′ is no longer NBC. Then 𝐴′ ⊇ 𝐵 where 𝐵 is a broken
circuit, and 𝑒 ∈ 𝐵 since 𝐴 is NBC. Since 𝑐 is 𝐴′-improper, all edges in 𝐵 have vertices
colored 𝑐(𝑢). But 𝑒 is the smallest edge having that property, and so the smaller edge
removed from a cycle to get 𝐵 cannot exist. Thus 𝐴′ is NBC, 𝜄 is well-defined, and we
are done with the proof. □

One of the amazing things about the chromatic polynomial is that it often appears
in places where a priori it has no business being because no graph coloring is involved.
We now give two illustrations of this. Recall from Section 2.6 that an orientation 𝑂 of a
graph𝐺 is a digraphwith the same vertex set obtained by replacing each edge𝑢𝑣 of𝐺 by
one of the possible arcs 𝑢𝑣 or 𝑣𝑢. See Figure 3.4 for two orientations of our usual graph.
Call𝑂 acyclic if it does not contain any directed cycles and let𝒜(𝐺) and𝑎(𝐺) denote the
set and number of acyclic orientations of 𝐺, respectively. The first of the orientations
just given is acyclic while the second is not. The total number of orientations of the
cycle 𝑢, 𝑣, 𝑥, 𝑢 is 23 and the number of those which produce a cycle is 2 (clockwise and
counterclockwise). Since neither orientation of 𝑣𝑤 can produce a cycle, we see that
𝑎(𝐺) = 2(23 − 2) = 12. We now do something very strange and plug 𝑡 = −1 into the
chromatic polynomial (3.23) and get 𝑃(𝐺;−1) = (−1)(−2)(−2)(−3) = 12. Although it
is not at all clear what it means to color a graph with −1 colors, we have just seen an
example of the following celebrated theorem of Stanley [85].

Theorem 3.8.6. For any graph 𝐺 with #𝑉 = 𝑛 we have
𝑃(𝐺;−1) = (−1)𝑛 𝑎(𝐺).
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Proof. We induct on #𝐸 where the base case is an easy check. It suffices to show that
(−1)𝑛𝑃(𝐺;−1) and 𝑎(𝐺) satisfy the same recursion. Using the Deletion-Contraction
Lemma for the former, we see that we need to show 𝑎(𝐺) = 𝑎(𝐺 ⧵ 𝑒) + 𝑎(𝐺/𝑒) for a
fixed 𝑒 = 𝑢𝑣 ∈ 𝐸. Consider the map

𝜙∶ 𝐴(𝐺) → 𝐴(𝐺 ⧵ 𝑒)
which sends 𝑂 ↦ 𝑂′ where 𝑂′ is obtained from 𝑂 by removing the arc corresponding
to 𝑒. Clearly 𝑂′ is still acyclic so the function is well-defined.

We claim 𝜙 is onto. Suppose to the contrary that there is some 𝑂′ ∈ 𝐴(𝐺 ⧵ 𝑒) such
that adding back 𝑢𝑣 creates a directed cycle 𝐶, and similarly with 𝑣𝑢 creating a cycle
𝐶′. Then (𝐶 − 𝑢𝑣) ∪ (𝐶′ −𝑣𝑢) is a closed, directed walk which must contain a directed
cycle by Exercise 14(b) of Chapter 1. But this third directed cycle is contained in 𝑂′,
which is the desired contradiction.

If 𝑂′ ∈ 𝐴(𝐺 ⧵ 𝑒), then by definition of the map #𝜙−1(𝑂′) ≤ 2. And from the
previous paragraph #𝜙−1(𝑂′) ≥ 1. So 𝑎(𝐺) = 𝑥 + 2𝑦 where 𝑥 = #{𝑂′ ∣ 𝜙−1(𝑂′) = 1}
and 𝑦 = #{𝑂′ ∣ 𝜙−1(𝑂′) = 2}. Since 𝑎(𝐺⧵𝑒) = 𝑥+𝑦 it suffices to show that 𝑎(𝐺/𝑒) = 𝑦.
We will do this by constructing a bijection

𝜓∶ {𝑂′ ∈ 𝐴(𝐺 ⧵ 𝑒) ∣ 𝜙−1(𝑂′) = 2} → 𝐴(𝐺/𝑒).

Let 𝑌 be the domain of 𝜓. If there are a pair of edges 𝑤𝑢,𝑤𝑣 ∈ 𝐸(𝐺), then any
𝑂′ ∈ 𝑌 contains either both 𝑤𝑢 and 𝑤𝑣 or both 𝑢𝑤 and 𝑣𝑤. This is because in all
other cases adding back one of the orientations of 𝑒 would create an orientation of 𝐺
with a cycle, contradicting the fact that 𝜙−1(𝑂′) = 2. So define 𝑂″ = 𝜓(𝑂′) to be the
orientation of 𝐺/𝑒 which agrees with 𝑂′ on all arcs not containing the new vertex 𝑣𝑒,
and on any edge of the form𝑤𝑣𝑒 uses the same orientation as either𝑤𝑢 or𝑤𝑣. (As just
shown, these two orientations are either both towards or both away from 𝑒). Proving
that 𝜓 is a well-defined bijection is left as an exercise. □

We should mention that Stanley actually proved a stronger result giving a combi-
natorial interpretation to 𝑃(𝐺;−𝑡) for all negative integers −𝑡. See Exercise 28(b) for
details. So, as we saw with the binomial coefficients in (1.6), we have another instance
of combinatorial reciprocity. We will study this phenomenon more generally in the
next section.

For our second example of the protean nature of the chromatic polynomial, we
will need to assume that our graphs 𝐺 have vertex set [𝑛] so that one has a total order
on the vertices. Let 𝐹 be a spanning forest of 𝐺 and root each component tree 𝑇 of 𝐹
at its smallest vertex 𝑟. Say that 𝐹 is increasing if the integers on any path starting at 𝑟
form an increasing sequence for all roots 𝑟. In Figure 3.5 the reader will find the usual

𝐺 =
4 3

1 2
𝐹1 =

4 3

1 2
𝐹2 =

4 3

1 2

Figure 3.5. A graph and two spanning forests
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graph, now labeled with [4], and two spanning forests. We have that 𝐹1 is increasing
as any singleton node is increasing, and in the nontrivial tree the only maximal path
from the root is 1, 2, 4, which is an increasing sequence. On the other hand 𝐹2 is not
increasing because of the path 1, 4, 2.

For a graph 𝐺 = (𝑉, 𝐸) we define
ISF𝑚(𝐺) = {𝐹 ∣ 𝐹 is an increasing spanning forest of 𝐺 with𝑚 edges}

and isf𝑚(𝐺) = # ISF𝑚(𝐺). If #𝑉 = 𝑛, then consider the corresponding generating
polynomial

isf(𝐺) = isf(𝐺; 𝑡) =
𝑛
∑
𝑚=0

(−1)𝑚 isf𝑚(𝐺)𝑡𝑛−𝑚.

Let us compute this for our example graph. Any treewith zero or one edge is increasing
so that isf0(𝐺) = 1 and isf1(𝐺) = #𝐸 = 4. Any of the pairs of edges of 𝐺 form an
increasing forest except for the pair giving 𝐹2 in Figure 3.5. So isf2(𝐺) = (42) − 1 = 5.
Similarly one checks that isf3(𝐺) = 2. And isf4(𝐺) = 0 since 𝐺 itself is not a forest. So

isf(𝐺; 𝑡) = 𝑡4 − 4𝑡3 + 5𝑡2 − 2𝑡 = 𝑡(𝑡 − 1)2(𝑡 − 2) = 𝑃(𝐺; 𝑡).

We cannot always have isf(𝐺) = 𝑃(𝐺) because the former depends on the label-
ing of the vertices (even though our notation conceals that fact) while the latter does
not. So we will put aside deciding when they are equal for now and concentrate on
the factorization over ℤ which we have just seen and which, as we will see, is not a
coincidence. In fact, the roots will be the cardinalities of the edge sets defined by
(3.24) 𝐸𝑘 = {𝑖𝑘 ∈ 𝐸 ∣ 𝑖 < 𝑘}
for 1 ≤ 𝑘 ≤ 𝑛. In our example 𝐸1 = ∅ (since there is no vertex smaller than 1),
𝐸2 = {12}, 𝐸3 = {23}, and 𝐸4 = {14, 24}.
Lemma 3.8.7. If 𝐺 has 𝑉 = [𝑛], then a spanning subgraph 𝐹 is an increasing forest if
and only if it is obtained by picking at most one edge from each 𝐸𝑘 for 𝑘 ∈ [𝑛].

Proof. For the forward direction assume, towards a contradiction, that𝐹 contains both
𝑖𝑘 and 𝑗𝑘 with 𝑖, 𝑗 < 𝑘. So if 𝑟 is the root of the tree containing 𝑖, 𝑗, 𝑘, then, by the
increasing condition, 𝑖must be the vertex preceding 𝑘 on the unique 𝑟–𝑘 path. But the
same must be true of 𝑗, which is a contradiction.

For the reverse implication, we must first verify that 𝐹 is acyclic. But if 𝐹 contains
a cycle 𝐶, then let 𝑘 be its maximum vertex. It follows that there are 𝑖𝑘, 𝑗𝑘 ∈ 𝐸(𝐶)
and, by the maximum requirement, 𝑖, 𝑗 < 𝑘. This contradicts the assumption in this
direction. Similarly one can show that if 𝐹 is not increasing, then one can produce two
edges from the same 𝐸𝑘 and so we are done. □

It is now a simple matter to prove the following result of Hallam and Sagan [41].
The proof given here was obtained by Hallam, Martin, and Sagan [40].

Theorem 3.8.8. If 𝐺 has 𝑉 = [𝑛], then

isf(𝐺; 𝑡) =
𝑛
∏
𝑘=1

(𝑡 − |𝐸𝑘|).
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Proof. The coefficient of 𝑡𝑛−𝑚 in the product is, up to sign, the sum of all terms of the
form |𝐸𝑖1 ||𝐸𝑖2 |⋯ |𝐸𝑖𝑚 | where the 𝑖𝑗 are distinct indices. But this product is the number
of ways to pick one edge out of each of the sets 𝐸𝑖1 , 𝐸𝑖2 , . . . , 𝐸𝑖𝑚 . So, by the previous
lemma, the sum is the number of increasing forests with𝑚 edges, finishing the proof.

□

Returning to the question of when the chromatic and increasing spanning forest
polynomials are equal, we need the following definition. Graph 𝐺 has a perfect elim-
ination order (peo) if there is a total ordering of 𝑉 as 𝑣1, 𝑣2, . . . , 𝑣𝑛 such that, for all 𝑘,
the set of vertices coming before 𝑣𝑘 in this order and adjacent to 𝑣𝑘 form the vertices
of a clique (complete subgraph of 𝐺). This definition may seem strange at first glance,
but it has been useful in various graph-theoretic contexts. Returning to our running
example graph we see that the order 1, 2, 3, 4 is a peo since 1 is adjacent to no earlier
vertex, 2 and 3 are both adjacent to a single previous vertex which is a 𝐾1, and 4 is ad-
jacent to 1 and 2 which form an edge also known as a 𝐾2. We can now prove another
result from [40].

Lemma 3.8.9. Let 𝐺 have 𝑉 = [𝑛]. Write the edges of 𝐺 as 𝑖𝑗 with 𝑖 < 𝑗 and order them
lexicographically. For all𝑚 ≥ 0 we have

ISF𝑚(𝐺) ⊆ NBC𝑚(𝐺).

Furthermore, we have equality for all𝑚 if and only if the natural order on [𝑛] is a peo.

Proof. Toprove the inclusionwe suppose that𝐹 is an increasing spanning forestwhich
contains a broken circuit 𝐵 and derive a contradiction. By the lexicographic ordering
of the edges, 𝐵must be a path of the form 𝑣1, 𝑣2, . . . , 𝑣𝑙 where 𝑣1 = min{𝑣1, . . . , 𝑣𝑙} and
𝑣2 > 𝑣𝑙. So there must be a smallest index 𝑖 ≥ 2 such that 𝑣𝑖 > 𝑣𝑖+1. It follows that
𝑣𝑖−1, 𝑣𝑖+1 < 𝑣𝑖 so that the two corresponding edges of 𝐵 contradict Lemma 3.8.7.

For the forward direction of the second statement wemust show that if 𝑖, 𝑗 < 𝑘 and
𝑖𝑘, 𝑗𝑘 ∈ 𝐸(𝐺), then 𝑖𝑗 ∈ 𝐸(𝐺). By Lemma 3.8.7 again, {𝑖𝑘, 𝑗𝑘} is not the edge set of an
increasing spanning forest. So, by the assumed equality, this set must contain a broken
circuit. Since there are only two edges, this set must actually be a broken circuit, and
𝑖𝑗 ∈ 𝐸(𝐺)must be the edge used to complete the cycle. The reverse implication is left
as an exercise. □

From this result we immediately conclude the following.

Theorem 3.8.10. Let𝐺 have 𝑉 = [𝑛]. Then isf(𝐺; 𝑡) = 𝑃(𝐺; 𝑡) if and only if the natural
order on [𝑛] is a peo. □

3.9. Combinatorial reciprocity

When plugging a negative parameter into a counting function results in a sign times
another enumerative function, then this is called combinatorial reciprocity. This con-
cept was introduced and studied by Stanley [86]. We have already seen two examples
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of this in equation (1.6) and Theorem 3.8.6 (and, more generally, Exercise 28 of this
chapter). Here we will make a connection with recurrences and rational generating
functions. See the text of Beck and Sanyal [5] for a whole book devoted to this subject.

Before stating a general theorem, we return to the example with which we began
Section 3.6. This was the sequence defined by 𝑎0 = 2 and 𝑎𝑛 = 3𝑎𝑛−1 for 𝑛 ≥ 1.
One can extend the domain of this recursion to all integral 𝑛, in which case one gets
2 = 𝑎0 = 3𝑎−1 so that 𝑎−1 = 2/3. Then 2/3 = 𝑎−1 = 3𝑎−2 yielding 𝑎−2 = 2/32,
and so forth. An easy induction shows that for 𝑛 ≤ 0 we have 𝑎𝑛 = 2 ⋅ 3𝑛 just as for
𝑛 ≥ 0. We can also compute the generating function for the negatively indexed part of
the sequence, where it is convenient to start with 𝑎−1, which is the geometric series

∑
𝑛≥1

𝑎−𝑛𝑥𝑛 = ∑
𝑛≥1

2𝑥𝑛
3𝑛 = 2𝑥/3

1 − 𝑥/3 =
2𝑥
3 − 𝑥 .

Comparing this to 𝑓(𝑥) = ∑𝑛≥0 𝑎𝑛𝑥𝑛 as found in (3.12) we see that

−𝑓(1/𝑥) = −2
1 − 3/𝑥 = 2𝑥

3 − 𝑥 = ∑
𝑛≥1

𝑎−𝑛𝑥𝑛.

The reader should have some qualms about writing 𝑓(1/𝑥) since we have gone to
great pains to point out that 𝑥 has no inverse in ℂ[[𝑥]]. Indeed, if we use the definition
that𝑓(𝑥) = ∑𝑛≥0 𝑎𝑛𝑥𝑛, then𝑓(1/𝑥) = ∑𝑛≥0 𝑎𝑛/𝑥𝑛, which is not a formal power series!
But if 𝑓(𝑥) can be expressed as a rational function 𝑓(𝑥) = 𝑝(𝑥)/𝑞(𝑥) where deg 𝑝(𝑥) ≤
deg 𝑞(𝑥) ≔ 𝑑, then we can make sense of this substitution as follows. Since 𝑞(𝑥) has
degree 𝑑 we have that 𝑥𝑑𝑞(1/𝑥) is also a polynomial and is invertible since its constant
coefficient is nonzero (Theorem 3.3.1). Furthermore, 𝑥𝑑𝑝(1/𝑥) is also a polynomial
since 𝑑 ≥ deg 𝑝(𝑥). So we can define

(3.25) 𝑓(1/𝑥) = 𝑥𝑑𝑝(1/𝑥)
𝑥𝑑𝑞(1/𝑥)

and stay inside the formal power series ring. With this convention, the following result
makes sense.

Theorem 3.9.1. Suppose that 𝑎𝑛 is a sequence defined for all 𝑛 ∈ ℤ and satisfying the
linear recurrence relation with constant coefficients (3.18) for all such 𝑛. Letting 𝑓(𝑥) =
∑𝑛≥0 𝑎𝑛𝑥𝑛, we have

∑
𝑛≥1

𝑎−𝑛𝑥𝑛 = −𝑓(1/𝑥).

Proof. By (3.25), to prove the theorem it suffices to show that

𝑥𝑑𝑞(1/𝑥) ∑
𝑛≥1

𝑎−𝑛𝑥𝑛 = −𝑥𝑑𝑝(1/𝑥).

Note that by (3.20) we have

𝑥𝑑𝑞(1/𝑥) = 𝑥𝑑 + 𝑐1𝑥𝑑−1 + 𝑐2𝑥𝑑−2 +⋯+ 𝑐𝑑.
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So if𝑚 ≥ 1, then, using (3.18) and the fact that 𝑥𝑑𝑝(1/𝑥) has degree at most 𝑑,

[𝑥𝑚+𝑑]𝑥𝑑𝑞(1/𝑥) ∑
𝑛≥1

𝑎−𝑛𝑥𝑛 = 𝑎−𝑚 + 𝑐1𝑎−𝑚−1 + 𝑐2𝑎−𝑚−2 +⋯+ 𝑐𝑑𝑎−𝑚−𝑑

= 0

= [𝑥𝑚+𝑑](−𝑥𝑑𝑝(1/𝑥)).

Similarly we can prove that this equality of coefficients continues to hold for−𝑑 ≤ 𝑚 ≤
0. This completes the proof. □

To illustrate this theorem, we consider the negative binomial expansion. So if one
fixes 𝑛 ≥ 1, then using Theorem 3.4.2 and equation (3.16)

𝑓(𝑥) ≔ 1
(1 − 𝑥)𝑛 = ∑

𝑘≥0
((𝑛𝑘))𝑥

𝑘 = ∑
𝑘≥0

(𝑛 + 𝑘 − 1
𝑛 − 1 )𝑥𝑘.

Note that since 𝑛 is fixed we are thinking of (𝑛+𝑘−1𝑛−1 ) as a function of 𝑘. Substituting
−𝑘 for 𝑘 in the binomial coefficient, we wish to consider the corresponding generating
function

𝑔(𝑥) = ∑
𝑘≥1

(𝑛 − 𝑘 − 1
𝑛 − 1 )𝑥𝑘.

We note that (𝑛−𝑘−1𝑛−1 ) = 0 for 1 ≤ 𝑘 < 𝑛 since then 0 ≤ 𝑛 − 𝑘 − 1 < 𝑛 − 1. So 𝑥𝑛 can
be factored out from 𝑔(𝑥) and, using (1.6) and the above expression for the negative
binomial expansion,

𝑔(𝑥) = 𝑥𝑛 ∑
𝑘≥𝑛

(𝑛 − 𝑘 − 1
𝑛 − 1 )𝑥𝑘−𝑛

= 𝑥𝑛 ∑
𝑗≥0

(−𝑗 − 1
𝑛 − 1 )𝑥

𝑗

= (−1)𝑛−1𝑥𝑛 ∑
𝑗≥0

((𝑗 + 1
𝑛 − 1))𝑥

𝑗

= (−1)𝑛−1𝑥𝑛 ∑
𝑗≥0

(𝑛 + 𝑗 − 1
𝑛 − 1 )𝑥𝑗

= (−1)𝑛−1𝑥𝑛
(1 − 𝑥)𝑛 .

On the other hand, we could apply Theorem 3.9.1 and write

𝑔(𝑥) = −1
(1 − 1/𝑥)𝑛 = −𝑥𝑛

(𝑥 − 1)𝑛 = (−1)𝑛−1𝑥𝑛
(1 − 𝑥)𝑛

giving the same result but with less computation.
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Exercises

(1) Prove that for 𝑛 ∈ ℕ
𝑛
∑
𝑘=0

2𝑘(𝑛𝑘) = 3𝑛

in two ways.
(a) Use the Binomial Theorem.
(b) Use a combinatorial argument.
(c) Generalize this identity by replacing 2𝑘 by 𝑐𝑘 for any 𝑐 ∈ ℕ, giving both a proof

using the Binomial Theorem and one which is combinatorial.
(2) For𝑚, 𝑛, 𝑘 ∈ ℕ show that

(𝑚 + 𝑛
𝑘 ) = ∑

𝑙≥0
(𝑚𝑙 )(

𝑛
𝑘 − 𝑙)

in three ways: by induction, using the Binomial Theorem, and using a combinato-
rial argument.

(3) Let 𝑥1, . . . , 𝑥𝑚 be variables. Prove the multinomial coefficient identity

∑
𝑛1+⋯+𝑛𝑚=𝑛

( 𝑛
𝑛1, . . . , 𝑛𝑚

)𝑥𝑛11 ⋯𝑥𝑛𝑚𝑚 = (𝑥1 +⋯+ 𝑥𝑚)𝑛,

in three ways:
(a) by inducting on 𝑛,
(b) by using the Binomial Theorem and inducting on𝑚,
(c) by a combinatorial argument.

(4) (a) Prove Theorem 3.1.2.
(b) Use this generating function to rederive Corollary 1.5.3.

(5) (a) Recall that an inversion of 𝜋 ∈ 𝑃([𝑛]) is a pair (𝑖, 𝑗)with 𝑖 < 𝑗 and 𝜋𝑖 > 𝜋𝑗 and
we call 𝜋𝑖 the maximum of the inversion. The inversion table of 𝜋 is 𝐼(𝜋) =
(𝑎1, 𝑎2, . . . , 𝑎𝑛) where 𝑎𝑘 is the number of inversions with maximum 𝑘. Show
that 0 ≤ 𝑎𝑘 < 𝑘 for all 𝑘 and that

inv 𝜋 =
𝑛
∑
𝑘=1

𝑎𝑘.

(b) Let
ℐ𝑛 = {(𝑎1, 𝑎2, . . . , 𝑎𝑛) ∣ 0 ≤ 𝑎𝑘 < 𝑘 for all 𝑘}.

Show that the map 𝜋 ↦ 𝐼(𝜋) is a bijection 𝑃([𝑛]) → ℐ𝑛.
(c) Use part (b) and weight-generating functions to rederive Theorem 3.2.1.

(6) Let st∶ 𝔖𝑛 → ℕ be a statistic on permutations. Recall that for a permutation 𝜋we
letAv𝑛(𝜋) denote the set of permutations in𝔖𝑛 avoiding 𝜋. Say that permutations
𝜋, 𝜎 are st-Wilf equivalent, written 𝜋

st
≡ 𝜎, if for all 𝑛 ≥ 0 we have equality of the
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generating functions

∑
𝜏∈Av𝑛(𝜋)

𝑞st 𝜏 = ∑
𝜏∈Av𝑛(𝜍)

𝑞st 𝜏.

(a) Show that if 𝜋 and 𝜎 are st-Wilf equivalent, then they are Wilf equivalent.
(b) Show that

132
inv
≡ 213

and
231

inv
≡ 312

and that there are no other inv-Wilf equivalences between two permutations
in 𝔖3.

(c) Show that

132
maj
≡ 231

and
213

maj
≡ 312

and that there are no othermaj-Wilf equivalences between two permutations
in 𝔖3.

(7) (a) Prove that

[ 𝑛
𝑘 ] = [ 𝑛

𝑛 − 𝑘 ]

in threeways: using the 𝑞-factorial definition, using the interpretation in terms
of integer partitions, and using the interpretation in terms of subspaces.

(b) Prove the second recursion in Theorem 3.2.3 in two ways: by mimicking the
proof of the first recursion and by using the first recursion in combination
with part (a).

(c) If 𝑆 ⊆ [𝑛], then let Σ𝑆 be the sum of the elements of 𝑆. Give two proofs of the
following 𝑞-analogue of the fact that #([𝑛]𝑘 ) = (𝑛𝑘):

∑
𝑆∈([𝑛]𝑘 )

𝑞Σ𝑆 = 𝑞(𝑘+12 ) [ 𝑛
𝑘 ]

𝑞
,

one proof by induction and the other using Theorem 3.2.5.
(d) Give two other proofs of Theorem 3.2.6: one by inducting on 𝑛 and one by

using Theorem 3.2.5.
(8) (a) Reprove Theorem 3.2.4 in two way: using integer partitions and using sub-

spaces.
(b) The Negative 𝑞-Binomial Theorem states that

1
(1 − 𝑡)(1 − 𝑞𝑡)(1 − 𝑞2𝑡) . . . (1 − 𝑞𝑛−1𝑡) = ∑

𝑘≥0
[𝑛 + 𝑘 − 1

𝑘 ]𝑡𝑘.

Give three proofs of this result: inductive, using integer partitions, and using
subspaces.
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(9) (a) Given𝑛1+𝑛2+⋯+𝑛𝑚 = 𝑛, define the corresponding 𝑞-multinomial coefficient
to be

[ 𝑛
𝑛1, 𝑛2, . . . , 𝑛𝑚

]
𝑞
=

[𝑛]𝑞!
[𝑛1]𝑞! [𝑛2]𝑞! . . . [𝑛𝑚]𝑞!

if all 𝑛𝑖 ≥ 0 or zero otherwise. Prove that

[ 𝑛
𝑛1, 𝑛2, . . . , 𝑛𝑚

]
𝑞

=
𝑚
∑
𝑖=1

𝑞𝑛1+𝑛2+⋯+𝑛𝑖−1 [ 𝑛 − 1
𝑛1, . . . , 𝑛𝑖−1, 𝑛𝑖 − 1, 𝑛𝑖+1, . . . , 𝑛𝑚

]
𝑞
.

(b) Define inversions, descents, and the major index for permutations (linear or-
derings) of the multiset𝑀 = {{1𝑛1 , 2𝑛2 , . . . , 𝑚𝑛𝑚 }} exactly the way as was done
for permutations without repetition. Let 𝑃(𝑀) be the set of permutations of
𝑀. Prove that

∑
𝜋∈𝑃(𝑀)

𝑞inv𝜋 = ∑
𝜋∈𝑃(𝑀)

𝑞maj𝜋 = [ 𝑛
𝑛1, 𝑛2, . . . , 𝑛𝑚

]
𝑞
.

(c) Let 𝑉 be a vector space over 𝔽𝑞 of dimension 𝑛. Assume 𝑆 = {𝑠1 < ⋯ < 𝑠𝑚} ⊆
{0, 1, . . . , 𝑛}. Then a flag of type 𝑆 is a chain of subspaces

𝐹 ∶ 𝑊1 < 𝑊2 < ⋯ < 𝑊𝑚 ≤ 𝑉

such that dim𝑊 𝑖 = 𝑠𝑖 for all 𝑖. The reason for this terminology is that when
𝑛 = 2 and 𝑆 = {0, 1, 2}, then 𝐹 consists of a point (the origin) contained in
a line contained in a plane which could be viewed as a drawing of a physical
flag with the point being the hole in the ground, the line being the flag pole,
and the plane being the cloth flag itself. Give two proofs that

#{𝐹 of type 𝑆} = [ 𝑛
𝑠1, 𝑠2 − 𝑠1, 𝑠3 − 𝑠2, . . . , 𝑠𝑚 − 𝑠𝑚−1, 𝑛 − 𝑠𝑚

]
𝑞
,

one by mimicking the proof of Theorem 3.2.6 and one by induction on𝑚.
(10) (a) Prove that in ℂ[[𝑥]] we have 𝑒𝑘𝑥 = (𝑒𝑥)𝑘 for any 𝑘 ∈ ℕ.

(b) Define formal power series for the trigonometric functions using their usual
Taylor expansions. Prove that in ℂ[[𝑥]] we have sin2 𝑥 + cos2 𝑥 = 1 and
sin 2𝑥 = 2 sin 𝑥 cos 𝑥.

(c) If one is given a sequence 𝑎0, 𝑎1, 𝑎2, . . . and defines

𝑓𝑘(𝑥) = 𝑎𝑘𝑥𝑘,

then show that∑𝑘≥0 𝑓𝑘(𝑥) = 𝑓(𝑥) where 𝑓(𝑥) = ∑𝑘≥0 𝑎𝑘𝑥𝑘.
(d) Prove the backwards direction of Theorem 3.3.2.
(e) Use Theorems 3.3.1 and 3.3.3 to reprove that 1/𝑥 and 𝑒1+𝑥 are not well-defined

in ℂ[[𝑥]].
(f) Prove Theorem 3.3.4

(11) Prove that if 𝑆, 𝑇 are summable sets, then so is 𝑆 × 𝑇.
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(12) Say that 𝑓(𝑥) ∈ ℂ[[𝑥]] has a square root if there is 𝑔(𝑥) ∈ ℂ[[𝑥]] such that 𝑓(𝑥) =
𝑔(𝑥)2.
(a) Prove that 𝑓(𝑥) has a square root if and only ifmdeg𝑓(𝑥) is even.
(b) Show that as formal power series

(1 + 𝑥)1/2 = ∑
𝑘≥0

(1/2𝑘 )𝑥𝑘.

(c) Show that as formal power series

(𝑒𝑥)1/2 = ∑
𝑘≥0

𝑥𝑘
2𝑘 𝑘! .

(d) Generalize the previous parts of this exercise to𝑚th roots for𝑚 ∈ ℙ.
(13) Give a second proof of Theorem 3.4.2 by using induction.
(14) Prove Theorem 3.4.3.
(15) Prove Theorem 3.5.1.
(16) (a) Finish the proof of Theorem 3.5.3(a).

(b) Give a second proof of Theorem 3.5.3(b) by using Theorem 3.2.5.
(c) Show that the generating function for the number of partitions of 𝑛 with

largest part 𝑘 equals the generating function for the number of partitions of 𝑛
with exactly 𝑘 parts and that both are equal to the product

𝑥𝑘
(1 − 𝑥)(1 − 𝑥2)⋯ (1 − 𝑥𝑘) .

(d) The Durfee square of a Young diagram 𝜆 is the largest square partition (𝑑𝑑)
such that (𝑑𝑑) ⊆ 𝜆. Use this concept to prove that

∑
𝑛≥0

𝑝(𝑛)𝑥𝑛 = ∑
𝑑≥0

𝑥𝑑2

(1 − 𝑥)2(1 − 𝑥2)2⋯(1 − 𝑥𝑑)2 .

(17) Let 𝑎𝑛 be the number of integer partitions of 𝑛 such that any part 𝑖 is repeated fewer
than 𝑖 times and let 𝑏𝑛 be the number of integer partitions of 𝑛 such that no part is
a square. Use generating functions to show that 𝑎𝑛 = 𝑏𝑛 for all 𝑛.

(18) Given𝑚 ≥ 2, use generating functions to show that the number of partitions of 𝑛
where each part is repeated fewer than𝑚 times equals the number of partitions of
𝑛 into parts not divisible by 𝑚. Note that bijective proofs of this result were given
in Exercise 15 of Chapter 2.

(19) (a) Show that 𝐹𝑛 is the closest integer to

1
√5

(1 + √5
2 )

𝑛

for 𝑛 ≥ 1.
(b) Prove that

𝐹2𝑛 = { 𝐹𝑛−1𝐹𝑛+1 + 1 if 𝑛 is odd,
𝐹𝑛−1𝐹𝑛+1 − 1 if 𝑛 is even

in two ways: using equation (3.14) and by a combinatorial argument.
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(20) (a) Use the algorithm in Section 3.6 to rederive Theorem 3.1.1.
(b) Complete the proof of Theorem 3.6.1.
(c) Give a second proof of Theorem 3.6.1 using Theorem 3.1.2
(d) Prove Theorem 3.6.2.
(e) Let 𝑠 be the infinite matrix with rows and columns indexed by ℕ and with

𝑠(𝑛, 𝑘) being the entry in row 𝑛 and column 𝑘. Similarly define 𝑆 with entries
𝑆(𝑛, 𝑘). Show that 𝑆𝑠 = 𝑠𝑆 = 𝐼 where 𝐼 is the ℕ×ℕ identity matrix. Hint: Use
Theorems 3.6.1 and 3.6.2.

(21) Given 𝑛 ∈ ℕ and 𝑘 ∈ ℤ, define the corresponding 𝑞-Stirling number of the second
kind by 𝑆[0, 𝑘] = 𝛿0,𝑘 and, for 𝑛 ≥ 1,

𝑆[𝑛, 𝑘] = 𝑆[𝑛 − 1, 𝑘 − 1] + [𝑘]𝑞𝑆[𝑛 − 1, 𝑘].
(a) Show that

∑
𝑛≥0

𝑆[𝑛, 𝑘]𝑥𝑛 = 𝑥𝑘
(1 − [1]𝑞𝑥)(1 − [2]𝑞𝑥)⋯ (1 − [𝑘]𝑞𝑥)

.

(b) All set partitions 𝜌 = 𝐵1/𝐵2/ . . . /𝐵𝑘 in the rest of this problem will be written
in standard form, which means that

1 = min𝐵1 < min𝐵2 < ⋯ < min𝐵𝑘.
An inversion of 𝜌 is a pair (𝑏, 𝐵𝑗) where 𝑏 ∈ 𝐵𝑖 for some 𝑖 < 𝑗 and 𝑏 > min𝐵𝑗 .
We let inv 𝜌 be the number of inversions of 𝜌. For example, 𝜌 = 𝐵1/𝐵2/𝐵3 =
136/25/4 has inversions (3, 𝐵2), (6, 𝐵2), (6, 𝐵3), and (5, 𝐵3) so that inv 𝜌 = 4.
Show that

𝑆[𝑛, 𝑘] = ∑
𝜌∈𝑆([𝑛],𝑘)

𝑞inv𝜌.

(c) A descent of a set partition 𝜌 is a pair (𝑏, 𝐵𝑖+1) where 𝑏 ∈ 𝐵𝑖 and 𝑏 > min𝐵𝑗 .
We let des 𝜌 be the number of descents of 𝜌. In the previous example, 𝜌 has
descents (3, 𝐵2), (6, 𝐵2), and (5, 𝐵3) so that des 𝜌 = 3. The descent multiset of 𝜌
is denoted Des 𝜌 and is the multiset

{{1𝑑1 , 2𝑑2 , . . . , 𝑘𝑑𝑘 ∣ for all 𝑖, 𝑑𝑖 = number of descents (𝑏, 𝐵𝑖+1)}}.
Themajor index of 𝜌 is

maj 𝜌 = ∑
𝑖∈Des𝜌

𝑖 = 𝑑1 + 2𝑑2 +⋯+ 𝑘𝑑𝑘.

In our running exampleDes 𝜌 = {{12, 21}} so thatmaj 𝜌 = 1+1+2 = 4. Show
that

𝑆[𝑛, 𝑘] = ∑
𝜌∈𝑆([𝑛],𝑘)

𝑞maj𝜌.

(22) Given 𝑛 ∈ ℕ and 𝑘 ∈ ℤ, define the corresponding signless 𝑞-Stirling number of the
first kind by 𝑐[0, 𝑘] = 𝛿0,𝑘 and, for 𝑛 ≥ 1,

𝑐[𝑛, 𝑘] = 𝑐[𝑛 − 1, 𝑘 − 1] + [𝑛 − 1]𝑞𝑐[𝑛 − 1, 𝑘]
(a) Show that

∑
𝑘≥0

𝑐[𝑛, 𝑘]𝑥𝑘 = 𝑥(𝑥 + [1]𝑞)(𝑥 + [2]𝑞)⋯ (𝑥 + [𝑛 − 1]𝑞).
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114 3. Counting with Ordinary Generating Functions

(b) The standard form of 𝜋 ∈ 𝔖𝑛 is 𝜋 = 𝜅1𝜅2⋯𝜅𝑘 where the 𝜅𝑖 are the cycles of
𝜋,

min 𝜅1 < min 𝜅2 < ⋯ < min 𝜅𝑘,
and each 𝜅𝑖 is written beginning withmin 𝜅𝑖. Define the cycle major index of𝜋
to bemaj𝑐 𝜋 = maj 𝜋′ where 𝜋′ is the permutation in one-line form obtained
by removing the cycle parentheses in the standard form of 𝜋. If, for example,
𝜋 = (1, 7, 2)(3, 6, 8)(4, 5), then 𝜋′ = 17236845 so that maj𝑐 𝜋 = 2 + 6 = 8.
Show that

𝑐[𝑛, 𝑘] = ∑
𝜋∈𝑐([𝑛],𝑘)

𝑞maj𝑐 𝜋.

(23) Reprove the formula

𝐶(𝑛) = 1
𝑛 + 1(

2𝑛
𝑛 )

by using Theorem 3.6.3.
(24) (a) Show that if 𝑘, 𝑙 ∈ ℕ are constants, then (𝑛+𝑙𝑘 ) is a polynomial in 𝑛 of degree 𝑘.

(b) Show that the polynomials

(𝑛0), (
𝑛 + 1
1 ), (𝑛 + 2

2 ), . . .

form a basis for the algebra of polynomials in 𝑛.
(c) Use part (a) to complete the proof of Theorem 3.7.1.

(25) Redo the solution for the first recursion in Section 3.6 aswell as the one for𝐹𝑛 using
the method of undetermined coefficients.

(26) Prove for the 𝑛-cycle that
𝑃(𝐶𝑛; 𝑡) = (𝑡 − 1)𝑛 + (−1)𝑛(𝑡 − 1)

in two ways: using deletion-contraction and using NBC sets.
(27) Prove Theorem 3.8.4 using induction and give a second proof of parts (b)–(d) using

NBC sets.
(28) (a) Complete the proof of Theorem 3.8.6.

(b) Let 𝐺 = (𝑉, 𝐸) be a graph and 𝑡 ∈ ℙ. Call an acyclic orientation 𝑂 and a (not
necessarily proper) coloring 𝑐∶ 𝑉 → [𝑡] compatible if, for all arcs 𝑢𝑣 of 𝑂, we
have 𝑐(𝑢) ≤ 𝑐(𝑣). Show that if #𝑉 = 𝑛, then

𝑃(𝐺;−𝑡) = (−1)𝑛(number of compatible pairs (𝑂, 𝑐)).
(c) Show that Theorem 3.8.6 is a special case of part (b).

(29) Finish the proofs of Lemma 3.8.7 and Lemma 3.8.9.
(30) (a) Call a permutation 𝜎 which avoids Π = {231, 312, 321} tight. Show that 𝜎 is

tight if and only if 𝜎 is an involution having only 2-cycles of the form (𝑖, 𝑖 + 1)
for some 𝑖.

(b) Let 𝐺 be a graph with 𝑉 = [𝑛]. Call a spanning forest 𝐹 of 𝐺 tight if the
sequence of labels on any path starting at a root of 𝐹 avoids Π as in part (a).
Let
TSF𝑚(𝐺) = {𝐹 ∣ 𝐹 is a tight spanning forest of 𝐺 with𝑚 edges}.
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Show that if 𝐺 has no 3-cycles, then for all𝑚 ≥ 0
TSF𝑚(𝐺) ⊆ NBC𝑚(𝐺).

(c) A candidate path in a graph 𝐺 with no 3-cycles is a path of the form
𝑎, 𝑐, 𝑏, 𝑣1, 𝑣2, . . . , 𝑣𝑚 = 𝑑

such that 𝑎 < 𝑏 < 𝑐,𝑚 ≥ 1, and 𝑣𝑚 is the only 𝑣𝑖 smaller than 𝑐. A total order
on 𝑉(𝐺) is called a quasiperfect ordering (qpo) if every candidate path satisfies
the following condition: either 𝑎𝑑 ∈ 𝐸(𝐺), or 𝑑 < 𝑏 and 𝑐𝑑 ∈ 𝐸(𝐺). Consider
the generating function

tsf(𝐺; 𝑡) = ∑
𝑚≥0

(−1)𝑚 tsf𝑚(𝐺)𝑡𝑛−𝑚.

Show that tsf(𝐺; 𝑡) = 𝑃(𝐺; 𝑡) if and only if the natural order on [𝑛] is a qpo.
(31) Fill in the details of the case −𝑑 ≤ 𝑚 ≤ 0 in the proof of Theorem 3.9.1.
(32) (a) Extend the Fibonacci numbers 𝐹𝑛 to all 𝑛 ∈ ℤ by insisting that their recursion

continue to hold for 𝑛 < 0. Show that if 𝑛 ≥ 0, then
𝐹−𝑛 = (−1)𝑛−1𝐹𝑛.

(b) Find∑𝑛≥1 𝐹−𝑛𝑥𝑛 in two ways: by using part (a) and by using Theorem 3.9.1.
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Chapter 4

Counting with Exponential
Generating Functions

Given a sequence 𝑎0, 𝑎1, 𝑎𝑛, . . . of complex numbers, one can associate with it an ex-
ponential generating function where 𝑎𝑛 is the coefficient of 𝑥𝑛/𝑛!. In certain cases it
turns out that the exponential generating function is easier to deal with than the ordi-
nary one. This is particularly true if the 𝑎𝑛 count combinatorial objects obtained from
some set of labels. We give a method for dealing with such structures which again give
rise to Sum and Product Rules as well as an Exponential Formula unique to this setting.

4.1. First examples

Given 𝑎0, 𝑎1, 𝑎𝑛, . . . where 𝑎𝑛 ∈ ℂ for all 𝑛, the corresponding exponential generating
function (egf) is

𝐹(𝑥) = 𝑎0 + 𝑎1
𝑥
1! + 𝑎2

𝑥2
2! +⋯ = ∑

𝑛≥0
𝑎𝑛
𝑥𝑛
𝑛! .

In order to distinguish these from the ordinary generating functions (ogfs) in the pre-
vious chapter, we will often use capital letters for egfs and lowercase ones for ogfs. The
use of the adjective “exponential” is because in the simple case when 𝑎𝑛 = 1 for all 𝑛,
the corresponding egf is 𝐹(𝑥) = ∑𝑛≥0 𝑥𝑛/𝑛! = 𝑒𝑥.

To illustrate why egfs may be useful in studying a sequence, consider 𝑎𝑛 = 𝑛! for
𝑛 ≥ 0. The ogf is 𝑓(𝑥) = ∑𝑛≥0 𝑛! 𝑥𝑛 and this power series cannot be simplified. On
the other hand, the egf is

𝐹(𝑥) = ∑
𝑛≥0

𝑛! 𝑥
𝑛

𝑛! =
1

1 − 𝑥

which can now be manipulated if necessary.
To get some practice in using egfs, we will now compute some examples. One

techniquewhich occurs often in determining generating functions is the interchange of

117
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118 4. Counting with Exponential Generating Functions

summations. As an example, consider the derangement numbers𝐷(𝑛) and the formula
which was given for them in Theorem 2.1.2. So

∑
𝑛≥0

𝐷(𝑛)𝑥
𝑛

𝑛! = ∑
𝑛≥0

𝑛! (
𝑛
∑
𝑘=0

(−1)𝑘 1𝑘!)
𝑥𝑛
𝑛!

= ∑
𝑘≥0

(−1)𝑘
𝑘! ∑

𝑛≥𝑘
𝑥𝑛

= ∑
𝑘≥0

(−1)𝑘
𝑘!

𝑥𝑘
1 − 𝑥

= 1
1 − 𝑥 ∑

𝑘≥0

(−𝑥)𝑘
𝑘!

= 𝑒−𝑥
1 − 𝑥 .

We will be able to give a much more combinatorial derivation of this formula once we
have introduced the theory of labeled structures in Section 4.3. For now, we just record
the result for future reference.

Theorem 4.1.1. We have

∑
𝑛≥0

𝐷(𝑛)𝑥
𝑛

𝑛! =
𝑒−𝑥
1 − 𝑥 . □

If the given sequence is defined by a recurrence relation, then one can use a slight
modification of the algorithm in Section 3.6 to compute its egf. One just multiplies by
𝑥𝑛/𝑛!, rather than 𝑥𝑛, and sums. Note that the largest index in the recursion may not
be the best choice to use as the power on 𝑥 because of the following considerations.
Given 𝑓(𝑥) = ∑𝑛≥0 𝑎𝑛𝑥𝑛, then its formal derivative is the formal power series

𝑓′(𝑥) = ∑
𝑛≥0

𝑛𝑎𝑛𝑥𝑛−1.

This derivative enjoys most of the usual properties of the ordinary analytic derivative
such as linearity and the product rule. One similarly defines formal integrals. Note
that if one starts with an egf 𝐹(𝑥) = ∑𝑛≥0 𝑎𝑛𝑥𝑛/𝑛!, then

(4.1) 𝐹′(𝑥) = ∑
𝑛≥0

𝑛𝑎𝑛
𝑥𝑛−1
𝑛! = ∑

𝑛≥1
𝑎𝑛

𝑥𝑛−1
(𝑛 − 1)! = ∑

𝑛≥0
𝑎𝑛+1

𝑥𝑛
𝑛!

which is just the egf for the same sequence shifted up by one. So it can simplify things
if the subscript on an element of the sequence is greater than the exponent of the cor-
responding power of 𝑥.

Let us consider the Bell numbers and their recurrence relation given in Theo-
rem 1.4.1. Let 𝐵(𝑥) = ∑𝑛≥0 𝐵𝑛𝑥𝑛/𝑛!. It will be convenient to replace 𝑛 by 𝑛 + 1 and 𝑘
by 𝑘+1 in the recursion before multiplying by 𝑥𝑛/𝑛! and summing. So using (4.1) and
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the summation interchange trick we obtain

𝐵′(𝑥) = ∑
𝑛≥0

𝐵(𝑛 + 1)𝑥
𝑛

𝑛!

= ∑
𝑛≥0

(
𝑛
∑
𝑘=0

(𝑛𝑘)𝐵(𝑛 − 𝑘))𝑥
𝑛

𝑛!

= ∑
𝑛≥0

𝑛
∑
𝑘=0

1
𝑘! (𝑛 − 𝑘)!𝐵(𝑛 − 𝑘)𝑥𝑛

= ∑
𝑘≥0

𝑥𝑘
𝑘! ∑𝑛≥𝑘

𝐵(𝑛 − 𝑘) 𝑥𝑛−𝑘
(𝑛 − 𝑘)!

= ∑
𝑘≥0

𝑥𝑘
𝑘! 𝐵(𝑥)

= 𝑒𝑥𝐵(𝑥).

We now have a differential equation to solve, but we must take some care to make
sure this can be done formally. To this end we define the formal natural logarithm by

(4.2) ln(1 + 𝑥) = 𝑥 − 𝑥2
2 + 𝑥3

3 −⋯ = ∑
𝑛≥1

(−1)𝑛−1𝑥𝑛
𝑛

which can be thought of as formally integrating the geometric series for 1/(1+𝑥). Note
that since ln(1+𝑥) has an infinite number of terms, to have ln(1+𝑓(𝑥))well-defined it
must be that 𝑓(𝑥) has constant term 0 by Theorem 3.3.3. In other words, for an infinite
series 𝑔(𝑥), we have ln 𝑔(𝑥) is only defined if the constant term of 𝑔(𝑥) is 1. Luckily
this is true of 𝐵(𝑥) so we can separate variables above to get 𝐵′(𝑥)/𝐵(𝑥) = 𝑒𝑥 and then
formally integrate to get ln 𝐵(𝑥) = 𝑒𝑥 + 𝑐 for some constant 𝑐. By definition (4.2) a
natural log has no constant term so we must take 𝑐 = −1. Solving for 𝐵(𝑥) we obtain
the following result. Again, a more combinatorial proof will be given later.

Theorem 4.1.2. We have

∑
𝑛≥0

𝐵(𝑛)𝑥
𝑛

𝑛! = 𝑒𝑒𝑥−1. □

We end this section by discussing certain permutations whose descent sets have a
nice structure. To compute their egf we will need to define the formal sine power series
by

sin 𝑥 = 𝑥 − 𝑥3
3! +

𝑥5
5! −⋯ = ∑

𝑛≥0
(−1)𝑛 𝑥2𝑛+1

(2𝑛 + 1)!
and

cos 𝑥 = (sin 𝑥)′, sec 𝑥 = 1
cos 𝑥 , tan 𝑥 = sin 𝑥

cos 𝑥 .
Note that sec 𝑥 and tan 𝑥 are well-defined by Theorem 3.3.1.
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Call a permutation 𝜋 ∈ 𝑃([𝑛]) alternating if

(4.3) 𝜋1 > 𝜋2 < 𝜋3 > 𝜋4 < ⋯

or equivalently if Des𝜋 consists of the odd number in [𝑛]. The 𝑛th Euler number is

𝐸𝑛 = the number of alternating 𝜋 ∈ 𝑃([𝑛]).

For example, when 𝑛 = 4 then the alternating permutations are

2143, 3142, 3241, 4132, 4231

so 𝐸4 = 5. A permutation is complement alternating if 𝜋1 < 𝜋2 > 𝜋3 < 𝜋4 > ⋯
or equivalently 𝜋𝑐 is alternating where 𝜋𝑐 is the complement of 𝜋 as defined in Ex-
ercise (37)(b) of Chapter 1. Clearly 𝐸𝑛 also counts the number of complement alter-
nating 𝜋 ∈ 𝑃([𝑛]). More generally, define any sequence of integers to be alternating
using (4.3) and similarly for complement alternating. We have the following result for
the Euler numbers.

Theorem 4.1.3. We have 𝐸0 = 𝐸1 = 1 and, for 𝑛 ≥ 1,

2𝐸𝑛+1 =
𝑛
∑
𝑘=0

(𝑛𝑘)𝐸𝑘𝐸𝑛−𝑘.

Also

∑
𝑛≥0

𝐸𝑛
𝑥𝑛
𝑛! = sec 𝑥 + tan 𝑥.

Proof. To prove the recurrence it will be convenient to consider the set 𝑆 which is the
union of all permutations which are either alternating or complement alternating in
𝑃([𝑛 + 1]). So #𝑆 = 2𝐸𝑛+1. Pick 𝜋 ∈ 𝑆 and suppose 𝜋𝑘 = 𝑛 + 1. Then 𝜋 factors
as a word 𝜋 = 𝜋′(𝑛 + 1)𝜋″. Suppose first that 𝜋 is alternating. Then 𝑘 is odd, 𝜋′ is
alternating, and 𝜋″ is complement alternating. The number of ways of choosing the
elements of 𝜋′ is (𝑛𝑘) and the remaining ones are used for 𝜋

″. The number of ways of
arranging the elements for 𝜋′ in alternating order is 𝐸𝑘, and for 𝜋″ it is 𝐸𝑛−𝑘. So the
total number of such 𝜋 is (𝑛𝑘)𝐸𝑘𝐸𝑛−𝑘 where 𝑘 is odd. Similar considerations show that
the same formula holds for even 𝑘when 𝜋 is complement alternating. The summation
side of the recursion follows.

Now let 𝐸(𝑥) be the egf for the 𝐸𝑛. Multiplying the recurrence by 𝑥𝑛/𝑛! and sum-
ming over 𝑛 ≥ 1 one obtains the differential equation and boundary condition

2𝐸′(𝑥) = 𝐸(𝑥)2 + 1 and 𝐸(0) = 1

where, to make things well-defined for formal power series, 𝐸(0) is an abbreviation
for the constant term of 𝐸(𝑥). One now obtains the unique solution 𝐸(𝑥) = sec 𝑥 +
tan 𝑥, either by separation of variables or by verifying that this function satisfies the
differential equation and initial condition. □
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4.2. Generating functions for Eulerian polynomials

In Section 3.2 we saw that the inv andmaj statistics have the same distribution. It turns
out that there are statistics that have the same distribution as des and these are called
Eulerian. The polynomials having this distribution have nice corresponding generat-
ing functions of both the ordinary and exponential type. We will discuss them in this
section. A whole book devoted to this topic has been written by Petersen [69].

Given 𝑛, 𝑘 ∈ ℕ with 0 ≤ 𝑘 < 𝑛, the corresponding Eulerian number is
𝐴(𝑛, 𝑘) = #{𝜋 ∈ 𝔖𝑛 ∣ des 𝜋 = 𝑘}.

As usual, we let 𝐴(𝑛, 𝑘) = 0 if 𝑘 < 0 or 𝑘 ≥ 𝑛 with the exception 𝐴(0, 0) = 1. For
example, if 𝑛 = 3, then we have

𝑘 0 1 2

des 𝜋 = 𝑘 123 132, 213, 231, 312 321
so that

𝐴(3, 0) = 1, 𝐴(3, 1) = 4, 𝐴(3, 2) = 1.
Be sure not to confuse these Eulerian numbers with the Euler numbers introduced in
the previous section. Also, some authors use𝐴(𝑛, 𝑘) to denote the number of permuta-
tions in𝔖𝑛 having 𝑘− 1 descents. Some elementary properties of the 𝐴(𝑛, 𝑘) are given
in the next result. It will be convenient to let

𝐴([𝑛], 𝑘) = {𝜋 ∈ 𝔖𝑛 ∣ des 𝜋 = 𝑘}.

Theorem 4.2.1. Suppose 𝑛 ≥ 0.
(a) The Eulerian numbers satisfy the initial condition

𝐴(0, 𝑘) = 𝛿𝑘,0
and recurrence relation

𝐴(𝑛, 𝑘) = (𝑘 + 1)𝐴(𝑛 − 1, 𝑘) + (𝑛 − 𝑘)𝐴(𝑛 − 1, 𝑘 − 1)
for 𝑛 ≥ 1.

(b) The Eulerian numbers are symmetric in that
𝐴(𝑛, 𝑘) = 𝐴(𝑛, 𝑛 − 𝑘 − 1).

(c) We have
∑
𝑘
𝐴(𝑛, 𝑘) = 𝑛! .

Proof. We leave all except the recursion as an exercise. Suppose 𝜋 ∈ 𝐴([𝑛], 𝑘). Then
removing 𝑛 from 𝜋 results in 𝜋′ ∈ 𝐴([𝑛− 1], 𝑘) or 𝜋″ ∈ 𝐴([𝑛− 1], 𝑘− 1) depending on
the relative size of the elements to either side of 𝑛 in 𝜋. A permutation 𝜋′ will result if
either the 𝑛 in 𝜋 is in the space corresponding to a descent of 𝜋′, or at the end of 𝜋′. So
a given𝜋′ will result 𝑘+1 times by thismethod, which accounts for the first term in the
sum. Similarly, one obtains a 𝜋″ from 𝜋 if 𝑛 is either in the space of an ascent or at the
beginning. So the total number of repetitions in this case is 𝑛 − 𝑘 and the recurrence
is proved. □
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The 𝑛th Eulerian polynomial is
𝐴𝑛(𝑞) = ∑

𝑘≥0
𝐴(𝑛, 𝑘)𝑞𝑘 = ∑

𝜋∈𝔖𝑛

𝑞des𝜋.

Any statistic having distribution 𝐴𝑛(𝑞) is said to be an Eulerian statistic. One of the
other famous Eulerian statistics counts excedances. An excedance of a permutation
𝜋 ∈ 𝔖𝑛 is an integer 𝑖 such that 𝜋(𝑖) > 𝑖. This gives rise to the excedance set

Exc𝜋 = {𝑖 ∣ 𝜋(𝑖) > 𝑖}
and excedance statistic

exc 𝜋 = #Exc𝜋.
To illustrate, if 𝜋 = 3167542, then 𝜋(1) = 3, 𝜋(3) = 6, and 𝜋(4) = 7 while 𝜋(𝑖) ≤ 𝑖 for
other 𝑖. So Exc𝜋 = {1, 3, 4} and exc 𝜋 = 3. Making a chart for 𝑛 = 3 as we did for des
gives

𝑘 0 1 2

exc 𝜋 = 𝑘 123 132, 213, 312, 321 231
so that the number of permutations in each column is given by the𝐴(3, 𝑘), even though
the sets of permutations in the two tables are not necessarily equal.

In order to prove that𝐴(𝑛, 𝑘) also counts permutations by excedances, wewill need
amap that is so important in enumerative combinatorics that it is sometimes called the
fundamental bijection. Before we can define this function, we will need some more
concepts. Similar to what was done in Section 1.12, call an element 𝜋𝑖 of 𝜋 ∈ 𝔖𝑛 a
left-right maximum if

𝜋𝑖 > max{𝜋1, 𝜋2, . . . , 𝜋𝑖−1}.
Note that 𝜋1 and 𝑛 are always left-right maxima and that the left-right maxima in-
crease left-to-right. To illustrate, the left-right maxima of 𝜋 = 51327846 are 5, 7, and
8. The left-right maxima of 𝜋 determine the left-right factorization of 𝜋 into factors
𝜋𝑖𝜋𝑖+1 . . . 𝜋𝑗−1 where 𝜋𝑖 is a left-right maximum and 𝜋𝑗 is the next such maximum. In
our example 𝜋, the factorization is 5132, 7, and 846.

Recall that since disjoint cycles commute, there are many ways of writing the dis-
joint cycle decomposition 𝜋 = 𝑐1𝑐2⋯𝑐𝑘. We wish to distinguish one which is analo-
gous to the left-right factorization. The canonical cycle decomposition of 𝜋 is obtained
by writing each 𝑐𝑖 so that it starts withmax 𝑐𝑖 and then ordering the cycles so that

max 𝑐1 < max 𝑐2 < ⋯ < max 𝑐𝑘.
To illustrate, the permutation 𝜋 = (7, 1, 8)(2, 4, 5, 3)(6) written canonically becomes
𝜋 = (5, 3, 2, 4)(6)(8, 7, 1).

The fundamental map is Φ∶ 𝔖𝑛 → 𝔖𝑛 where Φ(𝜋) is obtained by replacing each
left-right factor 𝜋𝑖𝜋𝑖+1 . . . 𝜋𝑗−1 by the cycle (𝜋𝑖, 𝜋𝑖+1, . . . , 𝜋𝑗−1). For example

Φ(51327846) = (5, 1, 3, 2)(7)(8, 4, 6) = 35261874.
Note that from the definitions it follows that the cycle decomposition ofΦ(𝜋) obtained
will be the canonical one. It is also easy to construct an inverse for Φ: given 𝜎 ∈ 𝔖𝑛,
we construct its canonical cycle decomposition and then just remove the parentheses
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and commas to get 𝜋. These maps are inverses since the inequalities defining the left-
right factorization and canonical cycle decomposition are the same. We have proved
the following.

Theorem 4.2.2. The fundamental map Φ∶ 𝔖𝑛 → 𝔖𝑛 is a bijection. □

Corollary 4.2.3. For 𝑛, 𝑘 ≥ 0 we have
𝐴(𝑛, 𝑘) = number of 𝜋 ∈ 𝔖𝑛 with 𝑘 excedances.

Proof. A coexcedance of𝜋 ∈ 𝔖𝑛 is 𝑖 ∈ [𝑛] such that𝜋(𝑖) < 𝑖. Note that the distribution
of coexcedances over 𝔖𝑛 is the same as for excedances. Indeed, we have a bijection
on 𝔖𝑛 defined by 𝜋 ↦ 𝜋−1. And this bijection has the property that the number of
excedances of 𝜋 is the number of coexcedances of 𝜋−1 because one obtains the two-
line notation for 𝜋−1 (as defined in Section 1.5) by taking the two-line notation for 𝜋,
interchanging the top and bottom lines, and then permuting the columns until the first
row is 12 . . . 𝑛.

We now claim that if Φ(𝜋) = 𝜎 where Φ is the fundamental bijection, then des 𝜋
is the number of coexcedances of 𝜎 which will finish the proof. But if we we have a
descent 𝜋𝑖 > 𝜋𝑖+1 in 𝜋, then 𝜋𝑖, 𝜋𝑖+1 must be in the same factor of the left-right factor-
ization. So in Φ(𝜋) we have a cycle mapping 𝜋𝑖 to 𝜋𝑖+1. This makes 𝜋𝑖 a coexcedance
of 𝜎. Similar ideas show that no ascent of 𝜎 gives rise to a coexcedance of 𝜎 and so we
are done. □

We will now derive two generating functions involving the Eulerian polynomials,
one ordinary and one exponential.

Theorem 4.2.4. For 𝑛 ≥ 0 we have

(4.4) 𝐴𝑛(𝑞)
(1 − 𝑞)𝑛+1 = ∑

𝑚≥0
(𝑚 + 1)𝑛𝑞𝑚.

Proof. We will count descent partitioned permutations 𝜋 which consist of a permuta-
tion 𝜋 ∈ 𝔖𝑛 which has bars inserted in some of its spaces either between elements
or before 𝜋1 or after 𝜋𝑛, subject to the restriction that the space between each de-
scent 𝜋𝑖 > 𝜋𝑖+1 must have a bar. For example, if 𝜋 = 2451376, then we could have
𝜋 = 24|5||137|6|. Let 𝑏(𝜋) be the number of bars in 𝜋. We will show that both sides
of (4.4) are the generating function 𝑓(𝑞) = ∑𝜋 𝑞𝑏(𝜋).

First of all, given 𝜋, what is its contribution to 𝑓(𝑞)? First we must put bars in the
descents of 𝜋 which results in a factor of 𝑞des𝜋. Now we can choose the rest of the
bars by putting them in any of the 𝑛 + 1 spaces of 𝜋 with repetition allowed which, by
Theorem 3.4.2, gives a factor of 1/(1 − 𝑞)𝑛+1. So

𝑓(𝑞) = ∑
𝜋∈𝔖𝑛

𝑞des𝜋
(1 − 𝑞)𝑛+1 =

𝐴𝑛(𝑞)
(1 − 𝑞)𝑛+1

which is the first half of what we wished to prove.
On the other hand, the coefficient of 𝑞𝑚 in 𝑓(𝑞) is the number of 𝜋 which have

exactly 𝑚 bars. One can construct these permutations as follows. Start with 𝑚 bars
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which create𝑚+1 spaces between them. Now place the numbers 1, . . . , 𝑛 between the
bars, making sure that the numbers between two consecutive bars form an increasing
sequence. So we are essentially placing 𝑛 distinguishable balls into𝑚+ 1 distinguish-
able boxes since the ordering in each box is fixed. By the twelvefold way, there are
(𝑚 + 1)𝑛 ways of doing this, which completes the proof. □

We can now use the ogf just derived to find the egf for the polynomials 𝐴𝑛(𝑥).
Theorem 4.2.5. We have

(4.5) ∑
𝑛≥0

𝐴𝑛(𝑞)
𝑥𝑛
𝑛! =

𝑞 − 1
𝑞 − 𝑒(𝑞−1)𝑥 .

Proof. Multiply both sides of the equality in the previous theorem by the quantity
(1 − 𝑞)𝑛𝑥𝑛/𝑛! and sum over 𝑛. The left-hand side becomes

∑
𝑛≥0

(1 − 𝑞)𝑛𝐴𝑛(𝑞)𝑥𝑛
(1 − 𝑞)𝑛+1𝑛! = 1

1 − 𝑞 ∑
𝑛≥0

𝐴𝑛(𝑞)
𝑥𝑛
𝑛! .

And the right side is now

∑
𝑛≥0

∑
𝑚≥0

𝑞𝑚 (1 − 𝑞)𝑛(𝑚 + 1)𝑛𝑥𝑛
𝑛! = ∑

𝑚≥0
𝑞𝑚 ∑

𝑛≥0

[(1 − 𝑞)𝑥(𝑚 + 1)]𝑛
𝑛!

= ∑
𝑚≥0

𝑞𝑚𝑒(1−𝑞)𝑥(𝑚+1)

= 𝑒(1−𝑞)𝑥
1 − 𝑞𝑒(1−𝑞)𝑥

= 1
𝑒(𝑞−1)𝑥 − 𝑞.

Setting the two sides equal and solving for the desired generating function completes
the proof. □

4.3. Labeled structures

There is a method for working combinatorially with exponential generating functions
which we will present in the following sections. It is based on Joyal’s theory of species
[47]. His original method used the machinery of categories and functors. But for the
type of enumeration we will be doing, it is not necessary to use this level of generality.
An exposition of the full theory can be found in the textbook of Bergeron, Labelle, and
Leroux [11].

A labeled structure is a function 𝒮 which assigns to each finite set 𝐿 a finite set 𝒮(𝐿)
such that
(4.6) #𝐿 = #𝑀 ⟹ #𝒮(𝐿) = #𝒮(𝑀).
We call 𝐿 the label set and 𝒮(𝐿) the set of structures on 𝐿. We let

𝑠𝑛 = #𝒮(𝐿)
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for any 𝐿 of cardinality 𝑛, and this is well-defined because of (4.6). We sometimes use
𝒮(⋅) as an alternative notation for the structure 𝒮. We also have the corresponding egf

𝐹𝒮 = 𝐹𝒮(⋅)(𝑥) = ∑
𝑛≥0

𝑠𝑛
𝑥𝑛
𝑛! .

Although these definitions may seem very abstract, we have already seen many exam-
ples of labeled structures. It is just that we have not identified them as such. The rest
of this section will be devoted to putting these examples in context. A summary can be
found in Table 4.1.

To start, consider the labeled structure defined by 𝒮(𝐿) = 2𝐿. So 𝒮 assigns to each
label set 𝐿 the set of subsets of 𝐿. To illustrate

𝒮({𝑎, 𝑏}) = {∅, {𝑎}, {𝑏}, {𝑎, 𝑏}}.
Clearly 𝒮 satisfies (4.6) with 𝑠𝑛 = #2[𝑛] = 2𝑛. So the associated generating function is

(4.7) 𝐹2⋅(𝑥) = ∑
𝑛≥0

2𝑛 𝑥
𝑛

𝑛! = 𝑒2𝑥.

We will also want to specify the size of the subsets under consideration by using
the structure 𝒮(𝐿) = (𝐿𝑘) for some fixed 𝑘 ≥ 0. Now we have 𝑠𝑛 = (𝑛𝑘) and, using the
fact that this binomial coefficient is zero for 𝑛 < 𝑘,

(4.8) 𝐹( ⋅𝑘)
(𝑥) = ∑

𝑛≥0
(𝑛𝑘)

𝑥𝑛
𝑛! = ∑

𝑛≥𝑘

𝑛!
𝑘! (𝑛 − 𝑘)! ⋅

𝑥𝑛
𝑛! =

𝑥𝑘
𝑘! ∑𝑛≥𝑘

𝑥𝑛−𝑘
(𝑛 − 𝑘)! =

𝑥𝑘
𝑘! 𝑒

𝑥.

It will be convenient to have a map which adds no extra structure to the label set.
So define the labeled structure 𝐸(𝐿) = {𝐿}. Note that 𝐸 returns the set consisting of 𝐿
itself, not the set consisting of the elements of 𝐿. Consequently 𝑠𝑛 = 1 for all 𝑛 and
𝐹𝐸 = 𝑒𝑥. The use of 𝐸 for this labeled structure reflects both the fact that its egf is the
exponential function and also that the French word for “set” is “ensemble”. (Joyal is a
francophone.)

We will also need to specify that a set be nonempty by defining

𝐸(𝐿) = { {𝐿} if 𝐿 ≠ ∅,
∅ if 𝐿 = ∅.

Note that 𝐸(∅) = {∅}while 𝐸(∅) = ∅. For 𝐸 we clearly have 𝑠𝑛 = 1 for 𝑛 ≥ 1 and 𝑠0 = 0.
It is also obvious that

(4.9) 𝐹𝐸 = 𝑒𝑥 − 1.

For partitions of sets we will use the structure 𝐿 ↦ 𝐵(𝐿) where 𝐵(𝐿) is defined as
in Section 1.4. So 𝑠𝑛 = 𝐵(𝑛) and, by Theorem 4.1.2, the egf is

𝐹𝐵 = ∑
𝑛≥0

𝐵(𝑛)𝑥
𝑛

𝑛! = 𝑒𝑒𝑥−1.

Wewill be able to give a combinatorial derivation of this fact once we derive the Expo-
nential Formula in Section 4.5, rather than using the recursion and formal manipula-
tions as we did before.
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Table 4.1. Labeled structures

𝒮(𝐿) Counts 𝑠𝑛 egf

2𝐿 subsets 2𝑛 ∑
𝑛≥0

2𝑛 𝑥
𝑛

𝑛! = 𝑒2𝑥

(𝐿𝑘) 𝑘-subsets (𝑛𝑘) ∑
𝑛≥0

(𝑛𝑘)
𝑥𝑛
𝑛! =

𝑥𝑘𝑒𝑥
𝑘!

𝐸(𝐿) sets 1 ∑
𝑛≥0

𝑥𝑛
𝑛! = 𝑒𝑥

𝐸(𝐿) nonempty sets 1 − 𝛿𝑛,0 ∑
𝑛≥1

𝑥𝑛
𝑛! = 𝑒𝑥 − 1

𝐵(𝐿) set partitions 𝐵𝑛 ∑
𝑛≥0

𝐵𝑛
𝑥𝑛
𝑛! = 𝑒𝑒𝑥−1

𝑆(𝐿, 𝑘) set partitions
with 𝑘 blocks 𝑆(𝑛, 𝑘) ∑

𝑛≥0
𝑆(𝑛, 𝑘)𝑥

𝑛

𝑛! =
1
𝑘! (𝑒

𝑥 − 1)𝑘

𝑆𝑜(𝐿, 𝑘)
ordered version

of 𝑆(𝐿, 𝑘) 𝑘! 𝑆(𝑛, 𝑘) 𝑘! ∑
𝑛≥0

𝑆(𝑛, 𝑘)𝑥
𝑛

𝑛! = (𝑒𝑥 − 1)𝑘

𝔖(𝐿) permutations 𝑛! ∑
𝑛≥0

𝑛! 𝑥
𝑛

𝑛! =
1

1 − 𝑥

𝑐(𝐿, 𝑘) permutations
with 𝑘 cycles 𝑐(𝑛, 𝑘) ∑

𝑛≥0
𝑐(𝑛, 𝑘)𝑥

𝑛

𝑛! =
1
𝑘!(ln

1
1 − 𝑥)

𝑘

𝑐𝑜(𝐿, 𝑘)
ordered version

of 𝑐(𝐿, 𝑘) 𝑘! 𝑐(𝑛, 𝑘) 𝑘! ∑
𝑛≥0

𝑐(𝑛, 𝑘)𝑥
𝑛

𝑛! = (ln 1
1 − 𝑥)

𝑘

𝑐(𝐿) permutations
with 1 cycle (𝑛 − 1)! ∑

𝑛≥1
(𝑛 − 1)! 𝑥

𝑛

𝑛! = ln 1
1 − 𝑥

Just aswith subsets, wewill restrict our attention to partitionswith a given number
of blocks by using 𝐿 ↦ 𝑆(𝐿, 𝑘). Now we have 𝑠𝑛 = 𝑆(𝑛, 𝑘), a Stirling number of the
second kind. But we have yet to find a closed form for the egf ∑𝑛≥0 𝑆(𝑛, 𝑘)𝑥𝑛/𝑛! to
verify that entry in Table 4.1. We will be able to do this easily once we have the sum
and product rules for egfs presented in the next section.
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We will sometimes work with set partitions where there is a specified ordering on
the blocks and use the notation

𝑆𝑜(𝐿, 𝑘) = {(𝐵1, 𝐵2, . . . , 𝐵𝑘) ∣ 𝐵1/𝐵2/ . . . /𝐵𝑘 ⊢ 𝐿}.

We call these ordered set partitions or set compositions. Note that the ordering is of the
blocks themselves, not of the elements in each block, so that ({1, 3}, {2}) ≠ ({2}, {1, 3})
but ({1, 3}, {2}) = ({3, 1}, {2}). Clearly the labeled structure 𝐿 ↦ 𝑆𝑜(𝐿, 𝑘) has 𝑠𝑛 =
𝑘! 𝑆(𝑛, 𝑘) and a similar statement can be made for the egf. We will also need weak
set compositions where we will allow empty blocks.

One can look at labeled structures on permutations analogously to what we have
just seen for set partitions. In this context, consider a permutation of 𝐿 to be a bijec-
tion 𝜋∶ 𝐿 → 𝐿 decomposed into cycles as we did when 𝐿 = [𝑛] in Section 1.5. Let
𝒮(𝐿) = 𝔖(𝐿) be the labeled structure of all permutations of 𝐿 so that 𝑠𝑛 = 𝑛! and
𝐹𝔖 = ∑𝑛 𝑛! 𝑥𝑛/𝑛! = 1/(1 − 𝑥). We have the associated structures

𝑐(𝐿, 𝑘) = {𝜋 = 𝑐1𝑐2⋯𝑐𝑘 ∣ 𝜋 is a permutation of 𝐿 with 𝑘 cycles 𝑐𝑖}

with ordered variant

𝑐𝑜(𝐿, 𝑘) = {(𝑐1, 𝑐2, . . . , 𝑐𝑘) ∣ the 𝑐𝑖 are the cycles of a permutation of 𝐿}.

Using the signless Stirling numbers of the first kind we see that the sequences enumer-
ating these two structures are 𝑐(𝑛, 𝑘) and 𝑘! 𝑐(𝑛, 𝑘), respectively. Again, we will wait to
evaluate the corresponding egfs.

Finally, we will find the special case 𝑐(𝐿) ≔ 𝑐(𝐿, 1) of having only one cycle partic-
ularly useful. In this case, the enumerator is easy to compute.

Proposition 4.3.1. We have

#𝑐([𝑛]) = { (𝑛 − 1)! if 𝑛 ≥ 1,
0 if 𝑛 = 0.

Proof. The empty permutation has no cycles so that 𝑐(∅) = 0. Suppose 𝑛 ≥ 1 and
consider (𝑎1, 𝑎2, . . . , 𝑎𝑛) ∈ 𝑐([𝑛]). Then the number of such cycles is the number of
ways to order the 𝑎𝑖 divided by the number of orderings which give the same cycle,
namely 𝑛! /𝑛 = (𝑛 − 1)!. □

It follows from the previous proposition that

𝐹𝑐 = ∑
𝑛≥1

(𝑛 − 1)! 𝑥
𝑛

𝑛! = ∑
𝑛≥1

𝑥𝑛
𝑛 = ln 1

1 − 𝑥

by definition (4.2).
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4.4. The Sum and Product Rules for egfs

Just as with sets and ogfs, there is a Sum Rule and a Product Rule for egfs. To derive
these results, we will first need corresponding rules for labeled structures.

Suppose 𝒮 and 𝒯 are labeled structures. If 𝒮(𝐿) ∩ 𝒯(𝐿) = ∅ for any finite set 𝐿,
then we say 𝒮 and 𝒯 are disjoint. In this case we define their disjoint union structure,
𝒮 ⊎ 𝒯, by

(𝒮 ⊎ 𝒯)(𝐿) = 𝒮(𝐿) ⊎ 𝒯(𝐿).
It is easy to see, and we will prove in Proposition 4.4.1 below, that 𝒮 ⊎ 𝒯 satisfies the
definition of a labeled structure. As examples of this concept, suppose #𝐿 = 𝑛. Then
2𝐿 can be partitioned into the subsets of 𝐿 having size 𝑘 for 0 ≤ 𝑘 ≤ 𝑛. In other words

(4.10) 2𝐿 = (𝐿0) ⊎ (
𝐿
1) ⊎⋯ ⊎ (𝐿𝑛).

Note that to make a statement about all 𝐿 regardless of cardinality we can write 2𝐿 =
⨄𝑘≥0 (

𝐿
𝑘) since (

𝐿
𝑘) = ∅ for 𝑘 > #𝐿. Similarly, we have

(4.11) 𝐵(𝐿) = 𝑆(𝐿, 0) ⊎ 𝑆(𝐿, 1) ⊎⋯ ⊎ 𝑆(𝐿, 𝑛)

and

(4.12) 𝔖(𝐿) = 𝑐(𝐿, 0) ⊎ 𝑐(𝐿, 1) ⊎⋯ ⊎ 𝑐(𝐿, 𝑛).

Todefine products, let𝒮 and𝒯 be arbitrary labeled structures. Their product, 𝒮×𝒯,
is defined by

(𝒮 × 𝒯)(𝐿)
= {(𝑆, 𝑇) ∣ 𝑆 ∈ 𝒮(𝐿1), 𝑇 ∈ 𝒯(𝐿2) with (𝐿1, 𝐿2) a weak composition of 𝐿}.

Intuitively, we carve 𝐿 up into two subsets in all possible ways and put an 𝒮-structure
on the first subset and a 𝒯-structure on the second. Again, we will show that this
is indeed a labeled structure in Proposition 4.4.1. Strictly speaking, 𝒮 × 𝒯 should be
a multiset since it is possible that the same pair (𝑆, 𝑇) could arise from two different
ordered partitions. However, in the examples we will use, this will never be the case.
And the theorems we will prove about the product will still be true in the more general
context if we count with multiplicity.

In order to give some examples using products, we will need a notion of equiva-
lence of structures. Say that labeled structures 𝒮 and𝒯 are equivalent, and write 𝒮 ≡ 𝒯
if

#𝒮(𝐿) = #𝒯(𝐿)
for all finite 𝐿. Sometimes we will write 𝒮(𝐿) ≡ 𝒯(𝐿) for this concept if the context
makes inclusion of a generic label set 𝐿 convenient. Clearly if 𝒮 ≡ 𝒯, then 𝐹𝒮(𝑥) =
𝐹𝒯(𝑥).

As a first illustration of these concepts, we claim that

(4.13) 2⋅ ≡ (𝐸 × 𝐸)(⋅).
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To see this, note that subsets 𝑆 ∈ 2𝐿 are in bijection with weak compositions via the
map

𝑆 ↔ (𝑆, 𝐿 − 𝑆).
So #2𝐿 = #(𝐸 × 𝐸)(𝐿) as we wished to show. These same ideas demonstrate that we
have 𝑆𝑜(⋅, 2) = (𝐸 × 𝐸)(⋅) and more generally, for any 𝑘 ≥ 0,

(4.14) 𝑆𝑜(⋅, 𝑘) = 𝐸
𝑘
(⋅).

In a similar manner, we obtain

(4.15) 𝑐𝑜(⋅, 𝑘) = 𝑐𝑘(⋅).

It is time to prove the Sum and Product Rules for labeled structures. In so doing,
we will also be showing that they satisfy the definition for a labeled structure (4.6).

Proposition 4.4.1. Let 𝒮,𝒯 be labeled structures and let

𝑠𝑛 = #𝒮(𝐿), 𝑡𝑛 = #𝒯(𝐿)
where #𝐿 = 𝑛.

(a) (Sum Rule) If 𝒮 and𝒯 are disjoint, then

#(𝒮 ⊎ 𝒯)(𝐿) = 𝑠𝑛 + 𝑡𝑛.
(b) (Product Rule) For any 𝒮,𝒯

#(𝒮 × 𝒯)(𝐿) =
𝑛
∑
𝑘=0

(𝑛𝑘)𝑠𝑘𝑡𝑛−𝑘.

Proof. For part (a) we have
#(𝒮 ⊎ 𝒯)(𝐿) = #(𝒮(𝐿) ⊎ 𝒯(𝐿)) = #𝒮(𝐿) + #𝒯(𝐿) = 𝑠𝑛 + 𝑡𝑛.

Now consider part (b). In order to construct (𝑆, 𝑇) ∈ (𝒮 × 𝒯)(𝐿) we must first
pick a weak composition 𝐿 = 𝐿1 ⊎ 𝐿2. This is equivalent to just picking 𝐿1 as then
𝐿2 = 𝐿 − 𝐿1. So if #𝐿1 = 𝑘, then there are (𝑛𝑘) ways to perform this step. Next we must
put an 𝒮-structure on 𝐿1 and a 𝒯-structure on 𝐿2 which can be done in 𝑠𝑘𝑡𝑛−𝑘 ways.
Multiplying together the two counts and summing over all possible 𝑘 yields the desired
formula. □

As application of this result, note that applying the Sum Rule to (4.10) just gives
2𝑛 = ∑𝑘 (

𝑛
𝑘)which is Theorem 1.3.3(c). And if we apply the Product Rule to (4.13), we

get

2𝑛 =
𝑛
∑
𝑘=0

(𝑛𝑘) ⋅ 1 ⋅ 1 =
𝑛
∑
𝑘=0

(𝑛𝑘)

again. Somewhatmore interesting formulas are derived in Exercise 8(b) of this chapter.
We can now translate Proposition 4.4.1 into the corresponding rules for exponen-

tial generating functions. This will permit us to fill in the entries in Table 4.1 which
were postponed in the previous section.
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Theorem 4.4.2. Let 𝒮,𝒯 be labeled structures.

(a) (Sum Rule) If 𝒮 and𝒯 are disjoint, then

𝐹𝒮⊎𝒯(𝑥) = 𝐹𝒮(𝑥) + 𝐹𝒯(𝑥).

(b) (Product Rule) For any 𝒮,𝒯

𝐹𝒮×𝒯(𝑥) = 𝐹𝒮(𝑥) ⋅ 𝐹𝒯(𝑥).

Proof. Let 𝑠𝑛 = 𝒮([𝑛]) and 𝑡𝑛 = 𝒯([𝑛]). Using the SumRule in Proposition 4.4.1 gives

𝐹𝒮(𝑥) + 𝐹𝒯(𝑥) = ∑
𝑛≥0

𝑠𝑛
𝑥𝑛
𝑛! + ∑

𝑛≥0
𝑡𝑛
𝑥𝑛
𝑛!

= ∑
𝑛≥0

(𝑠𝑛 + 𝑡𝑛)
𝑥𝑛
𝑛!

= ∑
𝑛≥0

#(𝒮 ⊎ 𝒯)([𝑛])𝑥
𝑛

𝑛!

= 𝐹𝒮⊎𝒯(𝑥).

Now using the Product Rule of the same proposition yields

𝐹𝒮(𝑥)𝐹𝒯(𝑥) = (∑
𝑛≥0

𝑠𝑛
𝑥𝑛
𝑛! )(∑𝑛≥0

𝑡𝑛
𝑥𝑛
𝑛! )

= ∑
𝑛≥0

(
𝑛
∑
𝑘=0

𝑠𝑘
𝑘! ⋅

𝑡𝑛−𝑘
(𝑛 − 𝑘)!)𝑥

𝑛

= ∑
𝑛≥0

(
𝑛
∑
𝑘=0

(𝑛𝑘)𝑠𝑘𝑡𝑛−𝑘)
𝑥𝑛
𝑛!

= ∑
𝑛≥0

#(𝒮 × 𝒯)([𝑛])𝑥
𝑛

𝑛!

= 𝐹𝒮×𝒯(𝑥),

which completes the proof. □

As an illustration of how this result can be used, we can apply the Sum Rule
to (4.10), keeping in mind the comment following the equation, to write

𝐹2⋅ (𝑥) = ∑
𝑘≥0

𝐹(⋅𝑘)
(𝑥).

We can check this using (4.7) and (4.8):

∑
𝑘≥0

𝐹(⋅𝑘)
(𝑥) = ∑

𝑘≥0

𝑥𝑘
𝑘! 𝑒

𝑥 = 𝑒𝑥 ∑
𝑘≥0

𝑥𝑘
𝑘! = 𝑒𝑥 ⋅ 𝑒𝑥 = 𝑒2𝑥 = 𝐹2⋅ (𝑥).
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One can also apply the Product Rule to (4.13) and obtain

𝐹2⋅ (𝑥) = 𝐹𝐸(𝑥)𝐹𝐸(𝑥).
Again, this yields a simple identity; namely 𝑒2𝑥 = 𝑒𝑥 ⋅ 𝑒𝑥.

The true power of Theorem 4.4.2 is that it can be used to derive egfs which are
more complicated to prove by other means. For example, applying the Product Rule to
equation (4.14) along with (4.9) yields

𝐹𝑆𝑜(⋅,𝑘)(𝑥) = 𝐹𝐸(𝑥)𝑘 = (𝑒𝑥 − 1)𝑘,
a new entry for Table 4.1. Furthermore, since 𝐹𝑆𝑜(⋅,𝑘)(𝑥) = 𝑘! 𝐹𝑆(⋅,𝑘)(𝑥) we obtain

𝐹𝑆(⋅,𝑘)(𝑥) =
(𝑒𝑥 − 1)𝑘

𝑘! .

This permits us to give another derivation of the egf for 𝐵(𝑛). Using the Sum Rule
and (4.11) gives

𝐹𝐵(𝑥) = ∑
𝑘≥0

𝐹𝑆(⋅,𝑘)(𝑥) = ∑
𝑘≥0

(𝑒𝑥 − 1)𝑘
𝑘! = 𝑒𝑒𝑥−1.

These same ideas can be used to derive the egfs for permutations with a given number
of cycles, as the reader is asked to do in the exercises.

4.5. The Exponential Formula

Often in combinatorics and other areas of mathematics there are objects which can
be broken down into components. For example, the components of set partitions are
blocks and the components of permutations are cycles. The exponential formula de-
termines the egf of a labeled structure in terms of the egf for its components. It can also
be considered as an analogue of the Product Rule for egfs where one carves 𝐿 into an
arbitrary number of subsets (rather than just 2) and the subsets are unordered (rather
than ordered).

To make these ideas precise, let 𝒮 be a labeled structure satisfying
(4.16) 𝒮(𝐿) ∩ 𝒮(𝑀) = ∅ if 𝐿 ≠ 𝑀.

The corresponding partition structure, Π(𝒮), is defined by
(Π(𝒮))(𝐿) = {{𝑆1, 𝑆2, . . . } ∣ for all 𝐿1/𝐿2/ . . . ⊢ 𝐿 with 𝑆 𝑖 ∈ 𝒮(𝐿𝑖) for all 𝑖}.

Intuitively, to form (Π(𝒮))(𝐿) we partition the label set 𝐿 in all possible ways and then
put a structure from 𝒮 on each block of the partition, again in all possible ways. Condi-
tion (4.16) is imposed so that each element of (Π(𝒮))(𝐿) can only arise in one way from
this process. To illustrate,

(4.17) 𝐵(𝐿) = {𝐿1/𝐿2/ . . . ⊢ 𝐿} ≡ (Π(𝐸))(𝐿)
since 𝐿𝑖 is the only element of 𝐸(𝐿𝑖) for any 𝑖. In much the same way, we see that

𝔖(𝐿) = {𝑐1𝑐2⋯ ∣ 𝑐𝑖 a cycle on 𝐿𝑖 for all 𝑖 for all 𝐿1/𝐿2/ . . . ⊢ 𝐿}(4.18)
≡ (Π(𝑐))(𝐿).
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There is a simple relationship between the egf for Π(𝒮) and the egf for 𝒮 which is
the labeled structure defined by

𝒮(𝐿) = { 𝒮(𝐿) if 𝐿 ≠ ∅,
∅ if 𝐿 = ∅.

So if 𝑠𝑛 = #𝒮([𝑛]), then
𝐹𝒮(𝑥) = ∑

𝑛≥1
𝑠𝑛
𝑥𝑛
𝑛! .

We need 𝐹𝒮(𝑥) to have a zero constant term so that the composition in the next result
will be well-defined, see Theorem 3.3.3.

Theorem 4.5.1 (Exponential Formula). If 𝒮 is a labeled structure satisfying (4.16), then
𝐹Π(𝒮)(𝑥) = 𝑒𝐹𝒮(𝑥).

Proof. We have

𝑒𝐹𝒮(𝑥) = ∑
𝑘≥0

𝐹𝒮(𝑥)𝑘
𝑘! .

From the Product Rule for egfs in Theorem 4.4.2 we see that 𝐹𝒮(𝑥)𝑘 is the egf for
putting 𝒮-structures on partitions of the label set into 𝑘 ordered, nonempty blocks.
So, by (4.16), 𝐹𝒮(𝑥)𝑘/𝑘! is the egf for putting 𝒮-structures on partitions of the label set
into𝑘unordered, nonempty blocks. Nowusing the SumRule for egfs, again fromTheo-
rem 4.4.2, it follows that∑𝑘≥0 𝐹𝒮(𝑥)𝑘/𝑘! is the egf for putting 𝒮-structures on partitions
of the label set into any number of unordered, nonempty blocks. But this is exactly the
structure Π(𝒮) and so we are done. □

As a first application of the Exponential Formula, consider (4.17). In this case
𝒮 = 𝐸 and 𝐹𝐸(𝑥) = 𝑒𝑥 − 1. So, applying the previous theorem,

𝐹𝐵(𝑥) = 𝐹Π(𝐸)(𝑥) = 𝑒𝐹𝐸(𝑥) = 𝑒𝑒𝑥−1.
Even though we already knew this generating function, this proof is definitely the sim-
plest both computationally and conceptually.

We can use (4.18) in a similar manner. Now 𝒮 = 𝑐 and
𝐹𝑐(𝑥) = ln(1/(1 − 𝑥)) = 𝐹𝑐(𝑥)

since the original egf already has no constant term. Applying the Exponential Formula
gives

𝐹𝔖(𝑥) = 𝐹Π(𝑐)(𝑥) = 𝑒𝐹𝑐(𝑥) = 𝑒ln(1/(1−𝑥)) = 1
1 − 𝑥

which at least agrees with what we computed previously for this egf, even though this
in now a more roundabout way of getting it. But with Theorem 4.5.1 in hand it is easy
to get more refined information about permutations or other labeled structures. For
example, suppose we wish to give a simpler and more combinatorial derivation for
the egf of the derangement numbers 𝐷(𝑛) found in Theorem 4.1.1. The corresponding
structure is defined by

𝒟(𝐿) = derangements on 𝐿.
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In order to express𝒟(𝐿) as a partition structure we need to permit only cycles of length
two or greater. So let

𝒮(𝐿) = { 𝑐(𝐿) if #𝐿 ≥ 2,
∅ otherwise.

It follows that𝒟 ≡ Π(𝒮). Furthermore,

𝑠𝑛 = { (𝑛 − 1)! if 𝑛 ≥ 2,
0 otherwise,

so that

𝐹𝒮(𝑥) = ∑
𝑛≥2

(𝑛 − 1)! 𝑥
𝑛

𝑛! = ∑
𝑛≥2

𝑥𝑛
𝑛 = ln( 1

1 − 𝑥) − 𝑥.

Applying the Exponential Formula gives

(4.19) ∑
𝑛≥0

𝐷(𝑛)𝑥
𝑛

𝑛! = 𝐹𝒟(𝑥) = 𝐹Π(𝒮)(𝑥) = exp(ln( 1
1 − 𝑥) − 𝑥) = 𝑒−𝑥

1 − 𝑥 .

One can mine even more information from Theorem 4.5.1 since the proof shows
that each of the summands 𝐹𝒮(𝑥)𝑘/𝑘! has a combinatorial meaning. Define the hyper-
bolic sine and cosine functions to be the formal power series

sinh 𝑥 = 𝑥 + 𝑥3
3! +

𝑥5
5! +⋯ = ∑

𝑛≥0

𝑥2𝑛+1
(2𝑛 + 1)!

and
cosh 𝑥 = 1 + 𝑥2

2! +
𝑥4
4! +⋯ = ∑

𝑛≥0

𝑥2𝑛
(2𝑛)! .

It is easy to see that for any formal power series 𝑓(𝑥) = ∑𝑛≥0 𝑎𝑛𝑥𝑛 we can extract the
series of odd or even terms by

(4.20) ∑
𝑛≥0

𝑎2𝑛+1𝑥2𝑛+1 =
𝑓(𝑥) − 𝑓(−𝑥)

2 and ∑
𝑛≥0

𝑎2𝑛𝑥2𝑛 =
𝑓(𝑥) + 𝑓(−𝑥)

2 .

It follows that

(4.21) sinh 𝑥 = 𝑒𝑥 − 𝑒−𝑥
2 and cosh 𝑥 = 𝑒𝑥 + 𝑒−𝑥

2 .

Define the odd partition structure Π𝑜(𝒮) by
(Π𝑜(𝒮))(𝐿)

= {{𝑆1, 𝑆2, . . . } ∈ (Π(𝒮))(𝐿) ∣ 𝐿 partitioned into an odd number of blocks}
and similarly define the even partition structure Π𝑒(𝒮). A proof like that of the Expo-
nential Formula can be used to demonstrate the following.

Theorem 4.5.2. If 𝒮 is a labeled structure satisfying (4.16), then
𝐹Π𝑜(𝒮)(𝑥) = sinh 𝐹𝒮(𝑥)

and

𝐹Π𝑒(𝒮)(𝑥) = cosh 𝐹𝒮(𝑥). □
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Now suppose we wish to find the egf for 𝑎𝑛 which is the number of permutations
of [𝑛] that have an odd number of cycles. As before 𝒮 = 𝑐 with 𝐹𝑐(𝑥) = 𝐹𝑐(𝑥) =
ln(1/(1 − 𝑥)). Using Theorem 4.5.2 and then (4.21) we see that

∑
𝑛≥0

𝑎𝑛
𝑥𝑛
𝑛! = sinh 𝐹𝑐(𝑥)

= 𝑒ln(1/(1−𝑥)) − 𝑒−ln(1/(1−𝑥))

2

= 1
2(

1
1 − 𝑥 − (1 − 𝑥))

= 𝑥 + 1
2 ∑𝑛≥2

𝑥𝑛.

Extracting the coefficient of 𝑥𝑛/𝑛! from the first and last sums above yields

(4.22) 𝑎𝑛 = { 𝑛! /2 if 𝑛 ≥ 2,
1 if 𝑛 = 1.

Of course, once one has obtained such a simple answer, one would like a purely com-
binatorial explanation and the reader is encouraged to find one in Exercise 12(c) of this
chapter.

Exercises

(1) (a) Use the recursion for the derangement numbers in Exercise 4 of Chapter 2 to
reprove Theorem 4.1.1.

(b) Use the recursion for the derangement numbers in Exercise 5 of Chapter 2 to
reprove Theorem 4.1.1.

(2) (a) Finish the proof of Theorem 4.2.1.
(b) Finish the proof of Corollary 4.2.3.
(c) Give two proofs of the identity

(𝑚 + 1)𝑛 = ∑
𝑘≥0

𝐴(𝑛, 𝑘)(𝑚 + 𝑛 − 𝑘
𝑛 ),

one using equation (4.4) and one using descent partitioned permutations.
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(d) Give a combinatorial proof of the following formula for 𝐴(𝑛, 𝑘):

𝐴(𝑛, 𝑘) =
𝑘+1
∑
𝑖=0

(−1)𝑖(𝑛 + 1
𝑖 )(𝑘 − 𝑖 + 1)𝑛.

Hint: Use the Principle of Inclusion and Exclusion and descent partitioned
permutations.

(e) Give a combinatorial proof of the following recursion for 𝑛 ≥ 1:

𝐴𝑛(𝑞) = 𝐴𝑛−1(𝑞) + 𝑞
𝑛−2
∑
𝑖=0

(𝑛 − 1
𝑖 )𝐴𝑖(𝑞)𝐴𝑛−𝑖−1(𝑞).

Hint: Factor each 𝜋 ∈ 𝔖𝑛 as 𝜋 = 𝜎𝑛𝜏.
(f) Use (e) to give a second proof of (4.5).

(3) Let 𝐼 ⊂ ℙ be finite and let𝑚 = max 𝐼 if 𝐼 is nonempty or𝑚 = 0 if 𝐼 = ∅. For 𝑛 > 𝑚
define the corresponding descent polynomial 𝑑(𝐼; 𝑛) to be the number of 𝜋 ∈ 𝔖𝑛
such that Des𝜋 = 𝐼.
(a) Prove that 𝑑([𝑘]; 𝑛) = (𝑛−1𝑘 ).
(b) If 𝐼 ≠ ∅, then let 𝐼− = 𝐼 − {𝑚}. Prove that

𝑑(𝐼; 𝑛) = (𝑛𝑚)𝑑(𝐼
−; 𝑚) − 𝑑(𝐼−; 𝑛).

Hint: Consider the set of𝜋 ∈ 𝔖𝑛 such thatDes(𝜋1𝜋2 . . . 𝜋𝑚) = 𝐼− and𝜋𝑚+1 <
𝜋𝑚+2 < ⋯ < 𝜋𝑛.

(c) Use part (b) to show that 𝑑(𝐼; 𝑛) is a polynomial in 𝑛 having degree deg(𝐼; 𝑛) =
𝑚.

(d) Reprove the fact that 𝑑(𝐼; 𝑛) is a polynomial in 𝑛 using the Principle of Inclu-
sion and Exclusion.

(e) Since 𝑑(𝐼; 𝑛) is a polynomial in 𝑛, its domain of definition can be extended to
all 𝑛 ∈ ℂ. Show that if 𝑖 ∈ 𝐼, then 𝑑(𝐼; 𝑖) = 0.

(f) Show that the complex roots of 𝑑(𝐼; 𝑛) all lie in the circle |𝑧| ≤ 𝑚 in the com-
plex plane and also all have real part greater than or equal to −1. Note: This
seems to be a difficult problem.

(g) (Conjecture) Show that the complex roots of 𝑑(𝐼; 𝑛) all lie in the circle
|||𝑧 −

𝑚 + 1
2

||| ≤
𝑚 − 1
2 .

Note that this conjecture implies part (f).
(4) (a) Derive the generating function

∑
𝑛,𝑘≥0

𝑆(𝑛, 𝑘)𝑡𝑘 𝑥
𝑛

𝑛! = 𝑒𝑡(𝑒𝑥−1)

in twoways: using the recursion for the 𝑆(𝑛, 𝑘) and using the generating func-
tions in Table 4.1.

(b) Rederive the egf for the Bell numbers 𝐵(𝑛) using part (a).
(5) (a) Find a formula for∑𝑛,𝑘≥0 𝑐(𝑛, 𝑘)𝑡𝑘𝑥𝑛/𝑛! and prove it in two ways: using the

recursion for the 𝑐(𝑛, 𝑘) and using the generating functions in Table 4.1.
(b) Rederive the egf for the permutation structure 𝔖(⋅) using part (a).
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(6) (a) Let 𝑖𝑛 be the number of involutions in𝔖𝑛. Show that 𝑖0 = 𝑖1 = 1 and for 𝑛 ≥ 2
𝑖𝑛 = 𝑖𝑛−1 + (𝑛 − 1)𝑖𝑛−2.

(b) Show that
∑
𝑛≥0

𝑖𝑛
𝑥𝑛
𝑛! = 𝑒𝑥+𝑥2/2

in two ways: using the recursion in part (a) and using the Exponential For-
mula.

(c) Given 𝐴 ⊆ ℙ, let 𝑆(𝑛, 𝐴) be the number of partitions of [𝑛] all of whose block
sizes are elements of 𝐴. Use the Exponential Formula to find and prove a
formula for∑≥0 𝑆(𝑛, 𝐴)𝑥𝑛/𝑛!.

(d) Repeat part (c) for 𝑐(𝑛, 𝐴), the number of permutations of [𝑛] all of whose
cycles have lengths which are elements of 𝐴.

(7) Fill in the details for finding the egf and solving the differential equation in the
proof of Theorem 4.1.3.

(8) (a) Use (4.14) and the Product Rule for labeled structures to show that
𝑆(𝑛, 2) = 2𝑛−1 − 1.

(b) Use (4.15) and the Product Rule for labeled structures to show that

𝑐(𝑛 + 1, 2) = 𝑛!
𝑛
∑
𝑘=1

1
𝑘 .

(9) (a) Use the Theorem 4.4.2 to derive the egfs in Table 4.1 for the structures 𝑐𝑜(⋅, 𝑘)
and 𝑐(⋅, 𝑘).

(b) Use part (a) to rederive the egf for the structure 𝔖(⋅).
(10) (a) Suppose𝒮 is a labeled structure satisfying (4.16) and𝒯 is any labeled structure.

Their composition, 𝒯 ∘ 𝒮, is the structure such that
(𝒯 ∘ 𝒮)(𝐿) = {({𝑆1, 𝑆2, . . . }, 𝑇) ∣ for all 𝐿1/𝐿2/ . . . ⊢ 𝐿

with 𝑆 𝑖 ∈ 𝒮(𝐿𝑖) for all 𝑖 and 𝑇 ∈ 𝒯({𝑆1, 𝑆2, . . . })} .
Prove that

𝐹𝒯∘𝒮(𝑥) = 𝐹𝒯(𝐹𝒮(𝑥)).
(b) Use (a) to reprove the Exponential Formula.

(11) Letℱ(𝐿) be the labeled structures consisting of all forestswith𝐿 as vertex set. Show
that

∑
𝑛≥0

#ℱ([𝑛])𝑥
𝑛

𝑛! = exp(∑
𝑛≥1

𝑛𝑛−2𝑥𝑛/𝑛! ).

(12) (a) Prove the identities (4.20).
(b) Prove Theorem 4.5.2.
(c) Reprove (4.22) by finding a bijection between the permutations of [𝑛], 𝑛 ≥ 2,

which have an odd number of cycles and those which have an even number
of cycles.

(d) Find a formula for the number of permutations of [𝑛] having an even number
of cycles in two ways: by using Theorem 4.5.2 and by using (4.22).
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(13) Let 𝑎𝑛 be the number of permutations in 𝔖𝑛 that have an even number of cycles,
all of them of odd length.
(a) Use a parity argument to show that if 𝑛 is odd, then 𝑎𝑛 = 0.
(b) Use egfs to show that if 𝑛 is even, then

𝑎𝑛 = ( 𝑛
𝑛/2)

𝑛!
2𝑛 .

(c) Use part (b) to show that if 𝑛 is even, then the probability that in tossing a
fair coin 𝑛 times exactly 𝑛/2 heads occur is the same as the probability that
a permutation chosen uniformly at random from 𝔖𝑛 has an even number of
cycles, all of them of odd length.

(d) Reprove part (c) by giving, when 𝑛 is even, a bijection between pairs (𝑆, 𝜋)
where 𝑆 ∈ ( [𝑛]𝑛/2) and 𝜋 ∈ 𝔖𝑛 and pairs (𝑇, 𝜎) where 𝑇 ∈ 2[𝑛] and 𝜎 ∈ 𝔖𝑛 has
an even number of cycles, all of them of odd length.

(14) Let 𝑗𝑛 be the number of involutions in 𝔖𝑛 which have no fixed points.
(a) Give a combinatorial proof that 𝑗2𝑛+1 = 0 and that 𝑗2𝑛 = 1 ⋅ 3 ⋅ 5⋯ (2𝑛 − 1).
(b) Use the Exponential Formula to find a simple expression for the exponential

generating function∑𝑛≥0 𝑗𝑛
𝑥𝑛
𝑛! .

(c) Use the exponential generating function from (b) to give a second derivation
of the formula in (a).
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Chapter 5

Counting with
Partially Ordered Sets

Partially ordered sets, known as “posets” for short, give a fruitful way of ordering com-
binatorial objects. In thisway they provide newperspectives on objectswe have already
studied, such as interpreting various combinatorial invariants as rank functions. They
also give us new and powerful tools to do enumeration such as the Möbius Inversion
Theorem which generalizes the Principle of Inclusion and Exclusion.

5.1. Basic properties of partially ordered sets

A partially ordered set or poset is a pair (𝑃, ≤) where “𝑃” is a set and “≤” is a binary
relation on 𝑃 satisfying the following axioms for all 𝑥, 𝑦, 𝑧 ∈ 𝑃:

(a) (reflexivity) 𝑥 ≤ 𝑥,
(b) (antisymmetry) if 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑥, then 𝑥 = 𝑦, and
(c) (transitivity) if 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑧, then 𝑥 ≤ 𝑧.

Often we will refer to the poset as just 𝑃 since the partial order will be obvious from
context. We will also use notation for the standard order on ℝ in the setting of posets
in the obvious way. For example 𝑥 < 𝑦 means 𝑥 ≤ 𝑦 but 𝑥 ≠ 𝑦, or using 𝑦 ≥ 𝑥 as
equivalent to 𝑥 ≤ 𝑦. We say that 𝑥, 𝑦 ∈ 𝑃 are comparable if 𝑥 ≤ 𝑦 or 𝑦 ≤ 𝑥. Otherwise
they are incomparable. A poset where every pair of elements is comparable is called a
total order.

There are standard partial orders on many of the combinatorial objects we have
already studied and we list some of them here.

• The chain of length 𝑛 is (𝐶𝑛, ≤) where 𝐶𝑛 = {0, 1, . . . , 𝑛} and 𝑖 ≤ 𝑗 is the usual
ordering of the integers. So𝐶𝑛 is a total order. Note that𝐶𝑛 has 𝑛+1 elements
and in some texts this would be referred to as an (𝑛 + 1)-chain. Although
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140 5. Counting with Partially Ordered Sets

𝐶𝑛 was also used as the notation for the graphical cycle with 𝑛 vertices, the
context should make it clear which object is meant.

• The Boolean algebra is (𝐵𝑛, ⊆)where 𝐵𝑛 = 2[𝑛] and 𝑆 ⊆ 𝑇 is set containment.
Be sure not to confuse 𝐵𝑛 with the 𝑛th Bell number 𝐵(𝑛).

• The divisor lattice is (𝐷𝑛, ∣)where𝐷𝑛 consists of all the positive integers which
divide evenly into 𝑛 and 𝑎 ∣ 𝑏means that 𝑎 divides evenly into 𝑏 (in that 𝑏/𝑎 is
an integer). So in 𝐷12 we have 2 ≤ 6 but 2 ≰ 3. Note the distinction between
𝐷𝑛 and the derangement number 𝐷(𝑛).

• The lattice of partitions is (Π𝑛, ≤) where Π𝑛 is the set of all partitions of [𝑛]
and 𝜌 ≤ 𝜏means that every block of 𝜌 is contained in some block of 𝜏, called
the refinement ordering. For example, in Π6 we have 14/2/36/5 ≤ 1245/36
because {1, 4}, {2}, and {5} are all contained in {1, 2, 4, 5} and {3, 6} is contained
in itself.

• Young’s lattice is (𝑌, ≤) where 𝑌 is the set of all integer partitions and 𝜆 ≤ 𝜇
is containment of Young diagrams as defined in Section 3.2.

• The lattice of compositions is (𝐾𝑛, ≤) where 𝐾𝑛 is the set of all compositions
of 𝑛 and 𝛼 ≤ 𝛽 is refinement of compositions: 𝛼 can be obtained from 𝛽 by
replacing each 𝛽𝑖 by a composition [𝛼𝑗 , 𝛼𝑗+1, . . . , 𝛼𝑘] ⊧ 𝛽𝑖. For example, in
𝐾11 we have [2, 3, 2, 1, 3] ≤ [2, 5, 4] because the first 2 in [2, 5, 4]was replaced
by itself, the 5 was replaced by [3, 2], and the 4 by [1, 3]. On the other hand
[2, 3, 1, 2, 3] ≰ [2, 5, 4]. Again, there is a notational overlap with 𝐾𝑛 as the
complete graph on 𝑛 vertices, but the two will never appear together.

• The pattern poset is (𝔖, ≤) where 𝔖 is the set of all permutations and 𝜋 ≤ 𝜎
means that 𝜎 contains 𝜋 as a pattern.

• The subspace lattice is (𝐿(𝑉), ≤) where 𝐿(𝑉) is the set of subspaces of a finite
vector space 𝑉 over 𝔽𝑞 and 𝑈 ≤ 𝑊 means 𝑈 is a subspace of𝑊 . If 𝑉 = 𝔽𝑛𝑞 ,
then we often denote this poset by 𝐿𝑛(𝑞).

There are also important partial orders on permutations which reflect their group
structure (strong and weak Bruhat order) and on certain subgraphs of a graph (the
bond lattice). We will define the latter later when it is needed.

Often a poset (𝑃, ≤) is represented by a certain (di)graph which can be easier to
work with than just using the axioms. If 𝑥, 𝑦 ∈ 𝑃, then we say that 𝑥 is covered by 𝑦 or
𝑦 covers 𝑥, written either 𝑥 ⋖ 𝑦 or 𝑦 ⋗ 𝑥, if 𝑥 < 𝑦 and there is no 𝑧 ∈ 𝑃 with 𝑥 < 𝑧 < 𝑦.
The Hasse diagram of 𝑃 is the graph with vertices 𝑃 and an edge from 𝑥 up to 𝑦 if
𝑥 ⋖ 𝑦. Note that this is actually a digraph where all the arcs are directed up and so are
just written as edges with this understanding. Hasse diagrams for examples from the
above list are given in Figure 5.1. For those which are infinite, only the bottom of the
poset is displayed. Note that in the case of the subspace lattice 𝑉 = 𝔽23 the subspaces
are listed using their row-echelon forms. We will make no distinction between a poset
and its Hasse diagram if no confusion will result by blurring the distinction. Finally,
certain posets such as the real numbers under their normal ordering have no covers.
So in such cases it does not make sense to try to draw a Hasse diagram.
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𝐿2(3)

Figure 5.1. A zoo of Hasse diagrams
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𝑎 𝑏

𝑐 𝑑

Figure 5.2. Minimal and maximal elements

There are certain parts of a poset 𝑃 to which wewill often refer. Aminimal element
of 𝑃 is 𝑥 ∈ 𝑃 such that there is no 𝑦 ∈ 𝑃 with 𝑦 < 𝑥. Note that 𝑃 can have multiple
minimal elements. The poset in Figure 5.2 has minimal elements 𝑎, 𝑏. Dually, define a
maximal element of 𝑃 to be 𝑥 ∈ 𝑃 with no 𝑦 > 𝑥 in 𝑃. The example poset just cited has
maximal elements 𝑐, 𝑑. By way of contrast, 𝑃 has aminimum element if there is 𝑥 ∈ 𝑃
such that 𝑥 ≤ 𝑦 for every 𝑦 ∈ 𝑃. A minimum element is unique if it exists because if
𝑥 and 𝑥′ are both minimum elements, then 𝑥 ≤ 𝑥′ and 𝑥′ ≤ 𝑥 which forces 𝑥 = 𝑥′ by
antisymmetry. In this case the minimum element is often denoted 0̂. All of the posets
in Figure 5.1 have a 0̂. In fact, in𝐷𝑛 we have 0̂ = 1, a rare instance where one can write
that zero equals one and be mathematically correct! Again, there is the dual notion of
amaximum element 𝑥 ∈ 𝑃 which satisfies 𝑥 ≥ 𝑦 for all 𝑦 ∈ 𝑃. A maximum is unique if
it exists and is denoted 1̂. The following result sums up the existence of minimum and
maximum elements for the posets in Figure 5.1. Its proof is sufficiently easy that it is
left as an exercise.

Proposition 5.1.1. We have the following minimum and maximum elements.

• In 𝐶𝑛 we have 0̂ = 0, 1̂ = 𝑛.
• In 𝐵𝑛 we have 0̂ = ∅, 1̂ = [𝑛].
• In 𝐷𝑛 we have 0̂ = 1, 1̂ = 𝑛.
• InΠ𝑛 we have 0̂ = 1/2/ . . . /𝑛, 1̂ = [𝑛].
• In 𝑌 we have 0̂ = ∅ and no 1̂.
• In 𝐾𝑛 we have 0̂ = [1𝑛], 1̂ = [𝑛].
• In𝔖 we have 0̂ = ∅ and no 1̂.
• In 𝐿(𝑉) we have 0̂ is the zero subspace, 1̂ = 𝑉 . □

As one can tell from the previous set of definitions, it is sometimes useful to reverse
inequalities in a poset. So if 𝑃 is a poset, then we define its dual 𝑃∗ to have the same
underlying set with 𝑥 ≤ 𝑦 in 𝑃∗ if and only if 𝑦 ≤ 𝑥 in 𝑃. The Hasse diagram of 𝑃∗ is
thus obtained by reflecting the one for 𝑃 in a horizontal axis.

As is often the case in mathematics, we analyze a structure by looking at its sub-
structures. In posets 𝑃, these come in several varieties. A subposet of 𝑃 is a subset
𝑄 ⊆ 𝑃 with the inherited partial order; namely 𝑥 ≤ 𝑦 for 𝑥, 𝑦 ∈ 𝑄 if and only if 𝑥 ≤ 𝑦
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{1, 3}

{1, 2, 3} {1, 3, 5} {1, 3, 6}

{1, 2, 3, 5} {1, 2, 3, 6} {1, 3, 5, 6}

{1, 2, 3, 5, 6}

[{1, 3}, {1, 2, 3, 5, 6}] =

Figure 5.3. An interval in 𝐵7

in 𝑃. In such a case we will sometimes use a subscript to make precise which poset is
being considered, as in 𝑥 ≤𝑃 𝑦. Note that some authors call this an induced subposet
and use the term “subposet” when 𝑄 satisfies the weaker condition that 𝑥 ≤𝑄 𝑦 im-
plies 𝑥 ≤𝑃 𝑦 (but not necessarily conversely). There are several especially important
subposets. Assume 𝑥, 𝑦 ∈ 𝑃. Then the corresponding closed interval is

[𝑥, 𝑦] = {𝑧 ∈ 𝑃 ∣ 𝑥 ≤ 𝑧 ≤ 𝑦}.

Note that [𝑥, 𝑦] = ∅ unless 𝑥 ≤ 𝑦. For example, the Hasse diagram of the interval
[{1, 3}, {1, 2, 3, 5, 6}] in 𝐵7 is displayed in Figure 5.3. Note that if one removes the la-
bels, then this diagram is exactly like the one for 𝐵3 in Figure 5.1. We will explain this
formally when we introduce the concept of isomorphism below. Open and half-open
intervals in a poset are defined as expected. A subset 𝐼 ⊆ 𝑃 is a lower-order ideal if 𝑥 ∈ 𝐼
and 𝑦 ≤ 𝑥 imply that 𝑦 ∈ 𝐼. For example, if 𝑃 has a 0̂, then any interval of the form
[0̂, 𝑥] is a lower-order ideal. If 𝑆 ⊆ 𝑃 is any subset, then the lower-order ideal generated
by 𝑆 is

𝐼(𝑆) = {𝑦 ∈ 𝑃 ∣ 𝑦 ≤ 𝑥 for some 𝑥 ∈ 𝑆}.

Weoften leave out the set braces in 𝑆, for example, writing 𝐼(𝑥, 𝑦) for the ideal generated
by 𝑆 = {𝑥, 𝑦} ⊆ 𝑃. If #𝑆 = 1, then the order ideal is called principal. If 𝑃 has a 0̂, then
𝐼(𝑥) = [0̂, 𝑥]. In Young’s lattice, 𝐼(𝜆) is just all the partitions contained in 𝜆. So when
we have a rectangle 𝜆 = (𝑘𝑙), then 𝐼(𝜆) = ℛ(𝑘, 𝑙), the set which came into play when
discussing the 𝑞-binomial coefficients in Section 3.2. upper-order ideals 𝑈 as well as
those generated by a set, 𝑈(𝑆), are defined by reversing all the inequalities. We will
sometimes abbreviate “lower-order ideal” to “order ideal” or even just “ideal,” whereas
for upper-order ideals both adjectives will always be used.

Some simple properties of ideals are given in the next proposition.

The preliminary version made available with permission of the publisher, the American Mathematical Society



144 5. Counting with Partially Ordered Sets

Proposition 5.1.2. Let 𝑃 be a poset.

(a) We have that 𝐼 ⊆ 𝑃 is a lower-order ideal if and only if 𝑃 − 𝐼 is an upper-order
ideal.

(b) If 𝑃 is finite and 𝐼 is a lower-order ideal, then 𝐼 = 𝐼(𝑆) where 𝑆 is the set of
maximal elements of 𝐼.

(c) If 𝑃 is finite and 𝑈 is an upper-order ideal, then 𝑈 = 𝑈(𝑆) where 𝑆 is the set of
minimal elements of 𝑈.

Proof. We will prove (b) and leave the other two parts to the reader. We will prove
the equality by proving the two corresponding set containments. Suppose 𝑥 ∈ 𝐼 and
consider the set 𝑋 = {𝑦 ∈ 𝐼 ∣ 𝑦 ≥ 𝑥}. This subset of 𝑃 is nonempty since 𝑥 ∈ 𝑋 . So
𝑋 has at least one maximal element 𝑦 since 𝑃 is finite. In fact, 𝑦must be maximal in 𝐼
since, if not, there is 𝑧 > 𝑦with 𝑧 ∈ 𝐼. But then by transitivity 𝑧 > 𝑥 so that 𝑧 ∈ 𝑋 . This
contradicts the maximality of 𝑦 in 𝑋 . So 𝑦 ∈ 𝑆 and 𝑥 ∈ 𝐼(𝑆) showing that 𝐼 ⊆ 𝐼(𝑆).

To show 𝐼(𝑆) ⊆ 𝐼, take 𝑦 ∈ 𝐼(𝑆). By definition 𝑦 ≤ 𝑥 for some 𝑥 ∈ 𝑆 and 𝑆 ⊆ 𝐼. So
𝑦 ≤ 𝑥 where 𝑥 ∈ 𝐼 which forces 𝑦 ∈ 𝐼 by definition of lower-order ideal. □

To define isomorphism, we need to consider maps on posets. Assume posets 𝑃,𝑄.
Then a function 𝑓∶ 𝑃 → 𝑄 is order preserving if

𝑥 ≤𝑃 𝑦 ⟹ 𝑓(𝑥) ≤𝑄 𝑓(𝑦).

For example, the map 𝑓∶ 𝐶𝑛 → 𝐵𝑛 by 𝑓(𝑖) = [𝑖] is order preserving because 𝑖 ≤ 𝑗
implies that 𝑓(𝑖) = [𝑖] ⊆ [𝑗] = 𝑓(𝑗). We say that 𝑓 is an isomorphism or that 𝑃 and 𝑄
are isomorphic, written 𝑃 ≅ 𝑄, if 𝑓 is bijective and both 𝑓 and 𝑓−1 are order preserving.
It is important to show that 𝑓−1, and not just 𝑓, is order preserving. For consider the
two posets in Figure 5.4. Define a bijection 𝑓∶ 𝑃 → 𝑄 by 𝑓(𝑎) = 𝑎′ and 𝑓(𝑏) = 𝑏′.
Then 𝑓 is order preserving vacuously since there are no order relations in 𝑃. But clearly
we do not want 𝑓 to be an isomorphism since 𝑃 and𝑄 have different (unlabeled) Hasse
diagrams. This is witnessed by the fact that 𝑓−1 is not order preserving: we have 𝑎′ ≤ 𝑏′
but 𝑓−1(𝑎′) = 𝑎 ≰ 𝑏 = 𝑓−1(𝑏′).

There are a number of isomorphisms involving the posets in Figure 5.1. Some of
them are collected in the next result.

𝑎 𝑏
𝑃 =

𝑎′

𝑏′

𝑄 =

Figure 5.4. Two nonisomorphic posets
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Proposition 5.1.3. We have the following isomorphisms. In all cases we assume the
intervals used are nonempty.

(a) 𝐶∗
𝑛 ≅ 𝐶𝑛.

(b) If 𝑖, 𝑗 ∈ 𝐶𝑛, then [𝑖, 𝑗] ≅ 𝐶𝑗−𝑖.
(c) 𝐵∗𝑛 ≅ 𝐵𝑛.
(d) If 𝑆, 𝑇 ∈ 𝐵𝑛, then [𝑆, 𝑇] ≅ 𝐵|𝑇−𝑆|.
(e) 𝐷∗

𝑛 ≅ 𝐷𝑛.
(f) If 𝑙, 𝑚 ∈ 𝐷𝑛, then [𝑙,𝑚] ≅ 𝐷𝑚/𝑙.
(g) If 𝑛 is a product of 𝑘 distinct primes, then 𝐷𝑛 ≅ 𝐵𝑘.
(h) If 𝜌 ∈ Π𝑛 has 𝑘 blocks, then [𝜌, 1̂] ≅ Π𝑘.
(i) For all 𝑛 we have 𝐾𝑛 ≅ 𝐵𝑛−1.
(j) If 𝑉,𝑊 are vector spaces over 𝔽𝑞 of the same dimension, then 𝐿(𝑉) ≅ 𝐿(𝑊).
(k) If 𝑋, 𝑌 ∈ 𝐿(𝑉), then [𝑋, 𝑌] ≅ 𝐿(𝑋/𝑌) where 𝑋/𝑌 is the quotient vector space.

Proof. We will prove the statement about [𝑆, 𝑇] in 𝐵𝑛 and leave the rest of the iso-
morphisms as exercises. Let 𝑇 − 𝑆 = {𝑡1, 𝑡2, . . . , 𝑡𝑛} where 𝑛 = |𝑇 − 𝑆|. Define a map
𝑓∶ [𝑆, 𝑇] → 𝐵𝑛 as follows. If 𝑋 ∈ [𝑆, 𝑇], then 𝑋 = 𝑆 ⊎ 𝑋 ′ where 𝑋 ′ ⊆ 𝑇 − 𝑆. If
𝑋 ′ = {𝑡𝑖, . . . , 𝑡𝑗}, then let 𝑓(𝑋) = {𝑖, . . . , 𝑗}. This is well-defined since, by definition,
𝑖, . . . , 𝑗 ∈ [𝑛].

To show that 𝑓 is a bijection, we construct its inverse. Assume 𝐼 = {𝑖, . . . , 𝑗} ∈ 𝐵𝑛.
Then let 𝑓−1(𝐼) = 𝑆 ⊎ {𝑡𝑖, . . . , 𝑡𝑗}. The proof that this is well-defined is similar to that of
𝑓, and the fact that these are inverses is clear from their definitions.

Finally, we need to show that 𝑓 and 𝑓−1 are order preserving. If 𝑋 ≤ 𝑌 in [𝑆, 𝑇],
then 𝑋 ′ ⊆ 𝑌 ′ in 𝑇 − 𝑆. It follows that 𝑓(𝑋) ≤ 𝑓(𝑌) in 𝐵𝑛. Thus 𝑓 is order preserving.
As far as 𝑓−1, take 𝐼 ≤ 𝐽 in 𝐵𝑛. Then the corresponding sets 𝑇𝐼 and 𝑇𝐽 in 𝑇 − 𝑆 gotten
by using 𝐼 and 𝐽 for subscripts satisfy 𝑇𝐼 ⊆ 𝑇𝐽 . It follows that

𝑓−1(𝐼) = 𝑆 ⊎ 𝑇𝐼 ⊆ 𝑆 ⊎ 𝑇𝐽 = 𝑓−1(𝐽)
which shows that 𝑓−1 is order preserving. □

5.2. Chains, antichains, and operations on posets

We will now consider three operations for building posets. Chains and the related
notion of antichains will play important roles.

Given posets (𝑃, ≤𝑃) and (𝑄, ≤𝑄) with 𝑃 ∩ 𝑄 = ∅, their disjoint union is the poset
whose elements are 𝑃 ⊎ 𝑄 with the partial order 𝑥 ≤𝑃⊎𝑄 𝑦 if

(a) 𝑥, 𝑦 ∈ 𝑃 and 𝑥 ≤𝑃 𝑦 or
(b) 𝑥, 𝑦 ∈ 𝑄 and 𝑥 ≤𝑄 𝑦.

So one just takes the relations in 𝑃 and𝑄 and does not add any new ones. To illustrate,
the poset on the left in Figure 5.4 is the disjoint union 𝑃 = {𝑎} ⊎ {𝑏}. If one takes both
posets in this figure, then 𝑃 ⊎ 𝑄 is the poset on {𝑎, 𝑏, 𝑎′, 𝑏′} with 𝑎′ < 𝑏′ being the only
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146 5. Counting with Partially Ordered Sets

strict order relation. An important example of disjoint union is the 𝑛-element antichain
𝐴𝑛 which consists of a set of 𝑛 elements with no strict order relations. So 𝑃 = {𝑎} ⊎ {𝑏}
is a copy of 𝐴2.

Another way to combine disjoint posets is their ordinal sum 𝑃 + 𝑄 which has el-
ements 𝑃 ⊎ 𝑄 and 𝑥 ≤𝑃+𝑄 𝑦 if one of (a), (b), (c) hold where (a) and (b) are as in the
previous paragraph and the third possibility is

(c) 𝑥 ∈ 𝑃, 𝑦 ∈ 𝑄.
Intuitively, one takes the relations in 𝑃 and 𝑄 and also makes everything in 𝑃 smaller
than everything in 𝑄. As an example using chains, we have 𝐶𝑚 + 𝐶𝑛 ≅ 𝐶𝑚+𝑛+1. Note
that in general 𝑃 + 𝑄 ≇ 𝑄 + 𝑃 as the use of the adjective “ordinal” suggests.

Our third method to produce new posets from old ones is via products. Given two
(not necessarily disjoint) posets (𝑃, ≤𝑃) and (𝑄, ≤𝑄), their (direct or Cartesian) product
has underlying set

𝑃 × 𝑄 = {(𝑥, 𝑦) ∣ 𝑥 ∈ 𝑃, 𝑦 ∈ 𝑄}
together with the partial order

(𝑥, 𝑦) ≤𝑃×𝑄 (𝑥′, 𝑦′) if 𝑥 ≤𝑃 𝑥′ and 𝑦 ≤𝑄 𝑦′.
We let 𝑃𝑛 denote the 𝑛-fold product of 𝑃. One can obtain the Hasse diagram for 𝑃 × 𝑄
by replacing each vertex of 𝑄 with a copy of 𝑃 and then, for each edge between two
vertices of 𝑄, connecting each pair of vertices having the same first coordinate in the
corresponding two copies of 𝑃. Illustrations of this can be found in Figure 5.1. For
example, 𝐷18 looks like a rectangle because it is isomorphic to 𝐶1 × 𝐶2. Also, 𝐵3 ≅ 𝐶3

1 ,
which is why the Hasse diagram looks like the projection of a 3-dimensional cube into
the plane. Both of these isomorphisms generalize, and there is one for Π𝑛 as well.

Proposition 5.2.1. We have the following product decompositions.
(a) We have

𝐵𝑛 ≅ 𝐶𝑛
1 .

(b) If the prime factorization of 𝑛 is 𝑛 = 𝑝𝑛11 𝑝
𝑛2
2 ⋯𝑝𝑛𝑘𝑘 , then

𝐷𝑛 ≅ 𝐶𝑛1 × 𝐶𝑛2 ×⋯ × 𝐶𝑛𝑘 .
(c) If 𝜌 ≤ 𝜏 inΠ𝑛, then

[𝜌, 𝜏] ≅ Π𝑛1 × Π𝑛2 ×⋯ ×Π𝑛𝑘

where 𝜏 = 𝑇1/𝑇2/ . . . /𝑇𝑘 and 𝑛𝑖 is the number of blocks of 𝜌 contained in 𝑇𝑖 for
all 𝑖.

Proof. (a) Consider the map 𝑓 used in the proof of Theorem 1.3.1. Stated in the lan-
guage of posets, we see that 𝑓∶ 𝐵𝑛 → 𝐶𝑛

1 . And we have already shown that 𝑓 is bijec-
tive. So we only need to prove that 𝑓 and 𝑓−1 are order preserving. Suppose 𝑆, 𝑇 ⊆ [𝑛]
with 𝑓(𝑆) = (𝑣1, . . . , 𝑣𝑛) and 𝑓(𝑇) = (𝑤1, . . . , 𝑤𝑛). Now 𝑆 ⊆ 𝑇 if and only if 𝑖 ∈ 𝑆
implies 𝑖 ∈ 𝑇. By the definition of 𝑓, this is equivalent to 𝑣𝑖 = 1 implying 𝑤𝑖 = 1. But
this means that 𝑣𝑖 ≤ 𝑤𝑖 for all 𝑖 since if 𝑣𝑖 = 0, then 𝑣𝑖 ≤ 𝑤𝑖 is automatic. Thus we
have shown that 𝑆 ≤ 𝑇 in 𝐵𝑛 if and only if (𝑣1, . . . , 𝑣𝑛) ≤ (𝑤1, . . . , 𝑤𝑛) in 𝐶𝑛

1 which is
what we wished to prove.
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5.2. Chains, antichains, and operations on posets 147

(b) The map for 𝐷𝑛 is similar. Define 𝑔∶ 𝐷𝑛 → ⨉𝑖 𝐶𝑛𝑖 by 𝑔(𝑑) = (𝑑1, 𝑑2, . . . , 𝑑𝑘)
where 𝑑 = ∏𝑖 𝑝

𝑑𝑖
𝑖 . The reader can now verify that this is a well-defined isomorphism

of posets.
(c) The construction of the isomorphism is messy but not conceptually difficult.

Consider blocks of 𝜌 as being single elements and then aggregate all those lying in a
given block of 𝜏 together. Again, the reader can fill in the details. □

So chains can help us understand various posets by taking products. There is an-
other important way in which chains can be used to decompose certain posets. Let 𝑃
be a poset and 𝐶 ∶ 𝑥0 < 𝑥1 < ⋯ < 𝑥𝑛 be a chain in 𝑃. We say that 𝐶 is a chain of
length 𝑛 from 𝑥0 to 𝑥𝑛 and also use the term 𝑥0–𝑥𝑛 chain. We let ℓ(𝐶) denote the length
of 𝐶. Call 𝐶 maximal if it is not strictly contained in a larger chain of 𝑃. If [𝑥0, 𝑥𝑛] is
finite, this is equivalent to 𝑥𝑖 < 𝑥𝑖+1 being a cover for all 0 ≤ 𝑖 < 𝑛. The chain 𝐶 is
saturated if it is not strictly contained in a larger chain from 𝑥0 to 𝑥𝑛. Equivalently, 𝐶
is saturated if it is maximal in [𝑥0, 𝑥𝑛]. For example, in 𝐷18 the chain 3 < 6 < 18 is a
chain of length 2 from 3 to 18 which is saturated since each inequality is a cover. But
this chain is not maximal since it is contained in the larger chain 1 < 3 < 6 < 18.

Some posets can be written as a disjoint union of certain subposets called ranks as
follows. Suppose 𝑃 is a poset which is locally finite in that the cardinality of any interval
[𝑥, 𝑦] of 𝑃 is finite. All the posets in Figure 5.1 are locally finite even though 𝑌 and 𝔖
are not finite. The poset of real numbers with its usual total order is not locally finite.
Let 𝑃 be locally finite and have a 0̂. Then 𝑃 is ranked if for any 𝑥 ∈ 𝑃 all saturated
chains from 0̂ to 𝑥 have the same length. In this case we call this common length the
rank of 𝑥 and it is denoted rk 𝑥 or rk𝑃 𝑥 if we wish to be specific about the poset. For
𝑘 ∈ ℕ, the 𝑘th rank set of 𝑃 is

(5.1) Rk𝑘 𝑃 = {𝑥 ∈ 𝑃 ∣ rk 𝑥 = 𝑘}.

If 𝑃 is finite, then we define its rank to be

rk 𝑃 = max{𝑘 ∣ Rk𝑘 𝑃 ≠ ∅}.

All the posets in Figure 5.1 are ranked and we will describe their rank sets shortly. An
example of a poset which is not ranked is in Figure 5.5. This is because there are two
saturated 0̂–1̂ chains, namely 0̂ < 𝑏 < 1̂ which is of length 2 and 0̂ < 𝑎 < 𝑐 < 1̂ which
is of length 3.

We will now list the rank information for the posets in Figure 5.1. Note howmany
of the combinatorial concepts which were introduced in earlier chapters occur natu-
rally in this context. These results are easily proved, so the demonstrations can be filled
in by the reader.

Proposition 5.2.2. All the posets in Figure 5.1 are ranked with the following rank func-
tions.

(a) If 𝑘 ∈ 𝐶𝑛, then rk(𝑘) = 𝑘, so Rk𝑘(𝐶𝑛) = {𝑘}. Also, rk(𝐶𝑛) = 𝑛.
(b) If 𝑆 ∈ 𝐵𝑛, then rk(𝑆) = #𝑆, so Rk𝑘(𝐵𝑛) = ([𝑛]𝑘 ). Also, rk(𝐵𝑛) = 𝑛.
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0̂

𝑎
𝑏

𝑐

1̂

Figure 5.5. An unranked poset

(c) If 𝑑 ∈ 𝐷𝑛 has prime factorization 𝑑 = 𝑝𝑑11 ⋯𝑝𝑑𝑟𝑟 , then rk(𝑑) = 𝑑1 +⋯ + 𝑑𝑟.
SoRk𝑘(𝐷𝑛) is the set of 𝑑 ∣ 𝑛with 𝑘 primes in their prime factorization, counted
withmultiplicity. Also, rk(𝐷𝑛) is the total number of primes dividing 𝑛, counted
with multiplicity.

(d) If 𝜌 ∈ Π𝑛 has 𝑏 blocks, then rk(𝜌) = 𝑛 − 𝑏, so Rk𝑘(Π𝑛) = 𝑆([𝑛], 𝑛 − 𝑘). Also,
rk(Π𝑛) = 𝑛 − 1.

(e) If 𝜆 ∈ 𝑌 , then rk(𝜆) = |𝜆|, so Rk𝑘(𝑌) = 𝑃(𝑘).
(f) If 𝛼 ∈ 𝐾𝑛 has 𝑐 parts, then rk(𝛼) = 𝑛 − 𝑐, so Rk𝑘(𝐾𝑛) = 𝑄(𝑛, 𝑛 − 𝑘). Also,

rk(𝐾𝑛) = 𝑛 − 1.
(g) If 𝜋 ∈ 𝔖, then rk(𝜋) = |𝜋|, so Rk𝑘(𝔖) = 𝔖𝑘.
(h) If 𝑊 ∈ 𝐿(𝑉), then rk(𝑊) = dim𝑊 , so Rk𝑘(𝑉) = [𝑉𝑘]. Also, rk(𝐿(𝑉)) =

dim𝑉 . □

5.3. Lattices

The reader will have noticed that several of our example posets are called “lattices”.
This is an important class of partially ordered sets with the property that pairs of ele-
ments have greatest lower bounds and least upper bounds. It is also common to study
lattices whose elements satisfy certain identities using these two operations. In this
section we will prove a theorem characterizing the lattices satisfying a distributive law.

If 𝑃 is a poset and 𝑥, 𝑦 ∈ 𝑃, then a lower bound for 𝑥, 𝑦 is a 𝑧 ∈ 𝑃 such that 𝑧 ≤ 𝑥
and 𝑧 ≤ 𝑦. For example, if 𝑆, 𝑇 ∈ 𝐵𝑛, then any set contained in both 𝑆 and 𝑇 is a lower
bound. We say that 𝑥, 𝑦 have a greatest lower bound ormeet if there is an element in 𝑃,
denoted 𝑥∧𝑦, which is a lower bound for 𝑥, 𝑦, and 𝑥∧𝑦 ≥ 𝑧 for all lower bounds 𝑧 of 𝑥
and 𝑦. Returning to 𝐵𝑛, we have 𝑆 ∧𝑇 = 𝑆∩𝑇. In fact, one can remember the notation
for meet as just a squared-off intersection symbol. Note that if the meet of 𝑥, 𝑦 exists,
then it is unique. Indeed, if 𝑧, 𝑧′ are both greatest lower bounds of 𝑥, 𝑦, then we have
𝑧 ≥ 𝑧′ since 𝑧′ is a lower bound and 𝑧 is the greatest lower bound. But interchanging
the roles of 𝑧 and 𝑧′ also gives 𝑧′ ≥ 𝑧. So 𝑧 = 𝑧′ by antisymmetry. Note also that it is
possible for the meet not to exist. For example, in the poset of Figure 5.2, 𝑎 ∧ 𝑏 does
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not exist because this pair has no lower bound. Also, 𝑐 ∧ 𝑑 does not exist but this is
because the pair has both 𝑎 and 𝑏 as lower bounds, but there is no lower bound larger
than both 𝑎 and 𝑏. One can extend these definitions in the obvious way from pairs of
elements to any nonempty set of elements 𝑋 = {𝑥1, . . . , 𝑥𝑛} ⊆ 𝑃. In this case the meet
is denoted

⋀𝑋 = ⋀
𝑥∈𝑋

𝑥.

One can also reasonably define the meet of the empty set as long as 𝑃 has a 1̂. Indeed,
for any 𝑥 ∈ 𝑃 we would want

𝑥 ∧ (⋀∅) =⋀({𝑥} ∪ ∅) =⋀{𝑥} = 𝑥.

But the only element 𝑦 of 𝑃 such that 𝑥 ∧ 𝑦 = 𝑥 for all 𝑥 is 𝑦 = 1̂. So we let ∧∅ = 1̂.
The concepts of upper bound and least upper bound are obtained by reversing the

inequalities in the definitions of the previous paragraph. If the least upper bound of
𝑥, 𝑦 exists, then it is denoted 𝑥 ∨ 𝑦 and is also called their join. A lattice is a poset such
that every pair of elements has a meet and a join. Note that this is different from the
use of the term “lattice” as in “lattice path” which in this case refers to the discrete
subgroup ℤ2 of ℝ2. The context should make it clear which meaning is intended.

All the poset families in Figure 5.1 are lattices except for the pattern poset𝔖which
has subposets isomorphic to Figure 5.2 between its second and third ranks. To describe
the meets and joins we need the following terminology. If 𝑐, 𝑑 ∈ ℙ, then gcd(𝑐, 𝑑) and
lcm(𝑐, 𝑑) denote their greatest common divisor and least common multiple, respec-
tively. Given two Young diagrams 𝜆, 𝜇, we then take their intersection 𝜆 ∩ 𝜇 or union
𝜆 ∪ 𝜇 by aligning them as in Figure 3.1 and then taking the intersection or union of
their sets of squares, respectively. If 𝑈,𝑊 are vector subspaces of 𝑉 , then their sum is

𝑈 +𝑊 = {𝑢 + 𝑤 ∣ 𝑢 ∈ 𝑈,𝑤 ∈ 𝑊}.
We leave the verification of the next result to the reader.
Proposition 5.3.1. The posets 𝐶𝑛, 𝐵𝑛, 𝐷𝑛, Π𝑛, 𝑌 , 𝐾𝑛, and 𝐿(𝑉) are all lattices for all 𝑛
and 𝑉 of finite dimension over some 𝔽𝑞. In addition, we have the following descriptions
of their meets and joins.

(a) If 𝑖, 𝑗 ∈ 𝐶𝑛, then 𝑖 ∧ 𝑗 = min{𝑖, 𝑗} and 𝑖 ∨ 𝑗 = max{𝑖, 𝑗}.
(b) If 𝑆, 𝑇 ∈ 𝐵𝑛, then 𝑆 ∧ 𝑇 = 𝑆 ∩ 𝑇 and 𝑆 ∨ 𝑇 = 𝑆 ∪ 𝑇.
(c) If 𝑐, 𝑑 ∈ 𝐷𝑛, then 𝑐 ∧ 𝑑 = gcd(𝑐, 𝑑) and 𝑐 ∨ 𝑑 = lcm(𝑐, 𝑑).
(d) Suppose 𝜌, 𝜏 ∈ Π𝑛. Then 𝜌 ∧ 𝜏 is the partition whose blocks are the nonempty

intersections of the form𝐵∩𝐶 for blocks𝐵 ∈ 𝜌, 𝐶 ∈ 𝜏. Also, 𝜌∨𝜏 is the partition
such that 𝑏, 𝑐 are in the same block of the join if and only if there is a sequence
of blocks 𝐷1, . . . , 𝐷𝑚 where each 𝐷𝑖 is a block of either 𝜌 or 𝜏, 𝑏 ∈ 𝐷1, 𝑐 ∈ 𝐷𝑚,
and 𝐷𝑖 ∩ 𝐷𝑖+1 ≠ ∅ for all 𝑖.

(e) If 𝜆, 𝜇 ∈ 𝑌 , then 𝜆 ∧ 𝜇 = 𝜆 ∩ 𝜇 and 𝜆 ∨ 𝜇 = 𝜆 ∪ 𝜇.
(f) If 𝑈,𝑊 ∈ 𝐿(𝑉), then 𝑈 ∧𝑊 = 𝑈 ∩𝑊 and 𝑈 ∨𝑊 = 𝑈 +𝑊 . □

Next we will give a list of some elementary properties of lattices.

The preliminary version made available with permission of the publisher, the American Mathematical Society



150 5. Counting with Partially Ordered Sets

Proposition 5.3.2. Let 𝐿 be a lattice. Then the following are true for all 𝑥, 𝑦, 𝑧 ∈ 𝐿.

(a) (Idempotent law) 𝑥 ∧ 𝑥 = 𝑥 ∨ 𝑥 = 𝑥.
(b) (Commutative law) 𝑥 ∧ 𝑦 = 𝑦 ∧ 𝑥 and 𝑥 ∨ 𝑦 = 𝑦 ∨ 𝑥.
(c) (Associative law) (𝑥 ∧ 𝑦) ∧ 𝑧 = 𝑥 ∧ (𝑦 ∧ 𝑧) and (𝑥 ∨ 𝑦) ∨ 𝑧 = 𝑥 ∨ (𝑦 ∨ 𝑧).
(d) (Absorption law) 𝑥 ∧ (𝑥 ∨ 𝑦) = 𝑥 = 𝑥 ∨ (𝑥 ∧ 𝑦).
(e) 𝑥 ≤ 𝑦 ⟺ 𝑥 ∧ 𝑦 = 𝑥 ⟺ 𝑥 ∨ 𝑦 = 𝑦.
(f) If 𝑥 ≤ 𝑦, then 𝑥 ∧ 𝑧 ≤ 𝑦 ∧ 𝑧 and 𝑥 ∨ 𝑧 ≤ 𝑦 ∨ 𝑧.
(g) 𝑥 ∧ (𝑦 ∨ 𝑧) ≥ (𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧) and 𝑥 ∨ (𝑦 ∧ 𝑧) ≤ (𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑧).
(h) If 𝑋 is a finite, nonempty subset of 𝐿, then⋀𝑋 and⋁𝑋 exist.
(i) If 𝐿 is finite, then 𝐿 has a 0̂ and a 1̂.
(j) The dual 𝐿∗ is a lattice.
(k) If𝑀 is a poset and there is an isomorphism 𝑓∶ 𝐿 → 𝑀, then𝑀 is also a lattice.

Furthermore, for 𝑥, 𝑦 ∈ 𝐿,

𝑓(𝑥 ∧ 𝑦) = 𝑓(𝑥) ∧ 𝑓(𝑦) and 𝑓(𝑥 ∨ 𝑦) = 𝑓(𝑥) ∨ 𝑓(𝑦).

Proof. The proofs of these results are straightforward. Sowewill give a demonstration
for the first inequality in (g) and leave the rest to the reader. By definition of lower
bound, 𝑥 ∧ 𝑦 ≤ 𝑥. And similarly 𝑥 ∧ 𝑦 ≤ 𝑦 ≤ 𝑦 ∨ 𝑧. So by definition of greatest lower
bound, 𝑥∧𝑦 ≤ 𝑥∧(𝑦∨𝑧). Similar reason gives 𝑥∧𝑧 ≤ 𝑥∧(𝑦∨𝑧). Using the previous two
inequalities and the definition of least upper bound yields (𝑥∧𝑦)∨ (𝑥∧𝑧) ≤ 𝑥∧(𝑦∨𝑧)
which is what we wished to prove. □

It is certainly possible for the inequalities in (g) of the previous proposition to be
strict. For example, using the lattice in Figure 5.5 we have

𝑐 ∧ (𝑎 ∨ 𝑏) = 𝑐 ∧ 1̂ = 𝑐

while

(𝑐 ∧ 𝑎) ∨ (𝑐 ∧ 𝑏) = 𝑎 ∨ 0̂ = 𝑎.

However, when we have equality in one of these two inequalities, it is forced in the
other.

Proposition 5.3.3. Let 𝐿 be a lattice. Then

𝑥 ∧ (𝑦 ∨ 𝑧) = (𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧) for all 𝑥, 𝑦, 𝑧 ∈ 𝐿

if and only if

𝑥 ∨ (𝑦 ∧ 𝑧) = (𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑧) for all 𝑥, 𝑦, 𝑧 ∈ 𝐿.

The preliminary version made available with permission of the publisher, the American Mathematical Society



5.3. Lattices 151

Proof. For the forward direction we have

(𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑧) = [(𝑥 ∨ 𝑦) ∧ 𝑥] ∨ [(𝑥 ∨ 𝑦) ∧ 𝑧]

= 𝑥 ∨ [(𝑥 ∨ 𝑦) ∧ 𝑧]

= 𝑥 ∨ [(𝑥 ∧ 𝑧) ∨ (𝑦 ∧ 𝑧)]

= [𝑥 ∨ (𝑥 ∧ 𝑧)] ∨ (𝑦 ∧ 𝑧)

= 𝑥 ∨ (𝑦 ∧ 𝑧),

which is the desired equality. The proof of the other direction is similar. □

A lattice which satisfies either of the two equalities in Proposition 5.3.3 is called a
distributive lattice, and these equations are called the distributive laws. Of the lattices in
Proposition 5.3.1, Π𝑛 is not distributive for 𝑛 ≥ 3. In fact, taking 𝑧, 𝑦, 𝑧 to be the three
elements of rank 1 in Π3 gives a strict inequality in the defining relation. Similarly,
𝐿(𝑉) is not distributive for dim𝑉 ≥ 2. All the other lattices are distributive as the
reader will be asked to show in the exercises.

Proposition 5.3.4. The posets 𝐶𝑛, 𝐵𝑛, 𝐷𝑛, 𝑌 , 𝐾𝑛 are distributive lattices for all 𝑛. □

We will now prove a beautiful theorem characterizing finite distributive lattices
due to Birkhoff [14]. It says that every such lattice is essentially a set of lower-order
ideals partially ordered by inclusion. Given a poset 𝑃, consider

𝒥(𝑃) = {𝐼 ∣ 𝐼 is a lower-order ideal of 𝑃}.

𝑟

𝑠 𝑡

𝑢

𝑃

∅

{𝑟}

{𝑟, 𝑠} {𝑟, 𝑡}

{𝑟, 𝑠, 𝑡} {𝑟, 𝑡, 𝑢}

{𝑟, 𝑠, 𝑡, 𝑢}

𝒥(𝑃)

Figure 5.6. A poset and its associated distributive lattice
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Turn 𝒥(𝑃) into a poset by letting 𝐼 ≤ 𝐽 if 𝐼 ⊆ 𝐽. For example, a poset 𝑃 and the corre-
sponding poset 𝒥(𝑃) are shown in Figure 5.6. Our first order of business is to show that
𝒥(𝑃) is always a distributive lattice.

Proposition 5.3.5. If 𝑃 is any poset, then 𝒥(𝑃) is a distributive lattice.

Proof. It suffices to show that if 𝐼, 𝐽 ∈ 𝒥(𝑃), then so are 𝐼 ∩ 𝐽 and 𝐼 ∪ 𝐽. Indeed,
this suffices because these are the greatest lower bound and least upper bound if one
considers all subsets of 𝑃, and set intersection and union satisfy the distributive laws.
We will demonstrate this for 𝐼 ∩ 𝐽 since the argument for union is similar. We need to
show that 𝐼 ∩ 𝐽 is a lower-order ideal of 𝑃. So take 𝑥 ∈ 𝐼 ∩ 𝐽 and 𝑦 ≤ 𝑥. Now 𝑥 ∈ 𝐼 and
𝑥 ∈ 𝐽. Since both sets are ideals, this implies 𝑦 ∈ 𝐼 and 𝑦 ∈ 𝐽. So 𝑦 ∈ 𝐼 ∩ 𝐽 which is
what we needed to show. □

The amazing thing is that every finite distributive lattice is of the form 𝒥(𝑃) for
some poset 𝑃. In order to prove this, we need a way that, given a distributive lattice 𝐿,
we can identify the 𝑃 from which it was built. This is done using certain elements of 𝑃
which we now define. Let 𝐿 be a finite lattice so that 𝐿 has a 0̂ by Proposition 5.3.2(i).
Call 𝑥 ∈ 𝐿 − {0̂} join irreducible if 𝑥 cannot be written as 𝑥 = 𝑦 ∨ 𝑧 where 𝑦, 𝑧 < 𝑥.
Equivalently, if 𝑥 = 𝑦 ∨ 𝑧, then 𝑦 = 𝑥 or 𝑧 = 𝑥. Let

Irr(𝐿) = {𝑥 ∈ 𝐿 ∣ 𝑥 is join irreducible}.
It turns out the join irreducibles are easy to spot in the Hasse diagram of 𝐿. Also, the
join irreducibles under a given element join to give that element.

Proposition 5.3.6. Let 𝐿 be a finite lattice.
(a) Element 𝑥 ∈ 𝐿 is join irreducible if and only if 𝑥 covers exactly one element.
(b) For any 𝑥 ∈ 𝐿, if we let

(5.2) 𝐼𝑥 = {𝑟 ≤ 𝑥 ∣ 𝑟 ∈ Irr(𝐿)},
then 𝑥 = ⋁𝐼𝑥.

Proof. (a) First note that, by definition, 0̂ is not join irreducible. And 0̂ covers no
elements, so the proposition is true in that case. Now assume 𝑥 ≠ 0̂.

For the forward direction suppose, towards a contradiction, that 𝑥 covers (at least)
two elements 𝑦, 𝑧. But then 𝑥 = 𝑦 ∨ 𝑧 since 𝑥 is clearly an upper bound for 𝑦, 𝑧 and
there can be no smaller bound because of the covering relations. This contradicts the
fact that 𝑥 is join irreducible.

For the converse, let 𝑥 cover a unique element 𝑥′. If 𝑥 = 𝑦 ∨ 𝑧 with 𝑦, 𝑧 < 𝑥, then
we must have 𝑦, 𝑧 ≤ 𝑥′ because 𝑥 covers no other element. This forces 𝑦 ∨ 𝑧 ≤ 𝑥′ < 𝑥
which is the desired contradiction.

(b) We induct on the number of elements in [0̂, 𝑥]. If 𝑥 = 0̂, then the statement
is true because 𝐼𝑥 = ∅ and the empty join equals 0̂ just as the empty meet equals 1̂. If
𝑥 > 0̂, then there are two cases. If 𝑥 ∈ Irr(𝐿), then 𝑥 is the maximum element of 𝐼𝑥 so
⋁𝐼𝑥 = 𝑥 by Proposition 5.3.2(e). If 𝑥 ∉ Irr(𝐿), then, by part (a), 𝑥 covers more than
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one element. So we can write 𝑥 = 𝑦 ∨ 𝑧 for any pair of elements 𝑦, 𝑧 covered by 𝑥. By
induction, 𝑦 = ⋁𝐼𝑦 and 𝑧 = ⋁𝐼𝑧 where 𝐼𝑦, 𝐼𝑧 ⊆ 𝐼𝑥. It follows that

𝑥 = 𝑦 ∨ 𝑧 = (⋁𝐼𝑦) ∨ (⋁𝐼𝑧) =⋁(𝐼𝑦 ∪ 𝐼𝑧) ≤ ⋁𝐼𝑥 ≤ 𝑥

where the last inequality follows since 𝑟 ≤ 𝑥 for all 𝑟 ∈ 𝐼𝑥. The previous displayed
inequalities force 𝑥 = ⋁𝐼𝑥 as desired. □

Using this proposition, the reader can see immediately in Figure 5.6 that 𝒥(𝑃) has
four join irreducibles which form a subposet isomorphic to 𝑃. Birkhoff’s theorem says
this always happens.

Theorem 5.3.7 (Fundamental Theorem of Finite Distributive Lattices). If 𝐿 is a finite
distributive lattice, then 𝐿 ≅ 𝒥(𝑃) where 𝑃 = Irr(𝐿).

Proof. We need to define two order-preserving maps 𝑓∶ 𝐿 → 𝒥(𝑃) and 𝑔∶ 𝒥(𝑃) → 𝐿
which are inverses of each other. If 𝑥 ∈ 𝐿, then let 𝑓(𝑥) = 𝐼𝑥 as defined by (5.2). Note
that this is well-defined since 𝐼𝑥 is an ideal: if 𝑟 ∈ 𝐼𝑥 and 𝑠 ≤ 𝑟 is irreducible, then
𝑠 ≤ 𝑟 ≤ 𝑥 so that 𝑠 ∈ 𝐼𝑥. Also, 𝑓 is order preserving since 𝑥 ≤ 𝑦 implies 𝐼𝑥 ⊆ 𝐼𝑦 by
an argument similar to the one just given. For the inverse map, we let 𝑔(𝐼) = ⋁ 𝐼 for
𝐼 ∈ 𝒥(𝑃). Clearly this is an element of 𝐿 since 𝑃 ⊂ 𝐿 and so 𝑔 is well-defined. It is also
order preserving since if 𝐼 ⊆ 𝐽, then

𝑔(𝐽) = ⋁𝐽 = (⋁𝐼) ∨ (⋁(𝐽 − 𝐼)) ≥⋁𝐼 = 𝑔(𝐼).

It remains to prove that 𝑓 and 𝑔 are inverses. If 𝑥 ∈ 𝐿, then, using Proposi-
tion 5.3.6(b),

𝑔(𝑓(𝑥)) = 𝑔(𝐼𝑥) = ⋁𝐼𝑥 = 𝑥.

Now consider 𝐼 ∈ 𝒥(𝑃) and let 𝑥 = 𝑔(𝐼) = ⋁ 𝐼. Then 𝑓(𝑔(𝐼)) = 𝐼𝑥 and we must
show 𝐼 = 𝐼𝑥. For the containment 𝐼 ⊆ 𝐼𝑥, take 𝑟 ∈ 𝐼. So 𝑟 ≤ ⋁ 𝐼 = 𝑥. But this means
𝑟 ∈ 𝐼𝑥 by definition (5.2), which gives the desired subset relation.

To show 𝐼𝑥 ⊆ 𝐼, take 𝑟 ∈ 𝐼𝑥. We have that⋁𝐼 = 𝑥 = ⋁𝐼𝑥. So 𝑟∧(⋁ 𝐼) = 𝑟∧(⋁ 𝐼𝑥)
and, applying the distributive law,

(5.3) ⋁{𝑟 ∧ 𝑠 ∣ 𝑠 ∈ 𝐼} = ⋁{𝑟 ∧ 𝑠 ∣ 𝑠 ∈ 𝐼𝑥}.

Since 𝑟 ∈ 𝐼𝑥, the set on the right in (5.3) contains 𝑟∧𝑟 = 𝑟. Furthermore, every element
of that set is of the form 𝑟 ∧ 𝑠 ≤ 𝑟. It follows that the right-hand side of the equality
in (5.3) is just 𝑟. But 𝑟 is join irreducible, so there must be some element 𝑠 ∈ 𝐼 on the
left in (5.3) such that 𝑟 ∧ 𝑠 = 𝑟. By Proposition 5.3.2(e) this forces 𝑟 ≤ 𝑠 ∈ 𝐼. Since 𝐼 is
an ideal, we have 𝑟 ∈ 𝐼 which is the final step of the proof. □
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5.4. The Möbius function of a poset

The Möbius function is a fundamental invariant of any locally finite poset. A special
case of this function was first studied in number theory. But the generalization to par-
tially ordered sets is both more powerful and also in some ways more intuitive. It is of
great use to enumerators because, as we will see in the next section, it permits one to
invert certain summation formulas to get information about the summands.

Let 𝑃 be a locally finite poset with a 0̂. The (one-variable) Möbius function of 𝑃 is a
map 𝜇∶ 𝑃 → ℤ defined inductively by

(5.4) 𝜇(𝑥) = {
1 if 𝑥 = 0̂,
− ∑

𝑦<𝑥
𝜇(𝑦) otherwise.

Note that since 𝑃 is locally finite, the number of summands is finite so that 𝜇 is well-
defined. By moving the terms in the sum to the left-hand side of the equation, we get
the following equivalent definition: for any 𝑥 ∈ 𝑃 we have

(5.5) ∑
𝑦≤𝑥

𝜇(𝑦) = 𝛿0̂,𝑥

where 𝛿0̂,𝑥 is the Kronecker delta. We will write 𝜇𝑃 if we wish to be specific about the
poset whose Möbius function is under consideration. Also, if 𝑃 has a 1̂, then we will
write

𝜇(𝑃) = 𝜇(1̂).

Let us now calculate the Möbius function for some of our example posets. First
consider 𝐶3 as displayed in Figure 5.1. Using (5.4) we see that

𝜇(0) = 1,
𝜇(1) = −𝜇(0) = −1,
𝜇(2) = −(𝜇(0) + 𝜇(1)) = −0 = 0,
𝜇(3) = −(𝜇(0) + 𝜇(1) + 𝜇(2)) = −0 = 0.

The next result should now be obvious.

Proposition 5.4.1. In 𝐶𝑛 we have

𝜇(𝑖) =
⎧
⎨
⎩

1 if 𝑖 = 0,
−1 if 𝑖 = 1,
0 otherwise.

So 𝜇(𝐶𝑛) = 1, −1, or 0 depending on whether we have 𝑛 = 0, 1, or 𝑛 ≥ 2, respectively. □

Now have a look at 𝐵3. Similarly to 𝐶3 we have 𝜇(∅) = 1 and 𝜇({1}) = 𝜇({2}) =
𝜇({3}) = −1. Using (5.4) we see that

𝜇({1, 2}) = −(𝜇(∅) + 𝜇({1}) + 𝜇({2})) = −(1 − 1 − 1) = 1.
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Analogous computations show that 𝜇({1, 3}) = 𝜇({2, 3}) = 1. Finally
𝜇({1, 2, 3}) = − ∑

𝑆⊂{1,2,3}
𝜇(𝑆) = −(1 − 1 − 1 − 1 + 1 + 1 + 1) = −1.

The next result should not be hard to guess.

Proposition 5.4.2. If 𝑆 ∈ 𝐵𝑛, then
(5.6) 𝜇(𝑆) = (−1)#𝑆 .
So 𝜇(𝐵𝑛) = (−1)𝑛.

Proof. It will suffice to show that the function (−1)#𝑆 satisfies (5.5) since that equation
uniquely defines 𝜇. So suppose 𝑇 ∈ 𝐵𝑛 and let #𝑇 = 𝑘. Then, using Theorem 1.3.3(d),

∑
𝑆⊆𝑇

(−1)#𝑆 =
𝑘
∑
𝑖=0

∑
𝑆∈(𝑇𝑖 )

(−1)𝑖 =
𝑘
∑
𝑖=0

(𝑘𝑖 )(−1)
𝑖 = 𝛿0,𝑘 = 𝛿∅,𝑇

which is the desired equality. □

In the divisor lattice 𝐷18, the reader should now find it easy to verify that
𝜇(1) = 𝜇(6) = 1, 𝜇(2) = 𝜇(3) = −1, 𝜇(9) = 𝜇(18) = 0.

Now the pattern is not as clear. To help us, we will need a result about how theMöbius
function interacts with the product operation on posets. But first, it will be useful to
have a result about isomorphism and 𝜇.
Theorem 5.4.3. Let 𝑃 be a locally finite poset with 0̂ and let 𝑓∶ 𝑃 → 𝑄 be in isomor-
phism. Then for all 𝑥 ∈ 𝑃 we have

𝜇𝑃(𝑥) = 𝜇𝑄(𝑓(𝑥)).

Proof. We induct on the cardinality of the ideal 𝐼(𝑥). If #𝐼(𝑥) = 1, then 𝑥 = 0̂𝑃 and
𝑓(𝑥) = 0̂𝑄. So 𝜇𝑃(𝑥) = 1 = 𝜇𝑄(𝑓(𝑥)). Now assume #𝐼(𝑥) > 1 so that 𝑥 > 0̂𝑃 and
𝑓(𝑥) > 0̂𝑄. Now, by induction,

𝜇𝑃(𝑥) = − ∑
𝑦<𝑥

𝜇𝑃(𝑦) = − ∑
𝑓(𝑦)<𝑓(𝑥)

𝜇𝑄(𝑓(𝑦)) = 𝜇𝑄(𝑓(𝑥))

as we wished. □

The Möbius function also plays well with poset products.

Theorem 5.4.4. Let 𝑃 and 𝑄 be locally finite posets containing 0̂𝑃 and 0̂𝑄, respectively.
Then for all 𝑠 ∈ 𝑃 and 𝑥 ∈ 𝑄 we have

𝜇𝑃×𝑄(𝑠, 𝑥) = 𝜇𝑃(𝑠)𝜇𝑄(𝑥).

Proof. It suffices to show that the right-hand side of the displayed equation satis-
fies (5.5). But given (𝑠, 𝑥) ∈ 𝑃 × 𝑄, we have

∑
(𝑡,𝑦)≤(𝑠,𝑥)

𝜇𝑃(𝑡)𝜇𝑄(𝑦) = ∑
𝑡≤𝑠

𝜇𝑃(𝑡) ∑
𝑦≤𝑥

𝜇𝑄(𝑦) = 𝛿0̂𝑃 ,𝑠𝛿0̂𝑄 ,𝑥 = 𝛿(0̂𝑃 ,0̂𝑄),(𝑠,𝑥)

as desired. □
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We can now compute the Möbius function of the divisor lattice.

Proposition 5.4.5. The Möbius function of 𝐷𝑛 is

(5.7) 𝜇(𝑑) = { (−1)𝑚 if 𝑑 is a product of𝑚 distinct primes,
0 otherwise.

Proof. We will use the notation and definitions in Proposition 5.2.1 and its proof as
well as letting 𝑃 = ⨉𝑖 𝐶𝑛𝑖 . Using Theorems 5.4.3 and 5.4.4

𝜇𝐷𝑛(𝑑) = 𝜇𝑃(𝑔(𝑑)) =∏
𝑖
𝜇𝐶𝑛𝑖

(𝑑𝑖).

Recalling the Möbius function for a chain as determined in Proposition 5.4.1, we see
that the product is zero if any𝑑𝑖 ≥ 2 andotherwise equals (−1)𝑚where𝑚 is the number
of 𝑑𝑖 = 1. Since the 𝑑𝑖 are the exponents in the prime factorization of 𝑑 (with 𝑑𝑖 = 0 if
𝑝𝑖 is a prime factor of 𝑛 but not 𝑑), the proposition follows. □

The reader can now see the power of the poset viewpoint in this context. Most
number theory texts take (5.7) as the definition of the Möbius function, which is not at
all intuitive. But from our perspective, this equation is a natural consequence of the
fact that 𝐷𝑛 is a product of chains. We also note that Theorems 5.4.3 and 5.4.4 can be
used to rederive the formula for 𝜇 in 𝐵𝑛 as the reader is asked to do in the exercises.

We end this section bynoting that in a rankedposet𝑃 one can get interesting results
by looking at the Möbius values at a given rank. Recalling (5.1), define the Whitney
numbers of the second kind for 𝑃 to be𝑊 𝑘(𝑃) = #Rk𝑘(𝑃). Equivalently

𝑊 𝑘(𝑃) = ∑
𝑥∈Rk𝑘(𝑃)

1.

Also define 𝑃’sWhitney numbers of the first kind as
𝑤𝑘(𝑃) = ∑

𝑥∈Rk𝑘(𝑃)
𝜇(𝑥).

For example we have𝑊 𝑘(𝐵𝑛) = #([𝑛]𝑘 ) = (𝑛𝑘) and, by (5.6),

(5.8) 𝑤𝑘(𝐵𝑛) = (−1)𝑘(𝑛𝑘).

As another illustration, from Proposition 5.2.2(d) we see that
𝑊 𝑘(Π𝑛) = #𝑆([𝑛], 𝑛 − 𝑘) = 𝑆(𝑛, 𝑛 − 𝑘)

which are the Stirling numbers of the second kind. We will now show that there is a
similar relationship between𝑤𝑘(Π𝑛) and the (signed) Stirling numbers of thefirst kind.
To prove this we need a definition. If 𝜋 ∈ 𝔖𝑛 has cycle decomposition 𝜋 = 𝑐1⋯𝑐𝑘,
then 𝜋 has corresponding partition 𝜌 = 𝐵1/ . . . /𝐵𝑘 where 𝐵𝑖 is the set of elements in 𝑐𝑖
for all 𝑖. Note that, by Proposition 4.3.1, the number of permutations corresponding to
a given partition 𝜌 is∏𝑖(|𝐵𝑖| − 1)!. Using this fact, the equality
(5.9) 𝑤𝑘(Π𝑛) = 𝑠(𝑛, 𝑛 − 𝑘)
follows immediately from the next proposition.
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Proposition 5.4.6. If 𝜌 = 𝐵1/ . . . /𝐵𝑘 ∈ Π𝑛, then

(5.10) 𝜇(𝜌) = (−1)𝑛−𝑘(|𝐵1| − 1)! ⋯ (|𝐵𝑘| − 1)! .
So 𝜇(Π𝑛) = (−1)𝑛−1(𝑛 − 1)!.

Proof. We induct on 𝑛, where the case 𝑛 = 1 is easy to verify. Assume that 𝜇(Π𝑚) =
(−1)𝑚−1(𝑚 − 1)! for 𝑚 < 𝑛. It follows from Proposition 5.2.1(c), Theorem 5.4.4, and
induction that (5.10) holds for all 𝜌 < 1̂ in Π𝑛. To verify that it continues to be true for
𝜌 = 1̂, it suffices to show that summing the right-hand side of this equation over all
of Π𝑛 satisfies (5.5). Using the observation about the number of permutations corre-
sponding to a partition as well as Corollary 1.5.3 gives

∑
𝜌=𝐵1/. . ./𝐵𝑘∈Π𝑛

(−1)𝑛−𝑘
𝑘
∏
𝑖=1

(|𝐵𝑘| − 1)! = ∑
𝜋=𝑐1⋯𝑐𝑘∈𝔖𝑛

(−1)𝑛−𝑘

=
𝑛
∑
𝑘=0

∑
𝜋∈𝑐([𝑛],𝑘)

(−1)𝑛−𝑘

=
𝑛
∑
𝑘=0

𝑠(𝑛, 𝑘)

= 𝛿0,𝑛
and this finishes the proof. □

5.5. The Möbius Inversion Theorem

In this section we will prove the Möbius Inversion Theorem, which is a very general
method for inverting sums over posets 𝑃. In fact, we will show that special cases of
this result include the Fundamental Theorem of the Difference Calculus (𝑃 = 𝐶𝑛),
the Principle of Inclusion and Exclusion (𝑃 = 𝐵𝑛), and the Möbius Inversion Theorem
in number theory (𝑃 = 𝐷𝑛). A useful perspective will be to consider a certain alge-
bra associated with 𝑃 called the incidence algebra and which permits linear algebra
techniques to be employed.

Our first step will be to generalize the Möbius function to a map having two ar-
guments. Let 𝑃 be a locally finite poset and let Int(𝑃) be the set of closed intervals of
𝑃. Note that every [𝑥, 𝑧] ∈ Int(𝑃) has a minimum element; namely 0̂[𝑥,𝑦] = 𝑥. The
Möbius function of 𝑃 is the map 𝜇∶ Int(𝑃) → ℤ defined inductively on [𝑥, 𝑧] by

(5.11) 𝜇(𝑥, 𝑧) = {
1 if 𝑥 = 𝑧,
− ∑

𝑥≤𝑦<𝑧
𝜇(𝑥, 𝑦) otherwise.

Note that 𝜇(𝑥, 𝑧) denotes the value of 𝜇 on the closed interval [𝑥, 𝑧] even though the
square brackets have been dropped in the notation. Also note that this is essentially
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the same definition as (5.4). Indeed, as a poset [𝑥, 𝑧] has a minimum element 0̂ = 𝑥
and

(5.12) 𝜇(𝑥, 𝑧) = 𝜇[𝑥,𝑧](𝑧)
where the latter is the Möbius function of one variable. The readers may wish to con-
vince themselves of this by computing 𝜇({1, 3}, {1, 2, 3, 5, 6}) in the poset of Figure 5.3
and then comparing this with the computation done in the previous section for 𝐵3. Just
as in the one-variable case, we have the alternative definition

(5.13) ∑
𝑥≤𝑦≤𝑧

𝜇(𝑥, 𝑦) = 𝛿𝑥,𝑧.

It turns out that 𝜇 is only one of an important family of functions on Int(𝑃). If
𝑃 is a locally finite poset, then its incidence algebra, ℐ(𝑃), is the set of all functions
𝜙∶ Int(𝑃) → ℝ under the operations of addition

(𝜙 + 𝜓)(𝑥, 𝑧) = 𝜙(𝑥, 𝑧) + 𝜓(𝑥, 𝑧),
scalar multiplication of 𝑐 ∈ ℝ

(𝑐 ⋅ 𝜙)(𝑥, 𝑧) = 𝑐(𝜙(𝑥, 𝑧)),
and convolution product

(𝜙 ∗ 𝜓)(𝑥, 𝑧) = ∑
𝑥≤𝑦≤𝑧

𝜙(𝑥, 𝑦)𝜓(𝑦, 𝑧).

It will often be convenient to extend the domain of 𝜙 ∈ ℐ(𝑃) to all of 𝑃 × 𝑃 by letting
𝜙(𝑥, 𝑧) = 0whenever 𝑥 ≰ 𝑧. Using this convention the sum in the convolution product
can take place over all 𝑦 ∈ 𝑃. We will now show that the incidence algebra lives up to
its name.

Theorem 5.5.1. If 𝑃 is a locally finite poset, then (ℐ(𝑃), +, ⋅, ∗) is an associative algebra
over ℝ.

Proof. Wewill prove the associative law for convolution, leaving the check of the other
algebra axioms as an exercise. If 𝜙, 𝜓, 𝜔 ∈ ℐ(𝑃) and [𝑥, 𝑧] ∈ Int(𝑃), then, using the fact
that ℝ itself is associative,

((𝜙 ∗ 𝜓) ∗ 𝜔)(𝑥, 𝑧) = ∑
𝑠
(𝜙 ∗ 𝜓)(𝑥, 𝑠)𝜔(𝑠, 𝑧)

= ∑
𝑟,𝑠
(𝜙(𝑥, 𝑟)𝜓(𝑟, 𝑠))𝜔(𝑠, 𝑧)

= ∑
𝑟,𝑠
𝜙(𝑥, 𝑟)(𝜓(𝑟, 𝑠)𝜔(𝑠, 𝑧))

= ∑
𝑟
𝜙(𝑥, 𝑟)(𝜓 ∗ 𝜔)(𝑟, 𝑧)

= (𝜙 ∗ (𝜓 ∗ 𝜔))(𝑥, 𝑧)
as desired. □
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Wehave alreadymet one element of ℐ(𝑃), namely𝜇. But there are otherswhich are
important. Consider the analogue of the Kronecker delta, which is 𝛿 ∈ ℐ(𝑃) defined
by

𝛿(𝑥, 𝑧) = { 1 if 𝑥 = 𝑧,
0 otherwise.

In other words, 𝛿(𝑥, 𝑧) = 𝛿𝑥,𝑧.
Proposition 5.5.2. The incidence algebra ℐ(𝑃) has identity element 𝛿; that is, for any
𝜙 ∈ ℐ(𝑃) we have

𝛿 ∗ 𝜙 = 𝜙 ∗ 𝛿 = 𝜙.

Proof. We will prove 𝛿 ∗ 𝜙 = 𝜙 as the other equality is entirely analogous. Since 𝛿 is
only nonzero when its two arguments are equal,

(𝛿 ∗ 𝜙)(𝑥, 𝑧) = ∑
𝑦
𝛿(𝑥, 𝑦)𝜙(𝑦, 𝑧) = 𝛿(𝑥, 𝑥)𝜙(𝑥, 𝑧) = 𝜙(𝑥, 𝑧)

as we wished to show. □

Another useful element of ℐ(𝑃) is the zeta function which satisfies 𝜁(𝑥, 𝑧) = 1 for
all [𝑥, 𝑧] ∈ Int(𝑃). In Section 5.9 we will see how 𝜁 is related to the Riemann zeta
function. Recall that if 𝐴 is an associative algebra with identity element 𝑒, then 𝑎 ∈ 𝐴
has a (multiplicative) inverse if there is an element denoted 𝑎−1 such that both 𝑎−1𝑎 = 𝑒
and 𝑎𝑎−1 = 𝑒. If 𝑛 ∈ ℕ, then the algebra of 𝑛×𝑛matrices overℝ has the property that
to prove the existence of 𝑎−1 it suffices to show that it satisfies 𝑎−1𝑎 = 𝑒. As we will
see shortly, there is a correspondence between incidence algebras of finite posets and
matrix algebras which will show that the same implication holds for ℐ(𝑃). It turns out
that 𝜁 and 𝜇 are inverses in ℐ(𝑃).
Proposition 5.5.3. We have

𝜇 = 𝜁−1.

Proof. Using (5.13) and the definition of 𝜁 we see that
(𝜇 ∗ 𝜁)(𝑥, 𝑧) = ∑

𝑥≤𝑦≤𝑧
𝜇(𝑥, 𝑦)𝜁(𝑦, 𝑧) = ∑

𝑥≤𝑦≤𝑧
𝜇(𝑥, 𝑦) ⋅ 1 = 𝛿(𝑥, 𝑧).

By the discussion preceding this proposition, this is enough to prove that 𝜇 = 𝜁−1. □

By the discussion just before the previous proposition, we can conclude that 𝜁∗𝜇 =
𝛿. Evaluating this equality on an interval gives

∑
𝑥≤𝑦≤𝑧

𝜁(𝑥, 𝑦)𝜇(𝑦, 𝑧) = 𝛿𝑥,𝑧

or
(5.14) ∑

𝑥≤𝑦≤𝑧
𝜇(𝑦, 𝑧) = 𝛿𝑥,𝑧.

This looks verymuch like (5.13) except that in one the first argument of 𝜇 is fixed while
the second varies, while in the other the roles are reversed. So (5.14) could also be used
to uniquely define theMöbius function except in a dualmanner from the original. This
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equation can be used to calculate 𝜇 in a “top-down” fashion. It is not at all obvious a
priori that this computation and the one proceeding “bottom-up” give the same value
for 𝜇(𝑥, 𝑧), although they must.

One can make the incidence algebra more concrete by identifying it with an al-
gebra of matrices. Let 𝑃 be a finite poset. A linear extension of 𝑃 is a permutation
𝐿 = 𝑥1𝑥2 . . . 𝑥𝑛 of the elements of 𝑃 such that 𝑥𝑖 ≤𝑃 𝑥𝑗 implies 𝑖 ≤ 𝑗; that is, 𝑥𝑖 comes
before 𝑥𝑗 in the permutation. One can think of a linear extension as a listing of the ele-
ments of 𝑃 which respects the partial order in that smaller elements must come before
larger ones. For example, 𝐵2 has two linear extensions, namely

∅, {1}, {2}, {1, 2} and ∅, {2}, {1}, {1, 2}.
Given a linear extension 𝐿 and 𝜙 ∈ ℐ(𝑃), thematrix of 𝑓 with respect to 𝐿 is

𝑀𝜙 = (𝜙(𝑥𝑖, 𝑥𝑗))1≤𝑖,𝑗≤𝑛
recalling that 𝜙(𝑥, 𝑦) = 0 if 𝑥 ≰ 𝑦. Returning to our example and using the first linear
extension above we have

𝑀𝜁 =

∅ {1} {2} {1, 2}
∅
{1}
{2}
{1, 2}

⎡⎢⎢⎢
⎣

1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

⎤⎥⎥⎥
⎦

where the elements of 𝐵2 indexing the rows and columns are shown in the margins.
For any linear extension 𝐿 and any 𝜙 ∈ ℐ(𝑃) the matrix𝑀𝜙 must be upper triangular
since if 𝑖 > 𝑗, then 𝑥𝑖 ≰ 𝑥𝑗 and so (𝑀𝜙)𝑖,𝑗 = 𝜙(𝑥𝑖, 𝑥𝑗) = 0.
Theorem 5.5.4. Let 𝑃 be a finite poset and fix a linear extension 𝐿 = 𝑥1 . . . 𝑥𝑛 of 𝑃. Then
ℐ(𝑃) is isomorphic to the algebra of 𝑛 × 𝑛 real matrices𝑀 such that𝑀𝑖,𝑗 = 0 if 𝑥𝑖 ≰ 𝑥𝑗 .

Proof. The map 𝜙 ↦ 𝑀𝜙 is a bijection between the two algebras since 𝑀𝜙 contains
all the values of 𝜙. It is easy to prove that this bijection preserves addition and scalar
multiplication. For multiplication of algebra elements, we must show that 𝑀𝜙𝑀𝜓 =
𝑀𝜙∗𝜓 for any 𝜙, 𝜓 ∈ ℐ(𝑃). To do this, it suffices to prove that these matrices have the
same (𝑖, 𝑗) entry for any 𝑖, 𝑗. But

(𝑀𝜙𝑀𝜓)𝑖,𝑗 = ∑
1≤𝑘≤𝑛

(𝑀𝜙)𝑖,𝑘(𝑀𝜓)𝑘,𝑗

= ∑
𝑥𝑘∈𝑃

𝜙(𝑥𝑖, 𝑥𝑘)𝜓(𝑥𝑘, 𝑥𝑗)

= (𝜙 ∗ 𝜓)(𝑥𝑖, 𝑥𝑗)

= (𝑀𝜙∗𝜓)𝑖,𝑗
as desired. □

We can now prove the Möbius Inversion Theorem as well as its dual version. Note
that each of the four conditions are required to hold for all 𝑥 ∈ 𝑃, not just for a specific
element.
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Theorem 5.5.5 (Möbius Inversion Theorem). Let 𝑃 be a finite poset, let 𝑉 be a real
vector space, and let 𝑓, 𝑔∶ 𝑃 → 𝑉 be two functions.

(a) We have

𝑓(𝑥) = ∑
𝑦≥𝑥

𝑔(𝑦) for all 𝑥 ∈ 𝑃 ⟺ 𝑔(𝑥) = ∑
𝑦≥𝑥

𝜇(𝑥, 𝑦)𝑓(𝑦) for all 𝑥 ∈ 𝑃.

(b) We have

𝑓(𝑥) = ∑
𝑦≤𝑥

𝑔(𝑦) for all 𝑥 ∈ 𝑃 ⟺ 𝑔(𝑥) = ∑
𝑦≤𝑥

𝜇(𝑦, 𝑥)𝑓(𝑦) for all 𝑥 ∈ 𝑃.

Proof. We will prove (a), leaving (b) as an exercise. In fact, we will give two proofs of
(a), one working directly with the elements of ℐ(𝑃) and one using linear algebra.

Let us assume that 𝑓(𝑥) = ∑𝑦≥𝑥 𝑔(𝑦) for all 𝑥 ∈ 𝑃. Plugging this into summation
involving 𝜇 and using (5.13) yields

∑
𝑦≥𝑥

𝜇(𝑥, 𝑦)𝑓(𝑦) = ∑
𝑦≥𝑥

𝜇(𝑥, 𝑦) ∑
𝑧≥𝑦

𝑔(𝑧)

= ∑
𝑧≥𝑥

𝑔(𝑧) ∑
𝑥≤𝑦≤𝑧

𝜇(𝑥, 𝑦)

= ∑
𝑧≥𝑥

𝑔(𝑧)𝛿𝑥,𝑧

= 𝑔(𝑥).

The proof of the reverse implication follows the same strategy and so is safely left to
the reader.

For the linear algebraic proof, wewill fix a linear extension 𝐿 = 𝑥1 . . . 𝑥𝑛 of 𝑃. Then
any 𝑓∶ 𝑃 → 𝑉 has associated column vector

𝑣𝑓 = [
𝑓(𝑥1)
⋮

𝑓(𝑥𝑛)
] .

Note that the first condition in (a) can be written 𝑓(𝑥) = ∑𝑦∈𝑃 𝜁(𝑥, 𝑦)𝑔(𝑦) since

𝜁(𝑥, 𝑦) = { 1 if 𝑥 ≤ 𝑦,
0 otherwise.

The summation for 𝑓 says that the entry in row 𝑥 of 𝑣𝑓 is the same as the entry in row
𝑥 of the product 𝑀𝜁𝑣𝑔. And since this must hold for all 𝑥, the first condition in (a) is
equivalent to thematrix equation 𝑣𝑓 = 𝑀𝜁𝑣𝑔. But by Theorem 5.5.4,𝑀𝜁 has an inverse
which is𝑀𝜇. So 𝑣𝑔 = 𝑀𝜇𝑣𝑓. This is equivalent to the summation condition for 𝑔 since
we have, taking the entry in row 𝑥 on both sides,

𝑔(𝑥) = ∑
𝑦∈𝑃

𝜇(𝑥, 𝑦)𝑓(𝑦) = ∑
𝑦≥𝑥

𝜇(𝑥, 𝑦)𝑓(𝑦)

for any 𝑥. □
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This theorem is useful when the function 𝑓 is easy to compute, but one is really
interested in 𝑔. If the two maps under consideration are related by an appropriate
summation condition, then we can express 𝑔 in terms of 𝑓 by inversion. We will now
give several examples, starting with the ones mentioned in the first paragraph of this
section.

Our first application will be to the theory of finite differences, which is a discrete
analogue of the calculus. A function 𝑓∶ ℕ → ℝ has as ( forward) difference the func-
tion Δ𝑓∶ ℕ → ℝ defined by

Δ𝑓(𝑛) = 𝑓(𝑛 + 1) − 𝑓(𝑛).
This corresponds to differentiation. Indeed, the derivative of 𝑓∶ ℝ → ℝ is

𝑓′(𝑥) = lim
𝜖→0

𝑓(𝑥 + 𝜖) − 𝑓(𝑥)
𝜖

and at 𝜖 = 1 the function inside the limit is just 𝑓(𝑥 + 1) − 𝑓(𝑥). For example, if
𝑓(𝑛) = 𝑛2, then Δ𝑓(𝑛) = (𝑛 + 1)2 − 𝑛2 = 2𝑛 + 1 which bears a strong resemblance to
(𝑥2)′ = 2𝑥. There is also a version of the definite integral in this context. The definite
summation of 𝑓∶ ℕ → ℝ is the function 𝑆𝑓∶ ℕ → ℝ where

𝑆𝑓(𝑛) =
𝑛
∑
𝑖=0

𝑓(𝑖).

The analogue of the Fundamental Theorem of Calculus is as follows. It will be con-
venient to extend the domain of any 𝑓∶ ℕ → ℝ to ℤ by letting 𝑓(𝑖) = 0 for 𝑖 < 0.

Theorem 5.5.6 (Fundamental Theorem of Difference Calculus). Given two function
𝑓, 𝑔∶ ℕ → ℝ, we have

𝑓(𝑛) = 𝑆𝑔(𝑛) for all 𝑛 ≥ 0 ⟺ 𝑔(𝑛) = Δ𝑓(𝑛 − 1) for all 𝑛 ≥ 0.

Proof. It is easy to compute that in the chain 𝐶𝑛 we have

𝜇(𝑖, 𝑛) =
⎧
⎨
⎩

1 if 𝑖 = 𝑛,
−1 if 𝑖 = 𝑛 − 1,
0 otherwise.

Now for all 𝑛 ≥ 0, the first condition in the theorem can be translated as

𝑓(𝑛) = 𝑆𝑔(𝑛) =
𝑛
∑
𝑖=0

𝑔(𝑖) = ∑
𝑖≤𝑛

𝑔(𝑖)

where the inequality indexing the last summation is taking place in 𝐶𝑛. Using Theo-
rem 5.5.5(b) and the Möbius values in 𝐶𝑛 above, this is equivalent to

𝑔(𝑛) = ∑
𝑖≤𝑛

𝜇(𝑖, 𝑛)𝑓(𝑖) = (1)𝑓(𝑛) + (−1)𝑓(𝑛 − 1) = Δ𝑓(𝑛 − 1)

for all 𝑛 ≥ 0. □

It turns out that the Principle of Inclusion and Exclusion is just the Möbius Inver-
sion Theorem applied to the poset 𝐵𝑛. We restate it here for ease of reference.
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Theorem 5.5.7. Given a finite set 𝑆 and subsets 𝑆1, . . . , 𝑆𝑛, we have
||||
𝑆 −

𝑛

⋃
𝑖=1

𝑆 𝑖
||||
= |𝑆| − ∑

1≤𝑖≤𝑛
|𝑆 𝑖| + ∑

1≤𝑖<𝑗≤𝑛
|𝑆 𝑖 ∩ 𝑆𝑗| − ⋯ + (−1)𝑛

||||

𝑛

⋂
𝑖=1

𝑆 𝑖
||||
.

Proof. Define two functions 𝑓, 𝑔∶ 𝐵𝑛 → ℕ by

𝑓(𝐼) =
||||⋂𝑖∈𝐼

𝑆 𝑖
||||

and

𝑔(𝐼) =
||||⋂𝑖∈𝐼

𝑆 𝑖 −⋃
𝑗∉𝐼

𝑆𝑗
||||
.

In words, 𝑓(𝐼) counts the number of elements of 𝑆 which are in all the 𝑆 𝑖 for 𝑖 ∈ 𝐼 and
possibly in other 𝑆𝑗 . On the other hand, 𝑔(𝐼) is the number of elements which are in
exactly the 𝑆 𝑖 for 𝑖 ∈ 𝐼 and no others. From this description we see that, for all 𝐼 ∈ 𝐵𝑛,

𝑓(𝐼) = ∑
𝐽⊇𝐼

𝑔(𝐽)

since any element in the 𝑆 𝑖 for 𝑖 ∈ 𝐼 must be in exactly the 𝑆𝑗 for the elements 𝑗 of
some 𝐽 ⊇ 𝐼. Applying Theorem 5.5.5(a) together with Proposition 5.1.3(d) and (5.6) we
obtain

𝑔(𝐼) = ∑
𝐽⊇𝐼

𝜇(𝐼, 𝐽)𝑓(𝐽) = ∑
𝐽⊇𝐼

(−1)|𝐽−𝐼|
||||⋂𝑗∈𝐽

𝑆𝑗
||||
.

Specializing to the case 𝐼 = ∅ we obtain
||||
𝑆 −

𝑛

⋃
𝑖=1

𝑆 𝑖
||||
= 𝑔(∅) = ∑

𝐽∈𝐵𝑛

(−1)|𝐽|
||||⋂𝑗∈𝐽

𝑆𝑗
||||

which is what we wished to prove. □

TheMöbius Inversion Theorem originated in number theory. Here is that version.

Theorem 5.5.8. Given two functions 𝑓, 𝑔∶ ℙ → ℝ, we have
𝑓(𝑛) = ∑

𝑑∣𝑛
𝑔(𝑑) for all 𝑛 ∈ ℙ ⟺ 𝑔(𝑛) = ∑

𝑑∣𝑛
𝜇(𝑑)𝑓(𝑛/𝑑) for all 𝑛 ∈ ℙ.

Proof. The first condition is an exact translation of the first condition in
Theorem 5.5.5(b) for the poset 𝐷𝑛. Inverting using Theorem 5.1.3(f) as well as the
relationship (5.12) between the one- and two-variable forms of 𝜇 gives

𝑔(𝑛) = ∑
𝑑∣𝑛

𝜇(𝑑, 𝑛)𝑓(𝑑) = ∑
𝑑∣𝑛

𝜇(𝑛/𝑑)𝑓(𝑑) = ∑
𝑑′∣𝑛

𝜇(𝑑′)𝑓(𝑛/𝑑′)

where 𝑑′ = 𝑛/𝑑. □
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5.6. Characteristic polynomials

Aswasmade abundantly clear in Chapter 3, oneway to get insight into a combinatorial
object is to study its generating function. This is also true of the Möbius function and
the corresponding generating function is called the characteristic polynomial. In par-
ticular, we will show that using this polynomial one can get an interesting connection
between a particular lattice associated to a graph and its chromatic polynomial.

Let 𝑃 be a finite ranked poset with rk 𝑃 = 𝑛. The characteristic polynomial of 𝑃 is

(5.15) 𝜒(𝑃) = 𝜒(𝑃; 𝑡) = ∑
𝑥∈𝑃

𝜇(𝑥)𝑡𝑛−rk𝑥.

where we are using the one variable form of the Möbius function. We also used 𝜒 for
the chromatic number of a graph, but this should cause no confusion since here we
are dealing with posets. The quantity 𝑛− rk 𝑥 appearing in the power on 𝑡 is called the
corank of 𝑥 and the readermay bewondering whywe are using this rather than just the
rank. One reason is that this makes 𝜒(𝑃)monic: the highest power of 𝑡 appears when
𝑥 = 0̂ and 𝜇(0̂) = 1. Also, as will be seen, this choice of exponent results in 𝜒(𝑃) having
some interesting properties. Note that collecting terms in (5.15) for 𝑥 at the same rank
shows that

(5.16) 𝜒(𝑃) =
𝑛
∑
𝑘=0

𝑤𝑘(𝑃)𝑡𝑛−𝑘

where the 𝑤𝑘(𝑃) are the Whitney numbers of the first kind for 𝑃.
Let us begin by computing the characteristic polynomials for some of our standard

example posets.

Proposition 5.6.1. We have the following characteristic polynomials:

(a) For 𝐶𝑛,

𝜒(𝐶𝑛) = 𝑡𝑛−1(𝑡 − 1).
(b) For 𝐵𝑛,

𝜒(𝐵𝑛) = (𝑡 − 1)𝑛.
(c) If 𝑛 has prime factorization 𝑛 = 𝑝𝑚1

1 ⋯𝑝𝑚𝑘
𝑘 and𝑚 = ∑𝑖𝑚𝑖, then

𝜒(𝐷𝑛) = 𝑡𝑚−𝑘(𝑡 − 1)𝑘.

(d) ForΠ𝑛,

𝜒(Π𝑛) = (𝑡 − 1)(𝑡 − 2)⋯ (𝑡 − 𝑛 + 1).
(e) For 𝐿𝑛(𝑞),

𝜒(𝐿𝑛(𝑞)) = (𝑡 − 1)(𝑡 − 𝑞)(𝑡 − 𝑞2)⋯ (𝑡 − 𝑞𝑛−1).

The preliminary version made available with permission of the publisher, the American Mathematical Society



5.6. Characteristic polynomials 165

𝑃 =

Figure 5.7. A poset 𝑃 with 𝜒(𝑃) having complex roots

Proof. We will prove the results for 𝐵𝑛, leaving the others as exercises.
In the case of 𝐵𝑛, one can plug (5.8) into (5.16) and then use reindexing, the sym-

metry of the binomial coefficients, as well as the Binomial Theorem to obtain

𝜒(𝐵𝑛) =
𝑛
∑
𝑘=0

(−1)𝑘(𝑛𝑘)𝑡
𝑛−𝑘

=
𝑛
∑
𝑘=0

(−1)𝑛−𝑘( 𝑛
𝑛 − 𝑘)𝑡

𝑘

= (−1)𝑛
𝑛
∑
𝑘=0

(𝑛𝑘)(−𝑡)
𝑘

= (−1)𝑛(1 − 𝑡)𝑛

= (𝑡 − 1)𝑛

which is the desired conclusion. □

It is striking that all the characteristic polynomials in Proposition 5.6.1 have non-
negative integer roots. This is not always the case. For example, consider the poset in
Figure 5.7. Then an easy computation gives 𝜒(𝑃) = 𝑡2 − 3𝑡 + 3 which has complex
roots. We also note that if all the roots of a polynomial are nonnegative reals, then the
coefficient sequence is log-concave. However, we will postpone the proof of this until
we have introduced the elementary symmetric functions in Section 7.1.

One way to explain some of the factorizations in Proposition 5.6.1 is via the follow-
ing result.

Theorem 5.6.2. Let 𝑃,𝑄 be finite ranked posets.

(a) If there is an isomorphism 𝑓∶ 𝑃 → 𝑄, then 𝜒(𝑃) = 𝜒(𝑄).
(b) We have

𝜒(𝑃 × 𝑄) = 𝜒(𝑃)𝜒(𝑄).

Proof. (a) From Exercise 8(b) at the end of the chapter we have rk𝑃 𝑥 = rk𝑄 𝑓(𝑥) for
all 𝑥 ∈ 𝑃. In particular, rk 𝑃 = rk𝑄 = 𝑛 for some 𝑛. Thus, using Theorem 5.4.3 and
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the fact that 𝑓 is a bijection
𝜒(𝑃) = ∑

𝑥∈𝑃
𝜇𝑃(𝑥)𝑡𝑛−rk𝑃 𝑥

= ∑
𝑥∈𝑃

𝜇𝑃(𝑓(𝑥))𝑡𝑛−rk𝑃 𝑓(𝑥)

= ∑
𝑦∈𝑄

𝜇𝑄(𝑦)𝑡𝑛−rk𝑄 𝑦

= 𝜒(𝑄).

(b) The result of Exercise 8(c) is that rk𝑃×𝑄(𝑥, 𝑦) = rk𝑃 𝑥 + rk𝑄 𝑦 for all (𝑥, 𝑦) ∈
𝑃 × 𝑄. So if rk 𝑃 = 𝑚 and rk𝑄 = 𝑛, then rk(𝑃 × 𝑄) = 𝑚 + 𝑛. Applying Theorem 5.4.4

𝜒(𝑃 × 𝑄) = ∑
(𝑥,𝑦)∈𝑃×𝑄

𝜇𝑃×𝑄(𝑥, 𝑦)𝑡𝑚+𝑛−rk𝑃×𝑄(𝑥,𝑦)

= ∑
𝑥∈𝑃

𝜇𝑃(𝑥)𝑡𝑚−rk𝑃 𝑥 ∑
𝑦∈𝑄

𝜇𝑄(𝑦)𝑡𝑛−rk𝑄 𝑦

= 𝜒(𝑃)𝜒(𝑄)
which is what we wished to prove. □

This theorem can be used to explain a couple of the factorizations in Proposi-
tion 5.6.1. For example 𝐵𝑛 ≅ 𝐶𝑛

1 so

𝜒(𝐵𝑛) = 𝜒(𝐶𝑛
1 ) = 𝜒(𝐶1)𝑛 = (𝑡 − 1)𝑛.

However, neither Π𝑛 nor 𝐿𝑛(𝑞) decompose as a product of smaller posets. So to un-
derstand the factorization of their characteristic polynomials, we will have to use poset
quotients as discussed in the next section.

We end this section bymaking a connection between the characteristic polynomial
of a lattice associated with a graph 𝐺 and the chromatic polynomial of 𝐺. A subgraph
𝐻 of𝐺 is induced if 𝑣𝑤 ∈ 𝐸(𝐺) implies 𝑣𝑤 ∈ 𝐸(𝐻) for all 𝑣, 𝑤 ∈ 𝑉(𝐻). In words, every

𝐺 =

𝑥 𝑤

𝑢 𝑣

𝑤

𝑢 𝑣

𝑥

𝑢 𝑣

Figure 5.8. Agraph𝐺 and two subgraphs on the top, aswell as two spanning subgraph
colorings on the bottom
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Figure 5.9. The bond lattice of the graph 𝐺 in Figure 5.8

edge of𝐺 between vertices of𝐻must be in𝐻. By way of illustration, given the graph𝐺
in Figure 5.8, the first subgraph in that figure is induced but the second is not because
it is missing the edge 𝑣𝑥 ∈ 𝐸(𝐺). A bond of 𝐺 is a spanning subgraph such that each
component is induced. The bond lattice of 𝐺, denoted ℒ(𝐺), is the set of bonds of 𝐺
ordered by containment. The bond lattice for the graph 𝐺 of Figure 5.8 is displayed in
Figure 5.9. It is not hard to show that ℒ(𝐺) is a ranked lattice with rank function

(5.17) rk𝐻 = 𝑛 − 𝑘(𝐻)

where 𝑛 is the number of vertices of 𝐺 and 𝑘(𝐻) is the number of components of 𝐻.
We need a couple of other definitions before we can connect bond lattices with

chromatic polynomials. Let 𝑐∶ 𝑉 → 𝑆 be a (not necessarily proper) coloring of 𝐺. If𝐻
is a spanning subgraph of𝐺, thenwe say that 𝑐 is𝐻-improper if every component of𝐻 is
monochromatic, that is, has all vertices of the same color. The two rightmost graphs in
Figure 5.8 are two subgraphs which are both 𝐻-improper for the same coloring 𝑐. The
subgraph induced by 𝑐 is the spanning subgraph of𝐺 such that 𝑢𝑣 ∈ 𝐸(𝐻) if and only if
𝑢𝑣 ∈ 𝐸(𝐺) and 𝑐(𝑢) = 𝑐(𝑣). Of the two subgraphs colored white and gray in Figure 5.8,
only the second is induced by the coloring of 𝐺. We note that the subgraph induced by
𝑐 is unique and is a bond. Furthermore it follows directly from the definitions that 𝑐 is
proper if and only if its induced subgraph is the spanning subgraph with no edges.

Theorem 5.6.3. Let 𝐺 be a graph with 𝑘(𝐺) = 𝑘 components. We have

𝑃(𝐺) = 𝑡𝑘𝜒(ℒ(𝐺)).
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Proof. Let 𝐺 have #𝑉 = 𝑛 and consider all possible colorings 𝑐∶ 𝑉 → [𝑡] for 𝑡 ∈ ℕ.
Given a bond 𝐻 of 𝐺, we will be interested in two associated subsets:

𝑆(𝐻) = {𝑐 ∣ 𝑐 is 𝐻-improper}
and

𝑇(𝐻) = {𝑐 ∣ 𝐻 is induced by 𝑐}.
Note that if 𝑐 is𝐻-improper, then there is a unique bond 𝐾 ⊇ 𝐻 such that 𝐾 is the bond
induced by 𝑐. It follows that for all 𝐻 ∈ ℒ(𝐺) we have

𝑆(𝐻) = ⨄
𝐾⊇𝐻

𝑇(𝐾).

Now define 𝑓, 𝑔∶ ℒ(𝐺) → ℕ by 𝑓(𝐻) = #𝑆(𝐻) and 𝑔(𝐻) = #𝑇(𝐻). Note that
𝑓(𝐻) = 𝑡𝑘(𝐻) since there are 𝑡 ways to choose the color of each component of 𝐻. Also,
the previous displayed equation yields 𝑓(𝐻) = ∑𝐾⊇𝐻 𝑔(𝐻) for all𝐻 ∈ ℒ(𝐺). Applying
the Möbius Inversion Theorem gives

𝑔(𝐻) = ∑
𝐾⊇𝐻

𝜇(𝐻, 𝐾)𝑓(𝐾).

Recall that 𝑐 is proper if and only if it induces the spanning subgraph of 𝐺 with no
edges. And this subgraph is the 0̂ element ofℒ(𝐺). Thus, using in turn the formula for
𝑓(𝐻) in terms of 𝑘(𝐻), the rank function of ℒ(𝐺) as given in (5.17), and the fact that
𝑃(𝐺) counts proper colorings,

𝑡𝑘𝜒(ℒ(𝐺)) = 𝑡𝑘(𝐺) ∑
𝐾∈ℒ(𝐺)

𝜇(𝐾)𝑡(𝑛−𝑘(𝐺))−(𝑛−𝑘(𝐾))

= ∑
𝐾∈ℒ(𝐺)

𝜇(𝐾)𝑡𝑘(𝐾)

= 𝑔(0̂)

= 𝑃(𝐺)
which is what we wanted. □

5.7. Quotients of posets

In many areas of mathematics one studies the objects under consideration by taking
quotients which can have a simpler structure than the original entity. In this and the
next section we will present a concept of quotient for posets 𝑃. We will see that it is
useful for proving that the characteristic polynomial of 𝑃 factors even though 𝑃 may
not be a product of smaller posets. This notion can also be used to give inductive proofs
of various well-known theorems about 𝜇. Quotients of the type we will consider first
appeared in the work of Hallam and Sagan [41].

A number of techniques have been proposed for proving that the characteristic
polynomial factors over the integers. See [78] for a survey. The method we will use
proceeds as follows. We wish to show that a poset 𝑄 has characteristic polynomial
which factors as 𝜒(𝑄) = ∏𝑖 𝜒𝑖 for certain polynomials 𝜒𝑖. Suppose we can construct
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posets 𝑃𝑖 with 𝜒(𝑃𝑖) = 𝜒𝑖 for all 𝑖 and let 𝑃 = ⨉𝑖 𝑃𝑖. We wish to find an equivalence
relation ∼ on 𝑃 and a partial order on the set of equivalence classes 𝑃/ ∼ such that

(i) (𝑃/ ∼) ≅ 𝑄 and
(ii) 𝜒(𝑃/ ∼) = 𝜒(𝑃).

From this and Theorem 5.6.2 we get

𝜒(𝑄) = 𝜒(𝑃/ ∼) = 𝜒(𝑃) = 𝜒(×𝑖𝑃𝑖) =∏
𝑖
𝜒𝑖

as we wished to show.
Since we will be particularly interested in the case where 𝜒(𝑄) has integer roots,

we introduce a simple family of posets with this property. Suppose 𝑃 has a 0̂. Then the
elements covering 0̂ are the atoms of 𝑃. We will use the notation

𝒜(𝑃) = {𝑥 ∈ 𝑃 ∣ 𝑥 is an atom of 𝑃}.
If 𝑃 is ranked, then the atoms are just the elements of rank one. Define the 𝑛-claw,
𝐶𝐿𝑛, to be the poset consisting solely of a 0̂ and 𝑛 atoms. For example, in Figure 5.10
the two posets in the direct product are 𝐶𝐿1 and 𝐶𝐿2. Clearly

𝜒(𝐶𝐿𝑛; 𝑡) = 𝑡 − 𝑛.
As our running example, we will use the partition latticeΠ3 in Figure 5.1 and the prod-
uct poset on the right in Figure 5.10. Note that

𝜒(𝐶𝐿1 × 𝐶𝐿2) = 𝜒(𝐶𝐿1)𝜒(𝐶𝐿2) = (𝑡 − 1)(𝑡 − 2) = 𝜒(Π3).
Unfortunately, Π3 ≇ 𝐶𝐿1 × 𝐶𝐿2. But they are close to being isomorphic. In partic-
ular, if we could merge the two maximal elements of 𝐶𝐿1 × 𝐶𝐿2 into one, then the
resulting poset would be a copy of Π3. Poset quotients are designed to make this sort
of identification of elements precise.

Let 𝑃 be a finite poset with a 0̂ and let ∼ be an equivalence relation on 𝑃. Define
the quotient 𝑃/ ∼ to be the set of equivalence classes together with the binary relation
𝑋 ≤ 𝑌 in 𝑃/ ∼ if and only if 𝑥 ≤𝑃 𝑦 for some 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 . It is important to note
that this binary relation is not necessarily a partial order. To see what can go wrong,
consider the chain 𝐶2 with equivalence classes 𝑋 = {0, 2} and 𝑌 = {1}. Then we have
𝑋 ≤ 𝑌 since 0 ≤ 1. But we also have 𝑌 ≤ 𝑋 since 1 ≤ 2. And clearly 𝑋 ≠ 𝑌 , so the

𝐶𝐿1 × 𝐶𝐿2 = ×

0̂

𝑎

0̂

𝑏 𝑐

=

(0̂, 0̂)

(0̂, 𝑏) (𝑎, 0̂) (0̂, 𝑐)

(𝑎, 𝑏) (𝑎, 𝑐)

Figure 5.10. A product of claws
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antisymmetry relation fails. To fix this, define, for 𝑃 a finite poset with 0̂, 𝑃/ ∼ to be a
homogeneous quotient if

(1) the equivalence class containing 0̂ is {0̂} and
(2) if 𝑋 ≤ 𝑌 , then for any 𝑥 ∈ 𝑋 there is a 𝑦 ∈ 𝑌 with 𝑥 ≤𝑃 𝑦.

Homogeneous quotients yield posets.

Lemma 5.7.1. If 𝑃/ ∼ is a homogeneous quotient, then 𝑃/ ∼ is a poset.

Proof. Verifying the reflexive and transitive laws is easy and so it is left as an exercise.
For antisymmetry, suppose 𝑋 ≤ 𝑌 and 𝑌 ≤ 𝑋 . Let 𝑥 be a maximal element of 𝑋 . Then
since 𝑋 ≤ 𝑌 and the quotient is homogeneous, there is 𝑦 ∈ 𝑌 with 𝑥 ≤ 𝑦. Similarly
𝑌 ≤ 𝑋 implies there is 𝑥′ ∈ 𝑋 with 𝑦 ≤ 𝑥′. So 𝑥 ≤ 𝑦 ≤ 𝑥′. But 𝑥 was picked to be
maximal in 𝑋 which forces 𝑥 = 𝑥′. This in turn yields 𝑦 = 𝑥. Since 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌
we have found an element of 𝑋 ∩𝑌 . Equivalence classes are either disjoint or equal, so
this implies 𝑋 = 𝑌 as we wished to prove. □

Returning to the product 𝑃 = 𝐶𝐿1×𝐶𝐿2 in Figure 5.10, we impose the equivalence
relation ∼ where every element is in an equivalence class by itself except for the two
maximal elements which are in a class together. It is easy to see that this is a homoge-
neous quotient since any time we have 𝑋 < 𝑌 , the class 𝑋 is a singleton. Furthermore
(𝑃/ ∼) ≅ Π3 which is our desired condition (i). As far as (ii), one can verify by direct
computation that 𝜒 does not change in passing from 𝑃 to 𝑃/ ∼. In fact, more is true.
Note that the equivalence class {(𝑎, 𝑏), (𝑎, 𝑐)} of 𝑃 becomes the 1̂ of 𝑃/ ∼. Furthermore

𝜇𝑃(𝑎, 𝑏) + 𝜇𝑃(𝑎, 𝑐) = 1 + 1 = 2 = 𝜇𝑃/∼(1̂).
Our next order of business is to give a condition under which this always happens.

Lemma 5.7.2. Let 𝑃/ ∼ be a homogeneous quotient. Suppose that for all nonzero 𝑋 ∈
𝑃/ ∼ we have

(5.18) ∑
𝑦∈𝐼(𝑋)

𝜇(𝑦) = 0

where 𝐼(𝑋) is the lower-order ideal generated by 𝑋 as a subset of 𝑃. Then for all 𝑋 ∈ 𝑃/ ∼
we have

𝜇(𝑋) = ∑
𝑥∈𝑋

𝜇(𝑥).

Proof. Wewill induct on the length of the longest 0̂–𝑋 chain in 𝑃/ ∼. When the length
is zero we have, by the first requirement for a homogeneous quotient, 𝑋 = {0̂𝑃} and
𝜇(𝑋) = 1 = 𝜇(0̂𝑃).

For a nonzero 𝑋 we have, by induction,

𝜇(𝑋) = − ∑
𝑌<𝑋

𝜇(𝑌) = − ∑
𝑌<𝑋

∑
𝑦∈𝑌

𝜇(𝑦).

We claim that {𝑦 ∈ 𝑌 ∣ 𝑌 < 𝑋} = 𝐼(𝑋)−𝑋 . Indeed, 𝑦 ∈ 𝐼(𝑋)−𝑋 means that 𝑦 ∉ 𝑋 and
𝑦 < 𝑥 for some 𝑥 ∈ 𝑋 . And by the second condition for a homogeneous quotient, this
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is equivalent to being in {𝑦 ∈ 𝑌 ∣ 𝑌 < 𝑋}. So the previous displayed equation becomes
𝜇(𝑋) = − ∑

𝑦∈𝐼(𝑋)−𝑋
𝜇(𝑦) = ∑

𝑥∈𝑋
𝜇(𝑥)

where the second equality comes from solving for the termswhen 𝑥 ∈ 𝑋 in (5.18). This
completes the proof. □

We will call (5.18) the Summation Condition. We also need to know how the rank
function behaves when taking a quotient of a ranked poset. This is taken care of by the
next result, where (5.19) will be called the Rank Condition.

Lemma 5.7.3. Let 𝑃/ ∼ be a homogeneous quotient of a ranked poset. Suppose that for
all 𝑥, 𝑦 ∈ 𝑃
(5.19) 𝑥 ∼ 𝑦 ⟹ rk𝑥 = rk 𝑦.
Then 𝑃/ ∼ is ranked and rk 𝑋 = rk 𝑥 for all 𝑥 ∈ 𝑋 .

Proof. First we claim that if we have a cover 𝑋 ⋖ 𝑌 , then for any 𝑥 ∈ 𝑋 there is 𝑦 ∈ 𝑌
with 𝑥 ⋖ 𝑦. We know that we can pick 𝑦with 𝑥 < 𝑦. Suppose, towards a contradiction,
that there is a 𝑧 with 𝑥 < 𝑧 < 𝑦. Letting 𝑍 be the equivalence class of 𝑧, we must have
𝑋 < 𝑍 < 𝑌 where the inequalities are strict because (5.19) forces an equivalence class
to consist of elements at a given rank. But this contradicts 𝑋 ⋖ 𝑌 .

To show that 𝑃/ ∼ is ranked, suppose we have two saturated chains 0̂ = 𝑋0 ⋖ 𝑋1 ⋖
⋯ ⋖ 𝑋𝑚 and 0̂ = 𝑌0 ⋖ 𝑌1 ⋖ ⋯ ⋖ 𝑌𝑛 where 𝑋𝑚 = 𝑌𝑛. Then, by the claim, we have
corresponding chains 0̂ = 𝑥0 ⋖ 𝑥1 ⋖ ⋯ ⋖ 𝑥𝑚 and 0̂ = 𝑦0 ⋖ 𝑦1 ⋖ ⋯ ⋖ 𝑦𝑛. Since 𝑥𝑚
and 𝑦𝑛 are in the same equivalence class, they must have the same rank by (5.19). This
forces 𝑚 = 𝑛 and that 𝑃/ ∼ must be ranked. This also shows that rk 𝑋 = rk 𝑥 for all
𝑥 ∈ 𝑋 . □

It is now a short step to our desired conclusion.

Theorem 5.7.4. Let 𝑃/ ∼ be a homogeneous quotient of a ranked poset satisfying the
Summation Condition (5.18) and Rank Condition (5.19). Then

𝜒(𝑃/ ∼) = 𝜒(𝑃).

Proof. Using the previous two lemmas gives
𝜒(𝑃/ ∼) = ∑

𝑋∈𝑃/∼
𝜇(𝑋)𝑡rk(𝑃/∼)−rk(𝑋) = ∑

𝑥∈𝑃
𝜇(𝑥)𝑡rk(𝑃)−rk(𝑥) = 𝜒(𝑃)

as desired. □

As an application, wewill use this theorem to calculate𝜒(Π𝑛). Before doing so, we
will return to the case of Π3 to motivate the equivalence relation used. We will label
the atoms of the two claws in Figure 5.10 with atoms of Π3 as follows. A block of a
partition of [𝑛] is trivial if it contains a single element. If 1 ≤ 𝑖 < 𝑗 ≤ 𝑛, then let 𝑖𝑗
denote the atom of Π𝑛 whose only nontrivial block is {𝑖, 𝑗}. Now consider the claws
as labeled in Figure 5.11. Finally, replace each pair labeling an element of the product
with the label which is the join in Π𝑛 of its two components to obtain the poset on the
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×

0̂

12

0̂

13 23

=

(0̂, 0̂)

(0̂, 13) (12, 0̂) (0̂, 23)

(12, 13) (12, 23)

⇝

0̂

13 12 23

123 123

Figure 5.11. A product of claws with partition labels

right in the figure. Note that two elements of the product are in the same equivalence
class of 𝑃/ ∼ if and only if they have the same label in the right-hand poset. This is the
key to defining the equivalence relation.

Now consider Π𝑛 for any 𝑛. It will be convenient to make the convention just for
this proof that Π𝑛 is the poset of partitions of {0, 1, . . . , 𝑛 − 1}. We let

𝑃 = 𝐶𝐿1 × 𝐶𝐿2 ×⋯ × 𝐶𝐿𝑛−1
where for 1 ≤ 𝑗 ≤ 𝑛 − 1 the atoms of 𝐶𝐿𝑗 are labeled with the atoms 𝑖𝑗, 𝑖 < 𝑗, of Π𝑛.
Clearly

𝜒(𝑃) = (𝑡 − 1)(𝑡 − 2) . . . (𝑡 − 𝑛 + 1).
Put an equivalence relation on elements 𝑥 = (𝑥1, . . . , 𝑥𝑛−1) ∈ 𝑃 by 𝑥 ∼ 𝑦 if and only
if⋁𝑥 = ⋁𝑦 in Π𝑛. So for an equivalence class 𝑋 , we can define the partition 𝜌(𝑋) =
⋁𝑥 for any 𝑥 ∈ 𝑋 . To finish, we need to show that 𝑃/ ∼ is a homogeneous quotient
satisfying the Summation and Rank Conditions and that (𝑃/ ∼) ≅ Π𝑛. We claim that
𝑋 ≤ 𝑌 in the binary relation on 𝑃/ ∼ if and only if 𝜌(𝑋) ≤ 𝜌(𝑌) in Π𝑛. Indeed, take
𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 with 𝑥 ≤𝑃 𝑦. Then 𝑥𝑖 ≤ 𝑦𝑖 in Π𝑛 for all 𝑖. It follows that
(5.20) 𝜌(𝑋) =⋁𝑥 ≤⋁𝑦 = 𝜌(𝑌).
The proof of the backwards direction involves similar ideas and so is left as an exercise

For homogeneity, clearly (0̂, . . . , 0̂) is the only element whose join is 0̂ which gives
the first condition in the definition. For the second condition, we use the assump-
tion 𝑋 ≤ 𝑌 and (5.20) to induct on the length 𝑙 of a saturated chain in the interval
[𝜌(𝑋), 𝜌(𝑌)]. If 𝑙 = 0, then 𝑋 = 𝑌 and the conclusion is trivial. So assume 𝑋 < 𝑌 ,
𝑥 ∈ 𝑋 . Take two blocks 𝐵, 𝐶 of ⋁𝑥 = 𝜌(𝑋) which are contained in the same block
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of 𝜌(𝑌). Let 𝑖 = min𝐵 and 𝑗 = min𝐶 where, without loss of generality, 𝑖 < 𝑗. We
claim that coordinate 𝑥𝑗 of 𝑥must be 0̂. For suppose that 𝑥𝑗 = 𝑘𝑗 for some 𝑘 < 𝑗. But
then 𝑘, 𝑗 ∈ 𝐶 contradicting 𝑗 = min𝐶. Now define 𝑧 to agree with 𝑥 except in the 𝑗th
coordinate where 𝑧𝑗 = 𝑖𝑗 so that 𝑥 < 𝑧. By construction,⋁𝑥 < ⋁𝑧 ≤ 𝜌(𝑌). So if 𝑍 is
the equivalence class of 𝑧, then 𝑋 < 𝑍 ≤ 𝑌 by the previous claim. And by induction,
there is 𝑦 ∈ 𝑌 with 𝑧 ≤ 𝑦 so that 𝑥 < 𝑧 ≤ 𝑦 as desired.

To obtain the Summation Condition, it is easy to see from Theorem 5.4.4 that for
any 𝑥 ∈ 𝑃 we have

𝜇(𝑥) = (−1)supp𝑥

where supp 𝑥 is the cardinality of the support set of 𝑥

(5.21) Supp 𝑥 = {𝑖 ∣ 𝑥𝑖 ≠ 0̂}.

So to get (5.18) it suffices to find a sign-reversing involution on 𝐼(𝑋)which has no fixed
points, where the sign of 𝑥 is 𝜇(𝑥). Since 𝑋 ≠ 0̂, the partition 𝜌 = 𝜌(𝑋) has a nontrivial
block 𝐵, say 𝐵 = {𝑖 < 𝑗 < ⋯}. Take 𝑦 ∈ 𝐼(𝑥). We claim that 𝑦𝑗 = 0̂ or 𝑦𝑗 = 𝑖𝑗. For
suppose 𝑦𝑗 = 𝑘𝑗 for some 𝑘 ≠ 𝑖. But then⋁𝑦 ≰ 𝜌 since the block containing 𝑗 in⋁𝑦
contains 𝑘 < 𝑗 and so cannot be 𝐵. Now define an involution 𝜄∶ 𝐼(𝑋) → (𝑋) so that
𝜄(𝑦) is 𝑦 with 𝑦𝑗 either changed from 0̂ to 𝑖𝑗 or from 𝑖𝑗 to 0̂. It is easy to check that this
map has the desired properties.

For the Rank Condition, note that if 𝜌, 𝑎 ∈ Π𝑛 where 𝑎 = 𝑖𝑗 is an atom, then
either 𝜌 ∨ 𝑎 = 𝜌 if 𝑖 and 𝑗 are in the same block of 𝜌, or 𝜌 ∨ 𝑎 covers 𝜌 if 𝑖 and 𝑗 are
in different blocks of 𝜌 since those two blocks get merged in the join. So given 𝑥 ∈ 𝑃,
let 𝑖1𝑗1, . . . , 𝑖𝑘𝑗𝑘 be the elements of Supp 𝑥 listed so that 𝑗1 < ⋯ < 𝑗𝑘 and consider
⋁𝑥 = 𝑖1𝑗1∨⋯∨𝑖𝑘𝑗𝑘. Let 𝜌𝑙 = 𝑖1𝑗1∨⋯∨𝑖𝑙𝑗𝑙 for any 0 ≤ 𝑙 ≤ 𝑘. For 𝑙 ≥ 1we see that 𝜌𝑙
must cover 𝜌𝑙−1 since the ordering of the 𝑖’s and 𝑗’s forces 𝑗𝑙 > 𝑖1, 𝑗1, . . . , 𝑖𝑙 so that {𝑗𝑙}
is a trivial block of 𝜌𝑙−1. Thus rk 𝑥 = 𝑘 = 𝑛 − |𝜌|. Hence if 𝑥 ∼ 𝑦, then⋁𝑥 = 𝜌 = ⋁𝑦
and so rk 𝑥 = 𝑛 − |𝜌| = rk 𝑦 which is what we wished to prove.

Finally, we need an isomorphism between (𝑃/ ∼) and Π𝑛. The function we have
already defined, 𝜌(𝑋) = ⋁𝑥 for any 𝑥 ∈ 𝑋 , is such a map. We leave the proof that this
is a well-defined isomorphism to the reader. This completes the proof that 𝜒(Π𝑛) has
the desired form.

One can motivate the choice of atoms used to label the claws in theΠ𝑛 example as
follows. Consider themaximal chain inΠ𝑛which is 0̂ = 𝜌1 ⋖ 𝜌2 ⋖ ⋯ ⋖ 𝜌𝑛 = 1̂where,
for all 𝑗, 𝜌𝑗 is the partition with a block [𝑗] and all other blocks trivial. Considering the
set of atoms 𝑎 such that 𝑎 ≤ 𝜌𝑗 but 𝑎 ≰ 𝜌𝑗−1, we see that these are exactly the atoms
used to label the claw 𝐶𝐿𝑗 . This technique of partitioning the atom set of a poset has
been used before in proving that the characteristic polynomial factors over ℤ. See, for
example, Stanley’s work on supersolvable lattices [83].

To end this section, we note that there is a quicker method for proving these fac-
torizations when the poset is a finite lattice 𝐿. Let 𝐴𝐿 and 𝐴𝑥 be the set of atoms of 𝐿
and the set of atoms of 𝐿 less than or equal to 𝑥 ∈ 𝐿, respectively. Say that a 0̂–1̂ chain
𝐶 ∶ 0̂ = 𝑥0 < 𝑥1 < ⋯ < 𝑥𝑛 = 1̂ induces a partition 𝐴1/ . . . /𝐴𝑛 of 𝐴𝐿 by defining

𝐴𝑖 = {𝑎 ∈ 𝐴𝐿 ∣ 𝑎 ≤ 𝑥𝑖 but 𝑎 ≰ 𝑥𝑖−1}.
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For Π𝑛, this is exactly the partition described in the previous paragraph for the given
saturated chain. Let 𝐶𝐿𝐴𝑖 be the claw whose atoms are labeled by 𝐴𝑖 and consider
𝐭 = (𝑥1, . . . , 𝑥𝑛) ∈ 𝐶𝐿𝐴1 × ⋯ × 𝐶𝐿𝐴𝑛 . The vector 𝐭 is called a transversal and it has
support defined by equation (5.21) but in this more general setting. For 𝑥 ∈ 𝐿, define

𝒯𝑥 = {𝐭 = (𝑥1, . . . , 𝑥𝑛)
|
|
| ⋁𝑖

𝑥𝑖 = 𝑥}

where the join is taken in 𝐿.
Theorem 5.7.5. Let 𝐿 be a finite ranked lattice and let 𝐴1/ . . . /𝐴𝑛 be induced by a 0̂–1̂
chain. Suppose that for all 𝑥 ∈ 𝐿 and 𝐭 ∈ 𝒯𝑥 we have

| Supp 𝐭| = rk 𝑥.
Then the following are equivalent.

(1) For every nonzero 𝑥 ∈ 𝐿 there is an index 𝑖 such that |𝐴𝑖 ∩ 𝐴𝑥| = 1.
(2) The polynomial 𝜒(𝐿; 𝑡) factors with nonegative integral roots as

𝜒(𝐿; 𝑡) = 𝑡rk𝐿−𝑛
𝑛
∏
𝑖=1

(𝑡 − |𝐴𝑖|). □

Note that to check factorization using the previous theorem there are only two
conditions to check. And these are usually rather easy to verify. So this is much more
efficient than using the previous method. Theorem 5.7.5 is also the only one we know
of which gives conditions equivalent to (rather than just implying) factorization of 𝜒
over the nonnegative integers. Proving this result would consume too much of our
time, but the reader can find details in [41].

5.8. Computing the Möbius function

Wewill nowuse quotient posets to prove three classic theorems about theMöbius func-
tion. Each of these results gives a different way to compute 𝜇. One of the advantages of
using quotients is that all three can be proven inductively using a lemma about a very
simple equivalence relation. The proofs in this section are based on the arXiv version
of a paper of Hallam [38,39].

Let 𝑃 be a poset with a 1̂. A coatom of 𝑃 is an element 𝑐 covered by 1̂. We wish to
examine what happens when a coatom and 1̂ are identified by an equivalence relation.
If 𝑥 ∈ 𝑃, then we use [𝑥] for the equivalence class of 𝑥.
Lemma 5.8.1. Let 𝑃 be a finite poset with a 0̂ and a 1̂ such that #𝑃 ≥ 3. Let 𝑐 be a
coatom and let ∼ be the equivalence relation with classes {𝑐, 1̂} and all others having only
one element. In this case, the following hold.

(a) 𝑃/ ∼ is homogeneous.
(b) We have

𝜇([1̂]) = 𝜇(𝑐) + 𝜇(1̂).
(c) If 𝑃 is a lattice, then so is 𝑃/ ∼ with [𝑥] ∨ [𝑦] = [𝑥 ∨ 𝑦] for all 𝑥, 𝑦 ∈ 𝑃 and

[𝑥] ∧ [𝑦] = [𝑥 ∧ 𝑦] for all [𝑥], [𝑦] ≠ [1̂].
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Proof. (a) Since #𝑃 ≥ 3, the definition of ∼ shows that [0̂] = {0̂} which is the first
condition for a homogeneous quotient. For the second, if 𝑋 = 𝑌 , then the conclusion
is trivial. And if 𝑋 < 𝑌 , then 𝑋 = {𝑥} for some 𝑥. So 𝑥 ≤ 𝑦 for some 𝑦 ∈ 𝑌 by the
definition of the binary relation.

(b) It suffices to show that the Summation Condition (5.18) holds, so assume 𝑋 ≠
{0̂}. We either have 𝑋 = {𝑥} or 𝑋 = [𝑥] where 𝑥 = 1̂. In either case

∑
𝑦∈𝐼(𝑋)

𝜇(𝑦) = ∑
𝑦≤𝑥

𝜇(𝑦) = 0

by the definition of the Möbius function in 𝑃.
(c) It is not hard to show that (𝑃/ ∼) ≅ 𝑃−{𝑐} andwewill use the latter description.

Consider three cases:

(1) one or both of 𝑥, 𝑦 is equal to 𝑐 or
(2) 𝑥 ∨ 𝑦 ∈ {𝑐, 1̂} with 𝑥, 𝑦 ≠ 𝑐 or
(3) 𝑥 ∨ 𝑦 ∈ 𝑃 − {𝑐, 1̂} with 𝑥, 𝑦 ≠ 𝑐.

We will do the second one and leave the others to the reader. If 𝑥 ∨ 𝑦 ∈ {𝑐, 1̂} with
𝑥, 𝑦 ≠ 𝑐 , then in 𝑃 − {𝑐} we have that 𝑥, 𝑦 have a unique upper bound, namely 1̂. It
follows that [𝑥] ∨ [𝑦] exists and

[𝑥] ∨ [𝑦] = [1̂] = [𝑐] = [𝑥 ∨ 𝑦]

as desired. Checking the meets is similar. □

We will now demonstrate a theorem of Hall [37] which gives an interesting rela-
tionship between the Möbius function of a poset and its chains.

Theorem 5.8.2. Let 𝑃 be a finite poset with a 0̂ and a 1̂. We have

(5.22) 𝜇(1̂) = ∑
𝑖≥0
(−1)𝑖𝑐𝑖

where 𝑐𝑖 is the number of 0̂–1̂ chains of length 𝑖 in 𝑃.

Proof. We will induct on #𝑃. The result is easy to verify if #𝑃 ≤ 2 so assume #𝑃 ≥ 3.
Let 𝑐 be a coatom of 𝑃 and let ∼ be the equivalence relation of Lemma 5.8.1. Let 𝑎𝑖,
respectively 𝑏𝑖, be the number of 0̂–1̂ chains of 𝑃 of length 𝑖 which do not, respectively
do, contain 𝑐. Clearly

(5.23) ∑
𝑖≥0
(−1)𝑖𝑐𝑖 = ∑

𝑖≥0
(−1)𝑖𝑎𝑖 +∑

𝑖≥0
(−1)𝑖𝑏𝑖.

There is a length-preserving bijection between the 0̂–1̂ chains of 𝑃 which do not
contain 𝑐 and the [0̂]–[1̂] chains of 𝑃/ ∼ which sends 𝑥 to [𝑥] for each 𝑥 in the chain.
Since |𝑃/ ∼ | < |𝑃| we have, by induction,

(5.24) 𝜇([1̂]) = ∑
𝑖≥0
(−1)𝑖𝑎𝑖.
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There is also a bijection between 0̂–1̂ chains of 𝑃 containing 𝑐 and 0̂–𝑐 chains of [0̂, 𝑐]
gotten by removing 1̂ from such chains in 𝑃. Since this bijection changes length by one
we have, again by induction,
(5.25) 𝜇(𝑐) = −∑

𝑖≥0
(−1)𝑖𝑏𝑖.

Plugging (5.24) and (5.25) into (5.23) and using Lemma 5.8.1 gives
∑
𝑖≥0
(−1)𝑖𝑐𝑖 = 𝜇([1̂]) − 𝜇(𝑐) = 𝜇(1̂)

as desired. □

The reader familiarwith algebraic topologymayhave noticed that the sum in equa-
tion (5.22) looks like a reduced Euler characteristic. This can be made precise as fol-
lows. Let 𝑃 be a poset with a 0̂ and a 1̂which are distinct. The set of 0̂–1̂ chains in 𝑃 are
in bijection with the set of all chains in 𝑃 ≔ 𝑃− {0̂, 1̂}: merely remove the 0̂ and 1̂ from
each chain of 𝑃. So define the order complex of 𝑃, Δ(𝑃), to be the set of all chains in
the open interval (0̂, 1̂). This is clearly an (abstract) simplicial complex since a subset
of a chain is still a chain. Since the lengths of a 0̂–1̂ chain in 𝑃 and of its image in Δ(𝑃)
differ by two, the right-hand side of (5.22) is the reduced Euler characteristic ̃𝜒(Δ(𝑃)).
So one can bring the tools of algebraic topology to bear on questions about the Möbius
function. Formore information on this approach, see the survey articles of Björner [15]
and Wachs [96].

The next result is due to Weisner [98]. It gives an expression for 𝜇 similar to the
one given in its definition but with what could be a substantially smaller number of
terms. Recall from Proposition 5.3.2(i) that a finite lattice has a 0̂ and a 1̂.
Theorem 5.8.3. If 𝐿 is a finite lattice and 𝑎 ∈ 𝐿 − {0̂}, then
(5.26) 𝜇(1̂) = − ∑

𝑥≠1̂
𝑥∨𝑎=1̂

𝜇(𝑥).

Proof. We induct on #𝐿, just doing the induction step when #𝐿 ≥ 3. When 𝑎 = 1̂,
the sum in (5.26) is over all 𝑥 < 1̂. So the equation is true by definition of 𝜇(1̂). Now
assume 𝑎 ≠ 1̂ and pick a coatom 𝑐 with 𝑎 ≤ 𝑐. Let ∼ be the equivalence relation from
Lemma 5.8.1. By induction we have

𝜇([1̂]) = − ∑
[𝑥]≠[1̂]

[𝑥]∨[𝑎]=[1̂]

𝜇([𝑥]).

Now [1̂] = {𝑐, 1̂}, [𝑥] ∨ [𝑎] = [𝑥 ∨ 𝑎] by Lemma 5.8.1, and 𝜇([𝑥]) = 𝜇(𝑥) for [𝑥] ≠ [1̂].
So the previous displayed equation becomes

𝜇([1̂]) = − ∑
𝑥≠𝑐,1̂

𝑥∨𝑎=𝑐,1̂

𝜇(𝑥) = − ∑
𝑥≠𝑐,1̂
𝑥∨𝑎=𝑐

𝜇(𝑥) − ∑
𝑥≠𝑐,1̂
𝑥∨𝑎=1̂

𝜇(𝑥).

If 𝑥 ∨ 𝑎 = 𝑐, then clearly 𝑥 ≠ 1̂. And if 𝑥 ∨ 𝑎 = 1̂, then 𝑥 ≠ 𝑐 since 𝑎 ≤ 𝑐. So we can
write

𝜇([1̂]) = − ∑
𝑥≠𝑐

𝑥∨𝑎=𝑐

𝜇(𝑥) − ∑
𝑥≠1̂

𝑥∨𝑎=1̂

𝜇(𝑥).
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If 𝑥 ∨ 𝑎 = 𝑐, then 𝑥 ≤ 𝑐. So the first sum above can be viewed as taking place in [0̂, 𝑐]
which has fewer elements than 𝑃. By induction

𝜇([1̂]) = 𝜇(𝑐) − ∑
𝑥≠1̂

𝑥∨𝑎=1̂

𝜇(𝑥).

Rearranging terms and using Lemma 5.8.1 finishes the proof. □

To illustrate how this result can be used to easily compute 𝜇, consider 𝐵𝑛 for 𝑛 ≥ 2.
Consider the atom 𝑎 = {𝑛}. To satisfy 𝑥 ∪ 𝑎 = [𝑛] where 𝑥 ≠ [𝑛] we must have
𝑥 = [𝑛 − 1]. So using (5.26) and induction gives

𝜇(𝐵𝑛) = −𝜇([𝑛 − 1]) = −𝜇(𝐵𝑛−1) = −(−1)𝑛−1 = (−1)𝑛.

We end this section with a theorem of Rota [76]. To state it, we need a new defini-
tion. Let 𝑃 be a finite poset with a 0̂ and a 1̂. A crosscut of 𝑃 is 𝐾 ⊂ 𝑃 with the following
properties.

(1) 0̂, 1̂ ∉ 𝐾.
(2) 𝐾 is an antichain.
(3) Every maximal chain of 𝑃 intersects 𝐾.

For example, if 𝑃 is ranked, then Rk𝑘(𝑃) is a crosscut for 0 < 𝑘 < rk 𝑃.

Theorem 5.8.4 (Crosscut Theorem). Let 𝐿 be a finite lattice and let 𝐾 be a crosscut.
Then

𝜇(1̂) = ∑
⋁𝐵=1̂
⋀𝐵=0̂

(−1)#𝐵

where the sum is over all 𝐵 ⊆ 𝐾 satisfying the meet and join conditions.

Proof. First consider the case where every atom of 𝐿 is also a coatom. This forces
𝐾 = 𝐿 − {0̂, 1̂}. And the meet and join conditions are satisfied for all 𝐵 ⊆ 𝐾 with
#𝐵 ≥ 2. If #𝐾 = 𝑛, then, using Theorem 1.3.3(d),

∑
⋁𝐵=1̂
⋀𝐵=0̂

(−1)#𝐵 =
𝑛
∑
𝑘=2

(𝑛𝑘)(−1)
𝑘 = −

1
∑
𝑘=0

(𝑛𝑘)(−1)
𝑘 = 𝑛 − 1 = 𝜇(1̂).

Now assume that the atom and coatom sets of 𝐿 do not coincide. By Exercises 12(c)
and 23(c), the theorem holds for 𝐿 if and only if it holds for 𝐿∗. So, by taking the dual
if necessary, we can assume that there is a coatom 𝑐 ∉ 𝐾. We now induct on #𝐿.
The previous paragraph takes care of the case #𝐿 = 3 and smaller lattices do not have
crosscuts. Suppose that #𝐿 ≥ 4 and let ∼ be the equivalence relation of Lemma 5.8.1.
Since 𝑐, 1̂ ∉ 𝐾, the [𝑥] for 𝑥 ∈ 𝐾 form a crosscut for 𝑃/ ∼ which we will denote by [𝐾]
and its subsets by [𝐵]. By induction,

𝜇([1̂]) = ∑
⋁[𝐵]=[1̂]
⋀[𝐵]=[0̂]

(−1)#[𝐵].
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By Lemma 5.8.1 we have⋁[𝐵] = [1̂] if and only if⋁𝐵 = 𝑐 or 1̂. By the same token and
the fact that 𝑐, 1̂ ∉ 𝐾 we get that⋀[𝐵] = [0̂] is equivalent to⋀𝐵 = 0̂. So the previous
displayed equation becomes

𝜇([1̂]) = ∑
⋁𝐵=𝑐
⋀𝐵=0̂

(−1)#𝐵 + ∑
⋁𝐵=1̂
⋀𝐵=0̂

(−1)#𝐵.

Note that since 𝐾 is a crosscut of 𝐿 not containing 𝑐 we have that 𝐾′ ≔ 𝐾 ∩ [0, 𝑐] is a
crosscut of [0, 𝑐]. Furthermore,⋁𝐵 = 𝑐 implies that 𝐵 ⊆ 𝐾′. So applying induction to
the sum with this restriction gives

𝜇([1̂]) = 𝜇(𝑐) + ∑
⋁𝐵=1̂
⋀𝐵=0̂

(−1)#𝐵.

A rearrangement of terms and Lemma 5.8.1 completes the demonstration. □

As an application of this result, consider 𝐵𝑛, 𝑛 ≥ 2, with the crosscut 𝐾 consisting
of its atoms. But for 𝐵 ⊆ 𝐾 we can only have ⋁𝐵 = [𝑛] if 𝐵 = 𝐾. And in this case
⋀𝐵 = ∅. So 𝜇(𝐵𝑛) = (−1)#𝐾 = (−1)𝑛.

5.9. Binomial posets

Binomial posets were introduced by Doubilet, Rota, and Stanley [23] and further stud-
ied in [87]. They provide an explanation about why certain types of generating func-
tions arise in practice while others do not. For example, we have already met ordi-
nary generating functions∑𝑛 𝑎𝑛𝑡𝑛 and exponential generating functions∑𝑛 𝑎𝑛𝑡𝑛/𝑛!.
There are also Eulerian generating functions which are of the form∑𝑛 𝑎𝑛𝑡𝑛/[𝑛]𝑞!. We
have seen one example of this in the 𝑞-Binomial Theoremwhere the right-hand side of
equation (3.6) can be written

∑
𝑘
𝑞(𝑘2) [ 𝑛

𝑘 ]
𝑞
𝑡𝑘 = ∑

𝑘
(𝑞(

𝑘
2)[𝑛][𝑛 − 1]⋯ [𝑛 − 𝑘 + 1]) 𝑡𝑘

[𝑘]! .

Why do such generating functions appear while others, say of the form∑𝑛 𝑎𝑛𝑡𝑛/𝐶(𝑛)
where 𝐶(𝑛) is the 𝑛th Catalan number, do not? Binomial posets provide one possible
explanation.

A poset 𝑃 is called binomial if it satisfies the following conditions:
BP1 𝑃 is locally finite and contains arbitrarily long chains.
BP2 Every interval [𝑥, 𝑧] is ranked. The interval is called an 𝑛-interval if, con-

sidered as a poset, rk[𝑥, 𝑧] = 𝑛.
BP3 Any two 𝑛-intervals contain the same number of maximal chains. This

number is denoted 𝐹(𝑛) = 𝐹𝑃(𝑛) and called the factorial function of 𝑃.
We will consider three examples corresponding to the three types of generating

functions mentioned at the beginning of this section. Let 𝐶∞ be the nonnegative inte-
gers under the usual total order. We also have 𝐵∞ which consists of all finite subsets
of positive integers partially ordered by set containment. Finally, let 𝑉∞ be the vec-
tor space over 𝔽𝑞 with countable basis 𝑒1, 𝑒2, . . . and denote by 𝐿∞(𝑞) the poset of all
finite-dimensional subspaces of 𝑉∞ with containment as the partial order.
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Proposition 5.9.1. The posets𝐶∞, 𝐵∞, and 𝐿∞(𝑞) are all binomial. Their factorial func-
tions are

𝐹𝐶∞(𝑛) = 1, 𝐹𝐵∞(𝑛) = 𝑛! , and 𝐹𝐿∞(𝑞)(𝑛) = [𝑛]𝑞! .

Proof. We will prove this for 𝐵∞ and leave the other two cases as exercises. If [𝑆, 𝑇]
is an interval in 𝐵∞, then [𝑆, 𝑇] ≅ 𝐵𝑛 for some 𝑛. So 𝑃 is locally finite with ranked
intervals. Subchains of the infinite chain ∅ ⊂ {1} ⊂ {1, 2} ⊂ ⋯ can be arbitrarily
long. Since any two 𝑛-intervals are isomorphic to 𝐵𝑛, they contain the same number
of maximal chains. To find the factorial function, note that a maximal chain in 𝐵𝑛 has
the form

∅ ⊂ {𝑠1} ⊂ {𝑠1, 𝑠2} ⊂ ⋯ ⊂ [𝑛].
There are 𝑛 choices for 𝑠1, and after that 𝑛− 1 for 𝑠2, etc. So the total number of chains
is 𝑛!. □

An important property of binomial posets is that the number of elements at a given
rank in an 𝑛-interval [𝑥, 𝑧] does not depend on 𝑥, 𝑧.

Lemma 5.9.2. If [𝑥, 𝑧] is an 𝑛-interval in a binomial poset 𝑃 and 0 ≤ 𝑘 ≤ 𝑛, then

#Rk𝑘[𝑥, 𝑧] =
𝐹(𝑛)

𝐹(𝑘)𝐹(𝑛 − 𝑘) .

Proof. Given 𝑦 ∈ Rk𝑘[𝑥, 𝑧], we first count the number of maximal chains 𝐶 of [𝑥, 𝑧]
passing through 𝑦. Such a 𝐶 must be the concatenation of a maximal chain in [𝑥, 𝑦]
with amaximal chain in [𝑦, 𝑧]. Since [𝑥, 𝑦] is a 𝑘-interval and [𝑦, 𝑧] is an (𝑛−𝑘)-interval,
the number of 𝐶 must be 𝐹(𝑘)𝐹(𝑛− 𝑘). But this expression is independent of 𝑦. So the
total number of maximal chains in [𝑥, 𝑧] is 𝐹(𝑘)𝐹(𝑛−𝑘) ⋅#Rk𝑘[𝑥, 𝑧]. Since [𝑥, 𝑧] is an
𝑛-interval, this number is also 𝐹(𝑛). Setting the two expressions equal and solving for
#Rk𝑘[𝑥, 𝑧] completes the proof. □

To make the connection between binomial posets 𝑃 and generating functions, we
must consider a subalgebra of the incidence algebra ℐ(𝑃). The reduced incidence alge-
bra of a binomial poset 𝑃 is

ℛ(𝑃) = {𝜙 ∈ ℐ(𝑃) ∣ 𝜙 is constant on 𝑛-intervals}.

Equivalently the 𝜙 ∈ ℛ(𝑃) are precisely those such that 𝜙(𝑥, 𝑧) = 𝜙(𝑥′, 𝑧′) whenever
[𝑥, 𝑧] and [𝑥′, 𝑧′] are both 𝑛-intervals. We let 𝜙(𝑛) denote this common value. So, for
example, 𝜁 ∈ ℛ(𝑃) since 𝜁(𝑥, 𝑧) = 1 on all intervals [𝑥, 𝑧]. It is not clear a priori that
𝜇 ∈ ℛ(𝑃). But this will follow from the next result.

Theorem 5.9.3. Let 𝑃 be a binomial poset.

(a) ℛ(𝑃) is a subalgebra of ℐ(𝑃).
(b) If 𝜙 ∈ ℛ(𝑃) and 𝜙−1 exists in ℐ(𝑃), then 𝜙−1 ∈ ℛ(𝑃).
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Proof. (a) We need to show that ℛ(𝑃) is closed under addition, scalar multiplication,
and convolution. We will prove the last and leave the other two as exercises. Suppose
𝜙, 𝜓 ∈ ℛ(𝑃). Using the previous lemma, we can write

(𝜙 ∗ 𝜓)(𝑥, 𝑧) = ∑
𝑥≤𝑦≤𝑧

𝜙(𝑥, 𝑦)𝜓(𝑦, 𝑧)

=
𝑛
∑
𝑘=0

∑
𝑦∈Rk𝑘[𝑥,𝑧]

𝜙(𝑥, 𝑦)𝜓(𝑦, 𝑧)

=
𝑛
∑
𝑘=0

∑
𝑦∈Rk𝑘[𝑥,𝑧]

𝜙(𝑘)𝜓(𝑛 − 𝑘)

=
𝑛
∑
𝑘=0

𝐹(𝑛)
𝐹(𝑘)𝐹(𝑛 − 𝑘)𝜙(𝑘)𝜓(𝑛 − 𝑘).

But this last expression is clearly independent of 𝑥, 𝑧 and so we are done.

(b) We must show that if [𝑥, 𝑧] is an 𝑛-interval, then 𝜙−1(𝑥, 𝑧) depends only on 𝑛.
We will induct on 𝑛. If 𝑛 = 0, then 𝑥 = 𝑧 and 𝜙 ∗𝜙−1(𝑥, 𝑥) = 𝛿(𝑥, 𝑥) = 1. So, using the
fact that 𝜙 ∈ ℛ(𝑃),

1 = ∑
𝑥≤𝑦≤𝑥

𝜙(𝑥, 𝑦)𝜙−1(𝑦, 𝑥) = 𝜙(𝑥, 𝑥)𝜙−1(𝑥, 𝑥) = 𝜙(0)𝜙−1(𝑥, 𝑥).

This can be rewritten 𝜙−1(𝑥, 𝑥) = 1/𝜙(0) and the right-hand side does not depend on
𝑥 as desired.

Now suppose 𝑛 > 0. Similar to the base case we have

(𝜙 ∗ 𝜙−1)(𝑥, 𝑧) = 𝛿(𝑥, 𝑧) = 0.

Expanding the convolution and moving the first term outside the sum gives

0 = 𝜙(𝑥, 𝑥)𝜙−1(𝑥, 𝑧) + ∑
𝑥<𝑦≤𝑧

𝜙(𝑥, 𝑦)𝜙−1(𝑦, 𝑧) = 𝜙(0)𝜙−1(𝑥, 𝑧) + 𝑆

where 𝑆 is the sum in this displayed equation. But, by induction, 𝑆 only depends on 𝑛.
So 𝜙−1(𝑥, 𝑧) = −𝑆/𝜙(0) is also solely a function of 𝑛 as desired. □

We can now draw a concrete relation between binomial posets and generating
functions.

Theorem 5.9.4. If 𝑃 is binomial, thenℛ(𝑃) ≅ ℝ[[𝑡]] as algebras via the map

𝜙 ↦ 𝐹𝜙(𝑡) ≔ ∑
𝑛≥0

𝜙(𝑛) 𝑡𝑛
𝐹(𝑛) .

Proof. This function is a bijection since it has an inverse. In particular, if𝐹(𝑡) ∈ ℝ[[𝑡]],
then we can write 𝐹(𝑡) = ∑𝑛 𝑎𝑛𝑡𝑛/𝐹(𝑛) for some 𝑎𝑛 ∈ ℝ. So the inverse maps 𝐹(𝑡) to
𝜙 ∈ ℛ(𝑃) defined by 𝜙(𝑛) = 𝑎𝑛.
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Showing that the bijection preserves addition and scalar multiplication is left as
an exercise. For convolution we want 𝐹𝜙∗𝜓(𝑡) = 𝐹𝜙(𝑡)𝐹𝜓(𝑡). Using the expression for
(𝜙 ∗ 𝜓)(𝑥, 𝑧) obtained in the proof of the previous theorem

𝐹𝜙(𝑥)𝐹𝜓(𝑡) = ∑
𝑛≥0

𝜙(𝑛) 𝑡𝑛
𝐹(𝑛) ⋅ ∑𝑛≥0

𝜓(𝑛) 𝑡𝑛
𝐹(𝑛)

= ∑
𝑛≥0

(
𝑛
∑
𝑘=0

𝜙(𝑘)
𝐹(𝑘) ⋅

𝜓(𝑛 − 𝑘)
𝐹(𝑛 − 𝑘))𝑡

𝑛

= ∑
𝑛≥0

(
𝑛
∑
𝑘=0

𝐹(𝑛)
𝐹(𝑘)𝐹(𝑛 − 𝑘)𝜙(𝑘)𝜓(𝑛 − 𝑘)) 𝑡𝑛

𝐹(𝑛)

= ∑
𝑛≥0

(𝜙 ∗ 𝜓)(𝑛) 𝑡𝑛
𝐹(𝑛)

= 𝐹𝜙∗𝜓(𝑡)

as we wished to conclude. □

Note that in 𝐶∞ this map becomes 𝜙 ↦ ∑𝑛 𝜙(𝑛)𝑡𝑛 which is an ordinary gener-
ating function. Similarly, the images in 𝐵∞ and 𝐿∞(𝑞) are exponential and Eulerian
generating functions, respectively.

There is one of our important initial example posets which does not seem to be
covered by this theory. Consider 𝐷∞ which is the positive integers ordered by divisi-
bility. Then 𝐷∞ is not binomial. For consider the intervals [1, 4] and [1, 6]. We have
rk[1, 4] = rk[1, 6] = 2. But [1, 4] contains a single maximal chain whereas [1, 6] has
two. But there is a way around this difficulty. Let 𝑃1, 𝑃2, 𝑃3, . . . be posets each with a 0̂.
We will use subscripts to indicate which poset an element belongs to, for example 0̂𝑖 is
the 0̂ in 𝑃𝑖. The direct sum of the 𝑃𝑖 has as underlying set

⨁
𝑖≥1

𝑃𝑖 = {(𝑥1, 𝑥2, . . . ) ∣ 𝑥𝑖 ∈ 𝑃𝑖 for all 𝑖, 𝑥𝑖 ≠ 0̂𝑖 for only finitely many 𝑖}.

⋮

⊕

⋮

⊕

⋮

⊕⋯

1

2

22

23

1

3

32

33

1

5

52

53

𝐷∞ ≅

Figure 5.12. 𝐷∞ as a direct sum of chains.
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Letting (𝑥𝑖) = (𝑥1, 𝑥2, . . .), we impose the partial order (𝑥𝑖) ≤ (𝑦𝑖) if and only if 𝑥𝑖 ≤ 𝑦𝑖
for all 𝑖. It is not hard to see that 𝐷∞ is isomorphic to the direct sum of chains as
illustrated in Figure 5.12.

A Dirichlet poset is 𝑃 = ⊕𝑖≥1𝑃𝑖 where each 𝑃𝑖 is a binomial poset with a 0̂. So 𝐷∞ is
Dirichlet. An interval [(𝑥𝑖), (𝑧𝑖)] in 𝑃 is called an (𝑛𝑖)-interval where (𝑛𝑖) = (𝑛1, 𝑛2, . . .)
if [𝑥𝑖, 𝑧𝑖] is an 𝑛𝑖-interval in 𝑃𝑖 for all 𝑖. The corresponding reduced incidence algebra is

ℛ(𝑃) = {𝜙 ∈ ℐ(𝑃) ∣ 𝜙 is constant on (𝑛𝑖)-intervals}.
The notation 𝜙((𝑛𝑖)) should be self-explanatory. Note that 𝜁 ∈ ℛ(𝑃) for 𝑃 Dirichlet.
Theorem 5.9.3 remains true if 𝑃 is replaced by a Dirichlet poset. Theorem 5.9.4 gener-
alizes as follows, where

𝐭 = {𝑡1, 𝑡2, . . . }
is a countably infinite sequence of variables.

Theorem 5.9.5. If 𝑃 = ⨁𝑖≥1 𝑃𝑖 is Dirichlet, thenℛ(𝑃) ≅ ℝ[[𝐭]] as algebras via the map

𝜙 ↦ 𝐹𝜙(𝐭) ≔ ∑
(𝑛𝑖)

𝜙((𝑛𝑖))∏
𝑖≥1

𝑡𝑛𝑖𝑖
𝐹(𝑛𝑖)

where the sum is over all (𝑛𝑖) with only finitely many 𝑛𝑖 ≠ 0, and 𝐹(𝑛𝑖) is the factorial
function of 𝑃𝑖. □

Now suppose 𝑃 = 𝐷∞ so 𝐹(𝑛𝑖) = 1 for all 𝑖. Let 𝑡𝑖 = 1/𝑝𝑠𝑖 where 𝑝𝑖 is the 𝑖th prime
and 𝑠 ∈ ℂ. Using the unique factorization of the integers we see that

𝐹𝜁(𝐭) = ∑
(𝑛𝑖)

𝜁((𝑛𝑖))∏
𝑖≥1

𝑡𝑛𝑖𝑖 = ∑
(𝑛𝑖)

∏
𝑖≥1

1
(𝑝𝑠𝑖 )𝑛𝑖

= ∑
(𝑛𝑖)

1

(∏𝑖≥1 𝑝
𝑛𝑖
𝑖 )

𝑠 = ∑
𝑛≥1

1
𝑛𝑠

where the last sum is the Riemann 𝜁-function 𝜁(𝑠) = ∑𝑛≥1 1/𝑛𝑠. For the rest of this
section 𝑠will be a complex number so that 𝜁(𝑠)will always refer to Riemann’s function
rather than the value of the reduced incidence algebra element of the same name on
an 𝑛-interval. As a function of a complex variable, one can show that 𝜁(𝑠) has zeros
at the negative even integers which are sometimes called its trivial zeros. Perhaps the
most famous conjecture in all of mathematics is the following by Riemann [74].
Conjecture 5.9.6 (Riemann Hypothesis). All the nontrivial zeros of 𝜁(𝑠) have real part
1/2.

One can restate the Riemann Hypothesis in terms of the Möbius function 𝜇 of𝐷∞.
To do so, we need a concept from asymptotic combinatorics. Suppose we have two
functions 𝑓, 𝑔∶ ℕ → ℝ. We say that 𝑓 is big oh of 𝑔, written 𝑓 = 𝑂(𝑔), if there are
constants 𝐶,𝑁 such that |𝑓(𝑛)| ≤ 𝐶|𝑔(𝑛)| for all 𝑛 ≥ 𝑁. To see why this might be
relevant to Conjecture 5.9.6, note that if 𝑓(𝑧) = 1/𝑞(𝑧) is a rational function of 𝑧 ∈ ℂ,
then the zeros of the polynomial 𝑞(𝑧) are called the poles of 𝑓(𝑧). These poles control
the growth rate of the coefficients of the (not formal) power series expansion 𝑓(𝑧) =
∑𝑛≥0 𝑎𝑛𝑧𝑛. For example, if 𝑓(𝑧) = 1/(1 − 2𝑧), then 𝑓(𝑧) has a pole at 𝑟 = 1/2. And
we also know that for sufficiently small |𝑧|we have 𝑓(𝑧) = ∑𝑛 2𝑛𝑧𝑛 whose coefficients
grow like, in fact are exactly, 2𝑛 = (1/𝑟)𝑛.
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It is not hard to show using Theorem 5.9.5 that

(5.27) 1
𝜁(𝑠) = ∑

𝑛≥1

𝜇(𝑛)
𝑛𝑠

where 𝜇 is taken in 𝐷∞. Given the relation between roots and poles just discussed, it
makes sense to consider theMertens function

𝑀(𝑛) = ∑
1≤𝑘≤𝑛

𝜇(𝑘).

Then a conjecture equivalent to Conjecture 5.9.6 is as follows.

Conjecture 5.9.7. For all real 𝜖 > 0 we have

𝑀(𝑛) = 𝑂(𝑛1/2+𝜖).

There was an earlier conjecture of Mertens [62] that |𝑀(𝑛)| ≤ 𝑛1/2 for all 𝑛. But
this was disproved by Odlyzko and te Riele [66].

Exercises

(1) This exercise refers to the list of examples just after the definition of a poset.
(a) Verify that they satisfy the definition of a poset.
(b) Show that the partial order inΠ𝑛 is equivalent to defining 𝜌 ≤ 𝜏 if every block

of 𝜏 is a union of blocks of 𝜌.
(c) Describe the cover relations in the list. For example, in 𝐶𝑛 the covers are of

the form 𝑖 < 𝑖 + 1 for 0 ≤ 𝑖 < 𝑛.
(2) Prove Proposition 5.1.1.
(3) Complete the proof of Proposition 5.1.2. For part (c) give two proofs: one by mim-

icking the proof of part (b) and one using 𝑃∗.
(4) Complete the proof of Proposition 5.1.3. To show that 𝐾𝑛 ≅ 𝐵𝑛−1 it may be simpler

to show that 𝐾𝑛 ≅ 𝐵∗𝑛−1 using the map 𝜙 from Section 1.7.
(5) Let 𝑓∶ 𝑃 → 𝑄 be an isomorphism of posets.

(a) Show that 𝑓 is also an isomorphism of 𝑃∗ with 𝑄∗.
(b) Show that if 𝑃 has a 0̂, then so does 𝑄.
(c) Show in two ways that if 𝑃 has a 1̂, then so does 𝑄: by mimicking the proof of

part (b) and by using the result of (b) together with part (a).
(6) (a) Show that the axioms for a partially ordered set are satisfied by 𝑃 ⊎ 𝑄, 𝑃 + 𝑄,

and 𝑃 × 𝑄.
(b) Show that 𝑃 × 𝑄 ≅ 𝑄 × 𝑃.

(7) Complete the proof of Proposition 5.2.1.
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(8) (a) Show that if 𝑃 is a ranked poset, then for any 𝑘we haveRk𝑘(𝑃) is an antichain.
(b) Let 𝑃 be a ranked poset and assume 𝑓∶ 𝑃 → 𝑄 is an isomorphism. Show that

𝑄 is also ranked and for all 𝑥 ∈ 𝑃 we have
rk𝑃 𝑥 = rk𝑄 𝑓(𝑥).

(c) Show that if 𝑃,𝑄 are ranked posets, then so is 𝑃 × 𝑄 with rank function
rk𝑃×𝑄(𝑥, 𝑦) = rk𝑃 𝑥 + rk𝑄 𝑦.

(9) Prove Proposition 5.2.2.
(10) (a) Prove Proposition 5.3.1

(b) Find, with proof, a description of the meet and join operations in 𝐾𝑛.
(c) Show that 𝔖 is not a lattice.

(11) Fill in the proof of Proposition 5.3.2.
(12) (a) Show that if 𝐿 is a lattice, then so is its dual 𝐿∗ with

𝑥 ∧𝐿∗ 𝑦 = 𝑥 ∨𝐿 𝑦 and 𝑥 ∨𝐿∗ 𝑦 = 𝑥 ∧𝐿 𝑦.
(b) Show that if 𝐿,𝑀 are lattices, then so is 𝐿 ×𝑀 with

(𝑎, 𝑥) ∧ (𝑏, 𝑦) = (𝑎 ∧ 𝑏, 𝑥 ∧ 𝑦) and (𝑎, 𝑥) ∨ (𝑏, 𝑦) = (𝑎 ∨ 𝑏, 𝑥 ∨ 𝑦).
(c) Ameet semilattice is a poset 𝑃 where every pair of elements has a meet. Show

that if a finitemeet semilattice has a 1̂, then it is a lattice. Hint: Given 𝑥, 𝑦 ∈ 𝐿,
let𝑈 be the set of upper bounds of 𝑥, 𝑦. Show that⋀𝑈 exists and is their join.

(d) Let 𝑃 be a finite poset with a 0̂ and a 1̂. Suppose that for any 𝑥, 𝑦 ∈ 𝑃 which
both cover an element 𝑧, the join 𝑥 ∨ 𝑦 exists. Prove that 𝑃 is a lattice. Hint:
Use the previous part in its dual form and induct on #𝑃.

(13) A set partition 𝜋 = 𝐵1/ . . . /𝐵𝑘 of [𝑛𝑑] is 𝑑-divisible if 𝑑 divides |𝐵𝑖| for all 𝑖. Let
Π𝑛𝑑,𝑑 = {𝜋 ∣ 𝜋 is a 𝑑-divisible partition of [𝑛𝑑] or 𝜋 = 1/2/ . . . /𝑛𝑑}

be partially ordered by refinement of set partitions.
(a) Show that if 𝜋, 𝜎 ∈ Π𝑛𝑑,𝑑, then 𝜋 ∨ 𝜎 exists and is the same as the join in the

ordinary partition lattice Π𝑛𝑑.
(b) Show thatΠ𝑛𝑑,𝑑 is a lattice but that 𝜋∧𝜎may not be the same inΠ𝑛𝑑,𝑑 and in

the ordinary partition lattice Π𝑛𝑑. Hint: Use the dual form of Exercise 12(c).
(14) Prove the backward direction of Proposition 5.3.3.
(15) Prove Proposition 5.3.4.
(16) Finish the proof of Proposition 5.3.5.
(17) Let 𝑃 be a finite poset and let 𝐿 = 𝒥(𝑃) be the corresponding distributive lattice.

If 𝑋 ⊆ 𝑃 is a lower-order ideal, then use the corresponding lowercase letter 𝑥 to
denote the associated element of 𝐿.
(a) Show that 𝑥 covers 𝑦 in 𝐿 if and only if 𝑌 = 𝑋 − {𝑚} where 𝑚 is a maximal

element of 𝑋 .
(b) Show that 𝑥 is join irreducible in 𝐿 if and only if 𝑋 is a principal ideal of 𝑃.

(18) (a) Given a poset 𝑃, let 𝒜(𝑃) be the set of antichains of 𝑃. Show that the map
𝑓∶ 𝒜(𝑃) → 𝒥(𝑃) given by𝑓(𝐴) = 𝐼(𝐴) (where 𝐼(𝐴) is the order ideal generated
by 𝐴) is a bijection.
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(b) Show that 𝜆 ∈ 𝑌 is join irreducible if and only if 𝜆 = (𝑘𝑙) for some 𝑘, 𝑙 ∈ ℙ.
(c) Show that 𝐶𝑛 ≅ 𝒥(𝐶𝑛−1), 𝐵𝑛 ≅ 𝒥(𝐴𝑛), and 𝐷𝑛 ≅ ⨉𝑖 𝒥(𝐶𝑛𝑖−1) where 𝑛 =

∏𝑖 𝑝
𝑛𝑖
𝑖 is the prime factorization of 𝑛.

(d) Show that if 𝐿,𝑀 are finite, disjoint lattices, then

Irr(𝐿 × 𝑀) ≅ Irr(𝐿) ⊎ Irr(𝑀).

(e) Show that if 𝑃,𝑄 are finite, disjoint posets, then

𝒥(𝑃 ⊎ 𝑄) ≅ 𝒥(𝑃) × 𝒥(𝑄).

Use this to rederive the statements about 𝐵𝑛 and 𝐷𝑛 in part (c). For 𝐷𝑛 you
will also need part (d).

(19) (a) Rederive the formula for 𝜇 in 𝐵𝑛, equation (5.6), in two ways: by mimicking
the proof of (5.7) and by constructing an𝑚 ∈ ℙ such that 𝐷𝑚 ≅ 𝐵𝑛 and then
applying (5.7).

(b) Prove that if𝑊 ∈ 𝐿(𝔽𝑛𝑞) has dimension 𝑘, then

𝜇(𝑊) = (−1)𝑘𝑞(𝑘2).

Hint: Use the 𝑞-Binomial Theorem, Theorem 3.2.4.
(20) (a) Let 𝑃 be a locally finite poset with a 0̂. Show that if 𝑥 covers exactly one ele-

ment of 𝑃, then

𝜇(𝑥) = { −1 if 𝑥 covers 0̂,
0 otherwise.

(b) Given any 𝑛 ∈ ℤ, construct a poset containing an element 𝑥 with 𝜇(𝑥) = 𝑛.
(21) Complete the proof of Theorem 5.5.1.
(22) Complete the proof of Theorem 5.5.4.
(23) Throughout this exercise, 𝑃 is a locally finite poset.

(a) Show that 𝜁2(𝑥, 𝑧) = #[𝑥, 𝑧] where 𝜁2 = 𝜁 ∗ 𝜁.
(b) Show in two ways that 𝑓 has an inverse if and only if 𝑓(𝑥, 𝑥) ≠ 0 for all 𝑥 ∈ 𝑃:

by working directly with elements of ℐ(𝑃) and by using linear algebra.
(c) Prove that 𝜇𝑃(𝑥, 𝑦) = 𝜇𝑃∗(𝑦, 𝑥) where, as usual, 𝑃∗ is the dual of 𝑃.
(d) Give three proofs of Theorem 5.5.5(b): by working directly with elements of

ℐ(𝑃), by using linear algebra, and by using part (c) of this exercise.
(24) (a) Recall that the Euler phi function 𝜙∶ ℙ → ℙ from Exercise 6 in Chapter 2 is

defined by
𝜙(𝑛) = #{𝑚 ∈ [𝑛] ∣ gcd(𝑚, 𝑛) = 1}.

Use a counting argument to prove that for all 𝑛 ∈ ℙ we have

𝑛 = ∑
𝑑∣𝑛

𝜙(𝑑).

Hint: Consider the fractions 1/𝑛, 2/𝑛, . . . , 𝑛/𝑛. Reduce each fraction to lowest
terms and show that there will be exactly 𝜙(𝑑) fractions with denominator 𝑑
for each 𝑑 ∣ 𝑛.
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(b) Show that for all 𝑛 ∈ ℙ we have

𝜙(𝑛) = 𝑛∏
𝑝∣𝑛

(1 − 1
𝑝)

where the product is over all primes 𝑝 dividing 𝑛. Hint: Use part (a) of this
exercise.

(25) Prove that if 𝑃 is a finite ranked poset with a 0̂ and a 1̂which are distinct, then 𝜒(𝑃)
has 𝑡 − 1 as a factor.

(26) Prove the formula for 𝜒(𝐷𝑛) in Proposition 5.6.1 in two ways: using the definition
of 𝜒 and using Theorem 5.6.2.

(27) Finish the proof of Proposition 5.6.1. Hint: For Π𝑛, remember that rkΠ𝑛 = 𝑛 − 1
and use Theorem 3.6.1. For 𝐿𝑛(𝑞) use Theorem 3.2.4.

(28) (a) Let 𝐺 be a graph with 𝑛 vertices. Show thatℒ(𝐺) is a ranked lattice with rank
function given by (5.17).

(b) Show that the subgraph induced by a coloring of 𝐺 is unique and is a bond.
(c) Show that if 𝐾𝑛 is the complete graph on 𝑛 vertices, then

ℒ(𝐾𝑛) ≅ Π𝑛.
(d) Show that if 𝑇 is a tree on 𝑛 vertices, then

ℒ(𝑇) ≅ 𝐵𝑛−1.
(29) Fill in the details of the proof of Lemma 5.7.1.
(30) This exercise refers to the proof that 𝜒(Π𝑛) = (𝑡 − 1)(𝑡 − 2)⋯ (𝑡 −𝑛+1) at the end

of Section 5.7.
(a) Prove the reverse direction of the equivalence which lead to equation (5.20).
(b) Show that the map 𝜄∶ 𝐼(𝑋) → 𝐼(𝑋) is a well-defined sign-reversing involution

without fixed points.
(c) Show that the map 𝜌∶ (𝑃/ ∼) → Π𝑛 is a well-defined isomorphism of posets.

(31) Prove that 𝜒(𝐿𝑛(𝑞); 𝑡) factors over the integers in two ways: by using quotient
posets and by using Theorem 5.7.5.

(32) Reprove the factorization for 𝜒(Π𝑛) using Theorem 5.7.5.
(33) This exercise is about Lemma 5.8.1(c).

(a) Finish the proof.
(b) Show that if [𝑥] = [1̂], then it is possible to have [𝑥] ∧ [𝑦] ≠ [𝑥 ∧ 𝑦].

(34) (a) State and prove a dual version of Theorem 5.8.3.
(b) Using Weisner’s Theorem or its dual from part (a), rederive the formula for

𝜇(𝑃) when 𝑃 = 𝐷𝑛, Π𝑛, and 𝐿𝑛(𝑞).
(35) (a) Let 𝐿 be a finite lattice with atom set𝒜. Show that if⋁𝒜 ≠ 1̂, then 𝜇(𝐿) = 0.

(b) Use the Crosscut Theorem, Theorem 5.8.4, to rederive the formula for 𝜇(𝐷𝑛).
(36) Let 𝐿 be a finite distributive lattice with atom set𝒜(𝐿) and join irreducibles Irr(𝐿).

(a) Show that𝒜(𝐿) ⊆ Irr(𝐿) and that this is in fact true for any finite lattice.
(b) Show that if𝒜(𝐿) ⊂ Irr(𝐿) (proper subset), then⋁𝒜(𝐿) ≠ 1̂.
(c) Show that if𝒜(𝐿) = Irr(𝐿), then 𝐿 ≅ 𝐵𝑛 where 𝑛 = #𝒜(𝐿).
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(d) Show that in 𝐿 we have

𝜇(0̂, 1̂) = { (−1)#𝒜(𝐿) if 𝒜(𝐿) = Irr(𝐿),
0 if 𝒜(𝐿) ⊂ Irr(𝐿).

(37) Consider Young’s lattice 𝑌 of all integer partitions 𝜆 ordered by containment of
Young diagrams. Given 𝜆, consider the interval 𝑃𝜆 = [(1), 𝜆] as a subposet of 𝑌 .
Recall that |𝜆| = ∑𝑖 𝜆𝑖 where 𝜆 = (𝜆1, . . . , 𝜆𝑘).
(a) Compute 𝜇(𝑃𝜆) = 𝜇((1), 𝜆) for all 𝜆 with 1 ≤ |𝜆| ≤ 3.
(b) Show that 𝜇(𝑃𝜆) = 0 for |𝜆| ≥ 4 in two ways: by using Weisner’s Theorem

(Theorem 5.8.3) and by using the Crosscut Theorem (Theorem 5.8.4).
(38) Complete the proof of Proposition 5.9.1.
(39) Complete the proof of Theorem 5.9.3(a).
(40) Complete the proof of Theorem 5.9.4.
(41) Show by direct computation (without using Theorem 5.9.4) that we have 𝐹𝜇(𝑡) =

𝐹𝜁(𝑡)−1
(a) in 𝐶∞,
(b) in 𝐵∞.

(42) (a) Prove that the direct sum of posets satisfies the axioms for a poset.
(b) Show that 𝐷∞ is isomorphic to a direct sum.

(43) Prove the analogue of Theorem 5.9.3 in the case when 𝑃 is Dirichlet.
(44) Prove Theorem 5.9.5.
(45) Prove (5.27). Hint: Use Theorem 5.9.5.
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Chapter 6

Counting with
Group Actions

Sometimes we want to count objects up to some symmetry. As an example, consider
counting necklaces with colored beads where two necklaces are considered the same if
one is a rotation of the other. We can deal with such situations by considering a group
acting on the underlying set. These tools can also be used in other contexts, such as in
proving congruences from number theory or enumeration using roots of unity.

6.1. Groups acting on sets

In this section we introduce the basic notions whichwill be used throughout this chap-
ter. We wish to have a formal way to talk about symmetries of objects.

Let 𝐺 be a group with identity element 𝑒, and let 𝑋 be a set. We say that 𝐺 acts on
𝑋 if, for each 𝑔 ∈ 𝐺, there is a map 𝑔∶ 𝑋 → 𝑋 such that for all 𝑥 ∈ 𝑋

(a) ℎ(𝑔(𝑥)) = (ℎ𝑔)(𝑥) for all ℎ, 𝑔 ∈ 𝐺,
(b) 𝑒(𝑥) = 𝑥.

The reader should be careful to distinguish between when 𝑔 is being used to denote
a group element and when it is being used as a map on 𝑋 . For example, on the left
in property (a), ℎ(𝑔(𝑥)) means apply the map 𝑔 to 𝑥 and then apply the map ℎ; i.e.,
compose the two maps. But on the right, ℎ𝑔 refers to the product in 𝐺 and (ℎ𝑔)(𝑥)
applies the corresponding map to 𝑥. It is common to write 𝑔𝑥 for 𝑔(𝑥). This should
cause no confusion with group multiplication since 𝑥 is an element of 𝑋 , not 𝐺.

By way of illustration, consider the 4-cycle (1, 2, 3, 4) ∈ 𝔖4 and the group 𝐺 =
⟨(1, 2, 3, 4)⟩ where the angle brackets denote the group generated by the elements in-
side. So in our case

(6.1) 𝐺 = {𝑒 = (1)(2)(3)(4), (1, 2, 3, 4), (1, 3)(2, 4), (1, 4, 3, 2)}.

189
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Of course, 𝐺 acts on [4] in the usual way. But we wish to consider an action on

𝑋 = ([4]2 ) = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}

given by
(6.2) 𝑔{𝑥, 𝑦} = {𝑔𝑥, 𝑔𝑦}
for 𝑔 ∈ 𝐺 and {𝑥, 𝑦} ∈ 𝑋 . For example,

(1, 2, 3, 4){1, 3} = {(1, 2, 3, 4)1, (1, 2, 3, 4)3} = {2, 4}.

For our first result, we will show that the maps 𝑔∶ 𝑋 → 𝑋 have special properties.

Proposition 6.1.1. Suppose 𝐺 acts on 𝑋 . Then 𝑔∶ 𝑋 → 𝑋 is a bijection for all 𝑔 ∈ 𝐺
and 𝑒∶ 𝑋 → 𝑋 is the identity map on 𝑋 .

Proof. The statement about themap 𝑒 follows immediately from part (b) of the defini-
tion of a group action. To prove that 𝑔∶ 𝑋 → 𝑋 is always a bijection, it suffices to show
that 𝑔−1 ∶ 𝑋 → 𝑋 is its compositional inverse. So we must prove that, for all 𝑥 ∈ 𝑋 , we
have

𝑔−1(𝑔(𝑥)) = 𝑥 = 𝑔(𝑔−1(𝑥)).
We will prove the first equality, leaving the second to the reader. But using require-
ments (a) and (b) in the definition of a group action in that order gives

𝑔−1(𝑔(𝑥)) = (𝑔−1𝑔)(𝑥) = 𝑒(𝑥) = 𝑥
as required. □

When counting under the action of a group, all the elements of 𝑋 which can be
obtained by acting on a given 𝑥 ∈ 𝑋 by the elements of the group will be considered
the same. This leads to the following definition. If 𝐺 acts on 𝑋 , then the orbit of 𝑥 ∈ 𝑋
is

𝒪𝑥 = {𝑔𝑥 ∣ 𝑔 ∈ 𝐺}.
Note that𝒪𝑥 ⊆ 𝑋 . It is important to keep in mind when we are talking about elements
of 𝐺 and when we are talking about elements of 𝑋 . Continuing the example above, if
𝑥 = {1, 2}, then

𝒪{1,2} = { {1, 2}, (1, 2, 3, 4){1, 2}, (1, 3)(2, 4){1, 2}, (1, 4, 3, 2){1, 2} }
= { {1, 2}, {2, 3}, {3, 4}, {1, 4} }.

Similar computations show that 𝒪{1,2} = 𝒪{2,3} = 𝒪{3,4} = 𝒪{1,4}. That is, if we let 𝒪
be the second line of the displayed equations above, then 𝒪𝑥 = 𝒪 for all 𝑥 ∈ 𝒪. Now
consider what happens if 𝑥 = {1, 3}:

𝒪{1,3} = { {1, 3}, (1, 2, 3, 4){1, 3}, (1, 3)(2, 4){1, 3}, (1, 4, 3, 2){1, 3} }
= { {1, 3}, {2, 4} }.

As before 𝒪{1,3} = 𝒪{2,4}. Also note that we have the set partition 𝑋 = 𝒪{1,2} ⊎ 𝒪{1,3}.
And for all orbits 𝒪 we have #𝒪 ∣ #𝑋 where the vertical bar indicates divisibility of
integers. These observations will be explained shortly.
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Another important concept for analyzing group actions is the stabilizer. If 𝐺 acts
on 𝑋 , then the stabilizer of 𝑥 ∈ 𝑋 is

𝐺𝑥 = {𝑔 ∈ 𝐺 ∣ 𝑔𝑥 = 𝑥}.
We clearly have 𝐺𝑥 ⊆ 𝐺. Returning to our running example, it is easy to check by
considering each 𝑔 ∈ 𝐺 that

𝐺{1,2} = {𝑔 ∣ 𝑔{1, 2} = {1, 2}} = {𝑒}
and

𝐺{1,3} = {𝑔 ∣ 𝑔{1, 3} = {1, 3}} = {𝑒, (1, 3)(2, 4)}.
Observe that both of these stabilizers are subgroups of 𝐺. Furthermore

#𝐺
#𝐺{1,3}

= 4
2 = 2 = #𝒪{1,3}

and similarly for #𝐺{1,2} and #𝒪{1,2}. It is time to explain these patterns. The notation
𝐻 ≤ 𝐺 means that 𝐻 is a subgroup of 𝐺.

Lemma 6.1.2. Let 𝐺 act on 𝑋 .
(a) The distinct orbits form a set partition of 𝑋 .
(b) For any 𝑥 ∈ 𝑋 we have 𝐺𝑥 ≤ 𝐺.
(c) If 𝐺 and 𝑋 are finite and 𝑥 ∈ 𝑋 , then

#𝒪𝑥 =
#𝐺
#𝐺𝑥

.

Proof. (a) Let 𝒪(1), . . . , 𝒪(𝑘) be the distinct orbits of 𝐺 acting on 𝑋 . We first need to
show 𝑋 = ⋃𝑖 𝒪(𝑖). Since𝒪(𝑖) ⊆ 𝑋 for all 𝑖 we clearly have⋃𝑖 𝒪(𝑖) ⊆ 𝑋 . For the reverse
containment, if 𝑥 ∈ 𝑋 , then 𝑥 = 𝑒𝑥 ∈ 𝒪𝑥. Also 𝒪𝑥 = 𝒪(𝑖) for some 𝑖. So 𝑥 is in the
union as desired.

To show that the union is disjoint, it suffices to prove that if 𝒪𝑥 ∩ 𝒪𝑦 ≠ ∅ for
two orbits 𝒪𝑥, 𝒪𝑦, then 𝒪𝑥 = 𝒪𝑦. We will show that 𝒪𝑥 ⊆ 𝒪𝑦 as then the reverse
containment follows by just interchanging the roles of𝒪𝑥 and𝒪𝑦. So let 𝑧 ∈ 𝒪𝑥. Then
there is 𝑔 ∈ 𝐺 with 𝑧 = 𝑔𝑥. By assumption, there is some 𝑢 ∈ 𝒪𝑥 ∩ 𝒪𝑦 and thus there
exist ℎ, 𝑘 ∈ 𝐺 with 𝑢 = ℎ𝑥 and 𝑢 = 𝑘𝑦. It is an easy exercise to show that 𝑢 = ℎ𝑥 is
equivalent to 𝑥 = ℎ−1𝑢. It follows that

𝑧 = 𝑔𝑥 = 𝑔(ℎ−1𝑢) = 𝑔(ℎ−1(𝑘𝑦)) = (𝑔ℎ−1𝑘)(𝑦).
This means 𝑧 ∈ 𝒪𝑦.

(b) We must show that 𝐺𝑥 is a group, where the associative law is inherited from
𝐺. We have 𝑒 ∈ 𝐺𝑥 because 𝑒𝑥 = 𝑥. If 𝑔 ∈ 𝐺𝑥, then 𝑔𝑥 = 𝑥 and so, as noted in (a),
𝑔−1𝑥 = 𝑥. This gives 𝑔−1 ∈ 𝐺𝑥 so we have closure under taking inverses. Finally, if
𝑔, ℎ ∈ 𝐺𝑥, then 𝑔𝑥 = 𝑥 and ℎ𝑥 = 𝑥. This gives

(𝑔ℎ)(𝑥) = 𝑔(ℎ(𝑥)) = 𝑔(𝑥) = 𝑥
which gives closure under taking products.
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(c) By part (b) we can apply Lagrange’s Theorem which tells us that #𝐺/#𝐺𝑥 =
#(𝐺/𝐺𝑥)where 𝐺/𝐺𝑥 is the set of left cosets of 𝐺𝑥 in 𝐺. So it suffices to find a bijection
𝑓∶ 𝐺/𝐺𝑥 → 𝒪𝑥. Define 𝑓(𝑔𝐺𝑥) = 𝑔𝑥. We must show that this map is well-defined in
that 𝑔𝐺𝑥 = ℎ𝐺𝑥 implies 𝑔𝑥 = ℎ𝑥. The hypothesis implies that 𝑔 = ℎ𝑘 where 𝑘 ∈ 𝐺𝑥 so
that 𝑘𝑥 = 𝑥. Now

𝑔𝑥 = (ℎ𝑘)𝑥 = ℎ(𝑘𝑥) = ℎ𝑥
aswewished. To show 𝑓 is bijective, it suffices to construct an inverse. Define 𝑓−1 ∶ 𝒪𝑥
→ 𝐺/𝐺𝑥 by 𝑓−1(𝑔𝑥) = 𝑔𝐺𝑥 for each 𝑔𝑥 ∈ 𝒪𝑥. This is clearly the inverse as long as it
is well-defined. So we must show that if 𝑔𝑥 = ℎ𝑥, then 𝑔𝐺𝑥 = ℎ𝐺𝑥. The hypothesis
implies that 𝑥 = (𝑔−1ℎ)𝑥 so that 𝑔−1ℎ ∈ 𝐺𝑥. This is equivalent to the desired conclu-
sion. □

6.2. Burnside’s Lemma

As remarked in the previous section, when a group 𝐺 acts on a set 𝑋 one sometimes
wishes to consider all the elements in a given orbit of 𝐺 the same. So it would be
useful to have a formula for the number of orbits of the action. This result is usually
referred to as Burnside’s Lemma because it was proved in his 1897 book, reprinted
in [21], although Burnside himself was aware that the formula was already known.

For computations, it is best to express the number of orbits in terms of a concept
dual to the notion of a stabilizer of an elements of 𝑋 . If𝐺 acts on 𝑋 , then the fixed point
set of 𝑔 ∈ 𝐺 is

𝑋𝑔 = {𝑥 ∈ 𝑋 ∣ 𝑔𝑥 = 𝑥}.
We have 𝑋𝑔 ⊆ 𝑋 while for the stabilizer of 𝑥 ∈ 𝑋 we have 𝐺𝑥 ≤ 𝐺. To remember this
notation, note that in both cases the base of the expression (rather than the superscript
or subscript) indicates whether we are dealing with a subset of 𝑋 or 𝐺. Continuing the
example from the previous section 𝑋(1,2,3,4) = ∅ and

𝑋(1,3)(2,4) = {{1, 3}, {2, 4}}.
For any 𝐺 and 𝑋 we have
(6.3) 𝑋𝑒 = 𝑋.

Lemma 6.2.1 (Burnside’s Lemma). Let 𝐺 act on 𝑋 with 𝐺, 𝑋 finite. Then

number of orbits = 1
#𝐺 ∑

𝑔∈𝐺
#𝑋𝑔.

Proof. We will use the fact that for any positive integer 𝑛

1 = 𝑛
𝑛 =

𝑛
⏞⎴⎴⎴⎴⏞⎴⎴⎴⎴⏞1
𝑛 +

1
𝑛 +⋯+ 1

𝑛 .

It follows that for any finite set 𝒪 we have

∑
𝑥∈𝒪

1
#𝒪 = 1.
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From Lemma 6.1.2(a) and the finiteness hypothesis we can write 𝑋 = 𝒪(1) ⊎⋯⊎𝒪(𝑘)

where 𝒪(𝑖), 1 ≤ 𝑖 ≤ 𝑘, are the orbits. Using this, the previous displayed equation, and
Lemma 6.1.2(c) gives

number of orbits = 𝑘

= ∑
𝑥∈𝒪(1)

1
#𝒪(1) +⋯+ ∑

𝑥∈𝒪(𝑘)

1
#𝒪(𝑘)

= ∑
𝑥∈𝑋

1
#𝒪𝑥

= 1
#𝐺 ∑

𝑥∈𝑋
#𝐺𝑥.

To express this last summation as a sum over 𝐺, consider the matrix𝑀 with rows
indexed by 𝐺, columns indexed by 𝑋 , and entries

𝑀𝑔,𝑥 = { 1 if 𝑔𝑥 = 𝑥,
0 otherwise.

Clearly #𝐺𝑥 is the sum of the entries in column 𝑥 of 𝑀. Similarly #𝑋𝑔 is the sum of
the entries in row 𝑔 of 𝑀. So∑𝑥∈𝑋 #𝐺𝑥 and∑𝑔∈𝐺 #𝑋𝑔 are equal since both give the
sum of the entries of𝑀. This completes the proof. □

One standard application of Burnside’s Lemma is to count colored objects up to
symmetry. To do this, we have to consider group actions on functions. Given sets 𝑋, 𝑌 ,
we then let 𝑌𝑋 denote the set of all functions 𝑓∶ 𝑋 → 𝑌 . We know from Table 1.1 that
|𝑌𝑋 | = |𝑌||𝑋|. Suppose group 𝐺 acts on the domain 𝑋 . Then the induced action of𝐺 on
𝑌𝑋 is defined by sending the function 𝑓 to the function 𝑔𝑓 such that

(𝑔𝑓)(𝑥) = 𝑓(𝑔−1𝑥)
for all 𝑥 ∈ 𝑋 . Equivalently 𝑔𝑓 = 𝑓 ∘ 𝑔−1 where the circle indicates composition of
functions. The reason that 𝑓 is composed with 𝑔−1 rather than 𝑔 is to make sure that
condition (a) in the definition of a group action is satisfied. Indeed,

ℎ(𝑔(𝑓)) = 𝑔(𝑓) ∘ ℎ−1 = 𝑓 ∘ 𝑔−1 ∘ ℎ−1 = 𝑓 ∘ (ℎ𝑔)−1 = (ℎ𝑔)(𝑓).
And condition (b) is easy to verify as 𝑒𝑓 = 𝑓 ∘ 𝑒−1 = 𝑓 ∘ 𝑒 = 𝑓 since 𝑒∶ 𝑋 → 𝑋 is the
identity map. Note that if we defined 𝑔𝑓 = 𝑓 ∘ 𝑔, then the two sides of (a) would not be
equal.

As our first application of Burnside’s Lemma, we consider colorings of a 4-bead
necklace with two colors: black (𝐵) and white (𝑊). We wish to count the number of
different necklaces if two necklaces are considered the same if one is a rotation of the
other. If rotation is not considered, then each of the 4 beads can be colored in twoways,
resulting in 42 = 16 necklaces which are displayed in Figure 6.1. Putting all necklaces
which are rotations of a given necklace into a set together, we obtain a partition of the
set of all necklaces. So wewish to count the number of blocks, which can easily be seen
to be six in this case. But we would like to take an approach that could be generalized
to more colors or more beads.
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Figure 6.1. The orbits of 2-colored, 4-bead necklaces under rotation

To get group actions into the act, label the four corners of the necklace using the set
𝑋 = {1, 2, 3, 4} as shown in Figure 6.2. Note that𝐺 = ⟨(1, 2, 3, 4)⟩ acts on𝑋 in a way that
corresponds to rotation of the necklace. Letting 𝑌 = {𝐵,𝑊}, each necklace coloring
defines a function 𝑓∶ 𝑋 → 𝑌 and the action of 𝐺 on 𝑌𝑋 rotates colored necklaces.
The blocks in Figure 6.1 are exactly the orbits of this action. So we can use Burnside’s
Lemma as long as we can find a way to compute the fixed points (𝑌𝑋)𝑔 for each 𝑔 ∈ 𝐺.
To do that, the following lemma will be crucial. It shows that the fixed points of 𝑔
acting on 𝑌𝑋 are exactly the functions 𝑓 which are constant on the cycles of 𝑔 acting
on 𝑋 . An example will be found in Figure 6.2.

Lemma 6.2.2. Let𝐺 act on a set 𝑋 and let 𝑌 be another set with𝐺, 𝑋, 𝑌 finite. Let 𝑔 ∈ 𝐺
and

𝑐(𝑔) = number of cycles of 𝑔 acting on 𝑋 .

(a) For 𝑓 ∈ 𝑌𝑋 we have 𝑔𝑓 = 𝑓 if and only if 𝑓(𝑥) = 𝑓(𝑥′) whenever 𝑥, 𝑥′ are in
the same cycle of 𝑔 acting on 𝑋 .

(b) We have
#(𝑌𝑋)𝑔 = |𝑌|𝑐(𝑔).

Proof. (a) We will prove the forward direction as the reverse is similar. Since 𝑥, 𝑥′ are
in the same cycle of 𝑔 there must be an 𝑖 such that 𝑔𝑖𝑥 = 𝑥′. And since 𝑔𝑓 = 𝑓 we also
have 𝑔𝑖𝑓 = 𝑓. It follows that

𝑓(𝑥) = 𝑓(𝑔−𝑖𝑥′) = (𝑔𝑖𝑓)(𝑥′) = 𝑓(𝑥′).

(b) Frompart (a), the fixed points of 𝑔 acting on𝑌𝑋 are obtained as follows. Choose
an element 𝑦 for each cycle of 𝑔 acting on 𝑋 and let 𝑔(𝑥) = 𝑦 for all 𝑥 in that cycle. The
number of ways of doing this is clearly |𝑌|𝑐(𝑔). □
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labeling:

(𝑌𝑋)(1,3)(2,4) ∶
, , ,

Figure 6.2. Labeling the necklace and the fixed points of 𝑔 = (1, 3)(2, 4)

Returning to our examplewhere |𝑌| = 2, we can use part (b) of the previous lemma
to construct the following table for the 𝑔 ∈ ⟨(1, 2, 3, 4)⟩:

𝑔 𝑐(𝑔) #(𝑌𝑋)𝑔

(1)(2)(3)(4) 4 24
(1, 2, 3, 4) 1 21
(1, 3)(2, 4) 2 22
(1, 4, 3, 2) 1 21

Applying Burnside’s Lemma, we see that the number of distinct necklaces is
1
#𝐺 ∑

𝑔∈𝐺
#(𝑌𝑋)𝑔 = 1

4(2
4 + 21 + 22 + 21) = 6

as before. An immediate benefit of using this approach is that littlework is needed to do
the more general case where there are 𝑟 colors for the beads. Because of Lemma 6.2.2
the powers of 2 just get replaced by powers of 𝑟 so that for 4-bead, 𝑟-color necklaces
under rotation

(6.4) number of orbits = 1
4(𝑟

4 + 𝑟2 + 2𝑟).

It follows that 4 must divide evenly into 𝑟4 + 𝑟2 + 2𝑟 for all 𝑟 ∈ ℙ, a fact that is not
obvious a priori.

For a 3-dimensional example, let us find the number of distinct colorings of faces
of a cube with 𝑟 colors if two colorings are equivalent when one is a rotation of the
other. Label the faces with 𝑋 = [6] as shown in Figure 6.3 where arrows indicate
labels for faces which cannot be seen. Colorings will be functions 𝑓 ∈ 𝑌𝑋 where
#𝑌 = 𝑟. Rotations can be classified by the axis of rotation and the angle through
which one rotates, the exception being the identity whose cycle structure acting on 𝑋
is 𝑒 = (1)(2)(3)(4)(5)(6). If the rotation is through an axis bisecting opposite faces,
then one will get the same cycle decomposition for angles of both ±90∘. Using the
axis and direction given for the first rotation in Figure 6.3, one gets the permutation
(1)(2, 3, 4, 5)(6). Furthermore, there are three possible pairs of opposite faces to use,
giving a total of (3 axes)(2 rotations per axis) = 6 rotations of this type. A complete
list of possible rotations 𝑔 is summarized in the following table, where the example
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1

2
3

← 4

5 →

↑
6
labeling

face rotation edge rotation vertex rotation

Figure 6.3. Labeling and rotating a cube

permutations are all as indicated in Figure 6.3:

type of rotation 𝑔 number of 𝑔 example 𝑔 𝑐(𝑔) #(𝑌𝑋)𝑔

identity 1 (1)(2)(3)(4)(5)(6) 6 𝑟6
face by ±90∘ 3 ⋅ 2 = 6 (1)(2, 3, 4, 5)(6) 3 𝑟3
face by 180∘ 3 ⋅ 1 = 3 (1)(2, 4)(3, 5)(6) 4 𝑟4
edge by 180∘ 6 ⋅ 1 = 6 (1, 4)(2, 6)(3, 5) 3 𝑟3
vertex by ±120∘ 4 ⋅ 2 = 8 (1, 2, 5)(3, 6, 4) 2 𝑟2

From this table we see that the total number of rotations is #𝐺 = 24. Applying
Burnside’s Lemma to the information given in the second and fourth columns gives
the number of colorings as

1
#𝐺 ∑

𝑔∈𝐺
#(𝑌𝑋)𝑔 = 1

24(𝑟
6 + 3𝑟4 + 12𝑟3 + 8𝑟2).

As a check, consider the case 𝑟 = 2 with 𝑋 = {𝐵,𝑊}. Then by inspection of the small
number of possibilities one can verify the following data where 𝐵𝑖𝑊 𝑗 indicates having
𝑖 faces colored black and 𝑗 colored white:

color distribution number of colorings

𝐵6 or𝑊 6 1 + 1 = 2
𝐵5𝑊 or𝑊𝐵5 1 + 1 = 2
𝐵4𝑊 2 or𝑊 2𝐵4 2 + 2 = 4
𝐵3𝑊 3 2
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So the total number of colorings is 10. On the other hand
1
24(2

6 + 3 ⋅ 24 + 12 ⋅ 23 + 8 ⋅ 22) = 10

as well.

6.3. The cycle index

In the previous section we saw in equation (6.4) that the number of orbits of 𝐺 =
⟨(1, 2, 3, 4)⟩ acting on 𝑌 [4] where #𝑌 = 𝑟 is given by (𝑟4 + 𝑟2 + 2𝑟)/4, a polynomial in a
single variable. By permitting more variables, we can encode more information about
the action of a group 𝐺 on a set 𝑋 . This will permit us to find generating functions for
the number of orbits of the induced actions of 𝐺 on subsets (𝑋𝑘) and on permutations
𝑃(𝑋, 𝑘) for 𝑘 ≥ 0.

Suppose 𝐺 is a finite group acting on a set 𝑋 with #𝑋 = 𝑛. If 𝑔 ∈ 𝐺, then let
𝑐𝑖 = 𝑐𝑖(𝑔) = number of cycles of 𝑔 of length 𝑖.

Given variables 𝑡1, . . . , 𝑡𝑛, the associated cycle index of 𝑔 is the monomial
𝑧(𝑔) = 𝑧(𝑔; 𝑡1, 𝑡2, . . . , 𝑡𝑛) = 𝑡𝑐11 𝑡

𝑐2
2 ⋯𝑡𝑐𝑛𝑛 .

The cycle index or cycle indicator of 𝐺 acting on 𝑋 is

𝑍(𝐺) = 𝑍(𝐺; 𝑡1, 𝑡2, . . . , 𝑡𝑛) =
1
#𝐺 ∑

𝑔∈𝐺
𝑧(𝑔).

To illustrate, if 𝑋 = [4] and 𝐺 = ⟨(1, 2, 3, 4)⟩, then by (6.1) we have
𝑔 𝑧(𝑔)

(1)(2)(3)(4) 𝑡41
(1, 2, 3, 4) 𝑡4
(1, 3)(2, 4) 𝑡22
(1, 4, 3, 2) 𝑡4

so that

(6.5) 𝑍(𝐺) = 1
4(𝑡

4
1 + 𝑡22 + 2𝑡4).

Note that setting 𝑡1 = 𝑡2 = 𝑡3 = 𝑡4 = 𝑟 in 𝑍(𝐺)we obtain the count in (6.4) for the orbits
of𝐺 acting on [𝑟]𝑋 . It turns out that other specializations of 𝑍(𝐺) give orbit-generating
functions for other actions.

If 𝐺 acts on 𝑋 and 𝑘 ∈ ℕ, then there is an induced action on (𝑋𝑘) given by
𝑔{𝑥1, 𝑥2, . . . , 𝑥𝑘} = {𝑔𝑥1, 𝑔𝑥2, . . . , 𝑔𝑥𝑘}.

The special case of this action when 𝐺 = ⟨(1, 2, 3, 4)⟩ and 𝑋 = [4] was the running
example in Section 6.1. Instead of subsets, one can consider the set 𝑃(𝑋, 𝑘) of 𝑘-permu-
tations of 𝑋 . The induced action on 𝑃(𝑋, 𝑘) is

𝑔(𝑥1𝑥2 . . . 𝑥𝑘) = 𝑔(𝑥1)𝑔(𝑥2) . . . 𝑔(𝑥𝑘).
In Section 6.1, we say that the orbits of 𝐺 = ⟨(1, 2, 3, 4)⟩ acting on ([4]2 ) were

{{1, 2}, {2, 3}, {3, 4}, {1, 4}} and {{1, 3}, {2, 4}}.
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Similarly, one can compute that the orbits of 𝐺 acting on
𝑃([4], 2) = {12, 21, 13, 31, 14, 41, 23, 32, 24, 42, 34, 43}

are
{12, 23, 34, 41}, {21, 32, 43, 14}, and {13, 24, 31, 42}.

In order to apply Burnside’s Lemma, we need an analogue of Lemma 6.2.2 in this con-
text.

Lemma 6.3.1. Let 𝐺 act on 𝑋 with 𝑋 finite and consider 𝑔 ∈ 𝐺.
(a) For 𝑆 ∈ (𝑋𝑘) we have 𝑔𝑆 = 𝑆 if and only if 𝑆 is a union of cycles of 𝑔 (where to

take the union we use the underlying set of each cycle).
(b) For 𝜋 = 𝑥1 . . . 𝑥𝑘 ∈ 𝑃(𝑋, 𝑘) we have 𝑔𝜋 = 𝜋 if and only if each 𝑔𝑥𝑖 = 𝑥𝑖 for all

𝑖 ∈ [𝑘].

Proof. (a) We prove the forward direction and leave the converse as an exercise. It
suffices to prove that if 𝑥 ∈ 𝑆 and 𝑥′ is any element of the cycle of 𝑔 containing 𝑥, then
𝑥′ ∈ 𝑆. Since 𝑥, 𝑥′ are in the same cycle of 𝑔 there is some 𝑖 with 𝑔𝑖𝑥 = 𝑥′. Also 𝑥 ∈ 𝑆
and 𝑔𝑆 = 𝑆 so that

𝑥′ = 𝑔𝑖𝑥 ∈ 𝑔𝑖𝑆 = 𝑆
and we are done.

(b) By definition of the action on𝑃(𝑋, 𝑘), 𝑔𝜋 = 𝜋means thatwe have 𝑔(𝑥1) . . . 𝑔(𝑥𝑘)
= 𝑥1 . . . 𝑥𝑘. Since permutations are ordered collections of elements, this is equivalent
to 𝑔(𝑥𝑖) = 𝑥𝑖 for all 𝑖 as desired. □

We can now obtain expressions for the number of orbits of the induced actions of
𝐺 on (𝑋𝑘) and on 𝑃(𝑋, 𝑘) from the cycle indicator for 𝐺’s action on 𝑋 itself. Note that
the first generating polynomial is ordinary while the second is exponential.

Theorem 6.3.2. Let 𝐺 be finite acting on 𝑋 with #𝑋 = 𝑛. Also let

𝑏𝑘 = number of orbits of 𝐺 acting on (𝑋𝑘),

𝑝𝑘 = number of orbits of 𝐺 acting on 𝑃(𝑋, 𝑘).

(a)
𝑛
∑
𝑘=0

𝑏𝑘𝑡𝑘 = 𝑍(𝐺; 1 + 𝑡, 1 + 𝑡2, . . . , 1 + 𝑡𝑛).

(b)
𝑛
∑
𝑘=0

𝑝𝑘
𝑡𝑘
𝑘! = 𝑍(𝐺; 1 + 𝑡, 1, . . . , 1).

Proof. (a) Applying Burnside’s Lemma to (𝑋𝑘) for each 𝑘 and interchanging summa-
tions gives

𝑛
∑
𝑘=0

𝑏𝑘𝑡𝑘 =
1
#𝐺 ∑

𝑔∈𝐺

𝑛
∑
𝑘=0

#(𝑋𝑘)
𝑔

𝑡𝑘.
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So it suffices to show that for all 𝑔 ∈ 𝐺 we have

(6.6) 𝑧(𝑔; 1 + 𝑡, . . . , 1 + 𝑡𝑛) =
𝑛
∑
𝑘=0

(𝑋𝑘)
𝑔

𝑡𝑘

since then
𝑛
∑
𝑘=0

𝑏𝑘𝑡𝑘 =
1
#𝐺 ∑

𝑔∈𝐺
𝑧(𝑔; 1 + 𝑡, . . . , 1 + 𝑡𝑛) = 𝑍(𝐺; 1 + 𝑡, . . . , 1 + 𝑡𝑛).

To prove (6.6), we use weight-generating functions as in Section 3.4. Weight a set
𝑆 ∈ (𝑋𝑘)

𝑔
by wt 𝑆 = 𝑡#𝑆 . Then the weight ogf 𝑓𝒮(𝑡) for 𝒮 = (𝑋0)

𝑔 ⊎⋯ ⊎ (𝑋𝑛)
𝑔
is precisely

the right-hand side of (6.6). To obtain the left side, write 𝑔 = 𝑔1𝑔2 . . . 𝑔𝑚 where the 𝑔𝑖
are the cycles of 𝑔. By Lemma 6.3.1(a), 𝑆 ∈ 𝒮 if and only if 𝑆 is a union of some of the
𝑔𝑖. So 𝒮 can be thought of as a product 𝒮1 × 𝒮2 × ⋯ × 𝒮𝑚 where the 𝑖th coordinate
can be either 𝑔𝑖 or ∅ if 𝑆 does or does not contain 𝑔𝑖, respectively. And the weighting
on 𝒮 can be obtained by letting the weight of that coordinate be 𝑡#𝑔𝑖 or 𝑡#∅ = 1 for the
two respective cases and then using the usual product weighting. Using the Sum and
Product Rules for weight ogfs (Lemma 3.4.1) yields

𝑓𝒮(𝑡) = (1 + 𝑡#𝑔1)(1 + 𝑡#𝑔2)⋯ (1 + 𝑡#𝑔𝑚)
= (1 + 𝑡)𝑐1(𝑔)(1 + 𝑡2)𝑐2(𝑔) . . . (1 + 𝑡𝑛)𝑐𝑛(𝑔)

= 𝑧(𝑔; 1 + 𝑡, 1 + 𝑡2, . . . , 1 + 𝑡𝑛)

which completes the proof.

(b) Let 𝑐1 = 𝑐1(𝑔). By Lemma 6.3.1(b), 𝜋 = 𝑥1 . . . 𝑥𝑘 ∈ 𝑃(𝑋, 𝑘)𝑔 if and only if 𝑥𝑖 is a
fixed point of 𝑔 for all 𝑖 ∈ [𝑘]. Since fixed points are cycles of length one, if we choose
the elements of 𝜋 in the order 𝑥1, . . . , 𝑥𝑘, then the number of choices for 𝑥𝑖 is 𝑐1− 𝑖+1.
It follows that |𝑃(𝑋, 𝑘)𝑔| = 𝑐1↓𝑘 and so

𝑛
∑
𝑘=0

|𝑃(𝑋, 𝑘)𝑔| 𝑡
𝑘

𝑘! =
𝑛
∑
𝑘=0

𝑐1↓𝑘
𝑘! 𝑡𝑘 =

𝑛
∑
𝑘=0

(𝑐1𝑘 )𝑡
𝑘 = (1 + 𝑡)𝑐1 .

Finally, applying Burnside’s Lemma similarly to (a) yields
𝑛
∑
𝑘=0

𝑝𝑘
𝑡𝑘
𝑘! =

1
#𝐺 ∑

𝑔∈𝐺

𝑛
∑
𝑘=0

|𝑃(𝑋, 𝑘)𝑔| 𝑡
𝑘

𝑘!

= 1
#𝐺 ∑

𝑔∈𝐺
(1 + 𝑡)𝑐1(𝑔)

= 𝑍(𝐺; 1 + 𝑡, 1, . . . , 1)

as desired. □

As a reality check, let’s compute the generating functions for 𝐺 = ⟨(1, 2, 3, 4)⟩ and
𝑋 = [4] and compare the results with the computations of the orbits for (𝑋2) and 𝑃(𝑋, 2)
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above. Using part (a) of the previous result and (6.5) gives

∑
𝑘
𝑏𝑘𝑡𝑘 = 𝑍(𝐺; 1 + 𝑡, . . . , 1 + 𝑡4)

= 1
4((1 + 𝑡)4 + (1 + 𝑡2)2 + 2(1 + 𝑡4))

= 1 + 𝑡 + 2𝑡2 + 𝑡3 + 𝑡4.

Note that the coefficient of 𝑡2 is 2 which is the number of orbits we found previously
for this case. Note also that this generating function gives youmuchmore information
as it gives the number of orbits for all 𝑘, not just 𝑘 = 2. We now make the analogous
computation for 𝐺’s action on 𝑃(𝑋, 𝑘):

∑
𝑘
𝑝𝑘

𝑡𝑘
𝑘! = 𝑍(𝐺; 1 + 𝑡, 1, 1, 1) = 1

4((1 + 𝑡)4 + 1 + 2)

= 1 + 𝑡 + 3
2𝑡

2 + 𝑡3 + 1
4𝑡

4

= 1 + 𝑡
1! + 3𝑡

2

2! + 6𝑡
3

3! + 6𝑡
4

4! .

The coefficient of 𝑡2/2! is 3 which agrees with our earlier computations.

6.4. Redfield–Pólya theory

We can use the cycle index to give more refined information about orbit counts. For
example, it can be used to compute the number of necklaces up to rotation which have
a given number of beads of each color. This approach was developed by Redfield [71].
It was rediscovered and popularized by Pólya [70].

Let𝐺 act on𝑋 with𝐺, 𝑋 finite, and let 𝑌 be a set of variables. Theweight of 𝑓 ∈ 𝑌𝑋

is the monomial
wt𝑓 = ∏

𝑥∈𝑋
𝑓(𝑥).

Consider the example of the 4-bead necklace with two colors 𝑌 = {𝐵,𝑊} discussed in
Section 6.2. Then the second necklace on the first line of Figure 6.1 would have weight

wt𝑓 = 𝑓(1)𝑓(2)𝑓(3)𝑓(4) = 𝐵𝑊𝑊𝑊 = 𝐵𝑊 3.
Note that every other necklace in the orbit of the given one has the same weight. This
is not an accident.

Proposition 6.4.1. Let𝐺 act on 𝑋 with𝐺, 𝑋 finite, and let 𝑌 be a set of variables. If 𝑓, 𝑓′
are in the same orbit of 𝐺 acting on 𝑌𝑋 , then wt𝑓 = wt 𝑓′.

Proof. Since 𝑓, 𝑓′ are in the same orbit, there is some 𝑔 ∈ 𝐺 with 𝑓′ = 𝑔𝑓. By defini-
tion of 𝐺’s action on 𝑌𝑋 and the fact that 𝑔∶ 𝑋 → 𝑋 is a bijection

wt𝑓′ = wt(𝑔𝑓) = ∏
𝑥∈𝑋

(𝑔𝑓)(𝑥) = ∏
𝑥∈𝑋

𝑓(𝑔−1𝑥) = ∏
𝑥′∈𝑋

𝑓(𝑥′) = wt 𝑓

as desired. □
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Because of this result, if 𝒪 is an orbit of 𝐺 acting on 𝑌𝑋 , then we have a well-
defined weight of 𝒪 given by wt𝒪 = wt 𝑓 for any 𝑓 ∈ 𝒪. So the second orbit in
Figure 6.1 would have wt𝒪 = 𝐵𝑊 3.

We can express the weight-generating function for the orbits of 𝐺 acting on 𝑌𝑋 by
making certain substitutions into the cycle index for 𝐺 acting on 𝑋 . The proof will be
a weighted version of the demonstration of Burnside’s Lemma combined with some
ideas in the proof of Theorem 6.3.2(a). We note that the theory of weight-generating
functions from Section 3.4 carries over easily to generating functions with many vari-
ables.

Theorem 6.4.2 (Redfield–Pólya Theorem). Let 𝐺 be a finite group acting on 𝑋 where
#𝑋 = 𝑛. Suppose 𝑌 is a set of variables. Then

∑
𝒪
wt𝒪 = 𝑍(𝐺; ∑

𝑦∈𝑌
𝑦, ∑

𝑦∈𝑌
𝑦2, . . . , ∑

𝑦∈𝑌
𝑦𝑛)

where the left-hand sum is over the orbits of 𝐺 acting on 𝑌𝑋 .

Proof. Recall from the proof of Burnside’s Lemma that for any orbit 𝒪 we have

∑
𝑓∈𝒪

1
#𝒪𝑓

= 1

since 𝒪𝑓 = 𝒪 for all 𝑓 ∈ 𝒪. It follows that

∑
𝑓∈𝒪

wt𝑓
#𝒪𝑓

= ∑
𝑓∈𝒪

wt𝒪
#𝒪𝑓

= wt𝒪.

Now using Lemma 6.1.2(a) and (c) yields

(6.7) ∑
𝒪
wt𝒪 = ∑

𝒪
∑
𝑓∈𝒪

wt𝑓
#𝒪𝑓

= ∑
𝑓∈𝑌𝑋

wt𝑓
#𝒪𝑓

= 1
#𝐺 ∑

𝑓∈𝑌𝑋
|𝐺𝑓| wt 𝑓.

Again taking a tip from the demonstration of Lemma 6.2.1, consider a matrix 𝑀
with rows indexed by 𝐺, columns indexed by 𝑌𝑋 , and entries

𝑀𝑔,𝑓 = { wt 𝑓 if 𝑔𝑓 = 𝑓,
0 otherwise.

where 𝑔 ∈ 𝐺 and 𝑓 ∈ 𝑌𝑋 . The sum of column 𝑓 of𝑀 is |𝐺𝑓| wt 𝑓 while the sum of row
𝑔 is

∑
𝑓∈(𝑌𝑋)𝑔

wt𝑓.

Using this and (6.7) gives

∑
𝒪
wt𝒪 = 1

#𝐺 ∑
𝑔,𝑓

𝑀𝑔,𝑓 =
1
#𝐺 ∑

𝑔∈𝐺
∑

𝑓∈(𝑌𝑋)𝑔
wt𝑓.

To finish the proof, we just need to show that

(6.8) 𝑧(𝑔; ∑
𝑦∈𝑌

𝑦, ∑
𝑦∈𝑌

𝑦2, . . . , ∑
𝑦∈𝑌

𝑦𝑛) = ∑
𝑓∈(𝑌𝑋)𝑔

wt𝑓
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202 6. Counting with Group Actions

because then, combining the previous displayed equations,

∑
𝒪
wt𝒪 = 1

#𝐺 ∑
𝑔∈𝐺

𝑧(𝑔; ∑
𝑦∈𝑌

𝑦, ∑
𝑦∈𝑌

𝑦2, . . . , ∑
𝑦∈𝑌

𝑦𝑛)

= 𝑍(𝐺; ∑
𝑦∈𝑌

𝑦, ∑
𝑦∈𝑌

𝑦2, . . . , ∑
𝑦∈𝑌

𝑦𝑛).

Let 𝒮 = (𝑌𝑋)𝑔. By definition, the right side of (6.8) is the weight-generating func-
tion of 𝒮. Let 𝑔 = 𝑔1⋯𝑔𝑚 be the decomposition of 𝑔 into disjoint cycles. Similarly to
the proof of Theorem 6.3.2(a), we can decompose 𝒮 as a product 𝒮1 × ⋯ × 𝒮𝑚 where
the 𝑖th coordinate contains the possible image sets 𝑓(𝑔𝑖) of 𝑓 on the 𝑖th cycle. But from
Lemma 6.2.2 we have that 𝑔 fixes 𝑓 if and only if 𝑓 is constant on the 𝑔𝑖. So 𝑓(𝑔𝑖)
must consist of #𝑔𝑖 copies of some element of 𝑌 . It follows that the weight-generating
function for these sets is∑𝑦∈𝑌 𝑦#𝑔𝑖 . Now the Product Rule for ogfs yields

∑
𝑓∈(𝑌𝑋)𝑔

wt𝑓 = (∑
𝑦∈𝑌

𝑦#𝑔1)(∑
𝑦∈𝑌

𝑦#𝑔2)⋯(∑
𝑦∈𝑌

𝑦#𝑔𝑚)

= (∑
𝑦∈𝑌

𝑦)
𝑐1(𝑔)

(∑
𝑦∈𝑌

𝑦2)
𝑐2(𝑔)

. . . (∑
𝑦∈𝑌

𝑦𝑛)
𝑐𝑛(𝑔)

= 𝑧(𝑔; ∑
𝑦∈𝑌

𝑦, ∑
𝑦∈𝑌

𝑦2, . . . , ∑
𝑦∈𝑌

𝑦𝑛)

which is what we wished to show. □

Let us look again at the 4-bead necklaces under the rotation group𝐺 = ⟨(1, 2, 3, 4)⟩
and with color set 𝑌 = {𝐵,𝑊}. The cycle index for 𝐺 was computed in (6.5). So, by the
result just proved, the weight-generating function for the orbits is

𝑍(𝐺; 𝐵 +𝑊, 𝐵2 +𝑊 2, 𝐵3 +𝑊 3, 𝐵4 +𝑊 4)

= 1
4 [(𝐵 +𝑊)4 + (𝐵2 +𝑊 2)2 + 2(𝐵4 +𝑊 4)]

= 𝐵4 + 𝐵3𝑊 + 2𝐵2𝑊 2 + 𝐵𝑊 3 +𝑊 4.

Of course, in this simple example we could have gotten the same result by just looking
at the orbit list in Figure 6.1.

For a more substantial example, we return to the problem, first raised in Sec-
tion 1.9, of counting unlabeled graphswith 𝑛 vertices. This can be handled using either
Theorem 6.3.2(a) or Theorem 6.4.2. We will use the former as it will make the calcula-
tions slightly easier. In particular, we will find the generating function

(6.9) ∑
𝑚≥0

𝑔𝑚𝑡𝑚
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↔
⎧⎪
⎨⎪
⎩

1

2 3

⎫⎪
⎬⎪
⎭

↔
⎧⎪
⎨⎪
⎩

1

2 3 ,

1

2 3 ,

1

2 3

⎫⎪
⎬⎪
⎭

↔
⎧⎪
⎨⎪
⎩

1

2 3 ,

1

2 3 ,

1

2 3

⎫⎪
⎬⎪
⎭

↔
⎧⎪
⎨⎪
⎩

1

2 3

⎫⎪
⎬⎪
⎭

Figure 6.4. The orbits of labeled graphs and the corresponding unlabeled graphs

where 𝑔𝑚 is the number of unlabeled graphswith 𝑛 vertices and𝑚 edges. An unlabeled
graph on 𝑛 vertices can be considered as the orbit of a set of labeled graphs with vertex
set [𝑛] under the action of the symmetric group 𝔖𝑛 in the following way. If 𝐸 is the
edge set of a graph with 𝑉 = [𝑛], then 𝐸 ⊆ ([𝑛]2 ). Since the vertex set is fixed, we can
identify the graph with its subset of edges. The orbits of this action when 𝑛 = 3 are
shown in Figure 6.4. So to use Theorem 6.3.2(a) we need to take 𝑋 = ([𝑛]2 ). In order
to distinguish the action of 𝜋 ∈ 𝔖𝑛 on 𝑉 = [𝑛] from its action on 𝑋 we will use 𝜋(2)
and 𝔖(2)

𝑛 for the group elements and the group in the latter case, where the action on
{𝑖, 𝑗} ∈ 𝑋 is the usual one,

𝜋{𝑖, 𝑗} = {𝜋(𝑖), 𝜋(𝑗)}.
It follows that

𝑔𝑚 = number of orbits of the induced action of 𝔖(2)
𝑛 acting on ((

[𝑛]
2 )
𝑚 )

as needed for the theorem.
We must first compute the cycle index of 𝔖(2)

𝑛 acting on 𝑋 = ([𝑛]2 ). As usual when
dealing with graphs, we will write {𝑖, 𝑗} ∈ 𝑋 as 𝑖𝑗. Either 𝑖, 𝑗 are in the same cycle of 𝜋
or they are in different cycles. Consider first when 𝑖, 𝑗 ∈ 𝜅, a cycle of 𝜋 with |𝜅| = 𝑘.
Consider the elements of 𝜅 as lying clockwise on a circle and breaking it up into 𝑘 arcs
of length one. An orbit of 𝜅(2) consists of all pairs 𝜅𝑝(𝑖)𝜅𝑝(𝑗) for all possible powers 𝑝.
This gives all pairs at the same distance 𝑑 around the cycle where 1 ≤ 𝑑 ≤ 𝑘/2. See
the orbit on the left in Figure 6.5 for an example when 𝜅 = (1, 2, 3, 4, 5, 6) and 𝑑 = 2. If
1 ≤ 𝑑 < 𝑘/2, then this orbit has 𝑘 elements and so contributes a 𝑡𝑘 to 𝑧(𝜋(2)). Since the
number of such orbits is the floor function ⌊(𝑘−1)/2⌋, these orbits together give a factor
of 𝑡⌊(𝑘−1)/2⌋𝑘 . If 𝑘 is even, then the orbit when 𝑑 = 𝑘/2 contains 𝑘/2 edges for a factor of
𝑡𝑘/2. The orbit on the right in Figure 6.5 is an illustration. If we make the convention
that 𝑡𝑞 = 1 when 𝑞 is not an integer, then we can write the total contribution of 𝜅(2) as
𝑡⌊(𝑘−1)/2⌋𝑘 𝑡𝑘/2 regardless of the parity of 𝑘.

Now consider the case where 𝑖 ∈ 𝜅 and 𝑗 ∈ 𝛾 for two different cycles of 𝜋, and
suppose #𝜅 = 𝑘,#𝛾 = 𝑙. Now the orbit consists of edges of the form 𝜅𝑝(𝑖)𝛾𝑝(𝑗). So
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1

2

3

4

5

6

𝒪(2)
{1,3} =

1

2

3

4

5

6

𝒪(2)
{1,4} =

Figure 6.5. Two orbits of 𝜅(2) when 𝜅 = (1, 2, 3, 4, 5, 6)

the number of edges in the orbit will be the smallest positive 𝑝 such that 𝜅𝑝(𝑖) = 𝑖
and 𝛾𝑝(𝑗) = 𝑗. We have 𝜅𝑝(𝑖) = 𝑖 if and only if 𝑝 is divisible by 𝑘 and similarly for
the second condition. Thus the smallest 𝑝 satisfying both is 𝑝 = lcm(𝑘, 𝑙). Since this is
independent of 𝑖, 𝑗 all such orbits have the same size. The total number of possible pairs
𝑖𝑗 in the given two cycles is 𝑘𝑙, whichmeans that the number of orbits is 𝑘𝑙/ lcm(𝑘, 𝑙) =
gcd(𝑘, 𝑙). Hence these orbits contribute 𝑡gcd(𝑘,𝑙)lcm(𝑘,𝑙) to 𝑧(𝜋(2)).

We are now in a position to calculate 𝑧(𝜋(2)). Suppose the cycle type of 𝜋 is given
in multiplicity notation as (1𝑚1 , . . . , 𝑛𝑚𝑛) so that 𝜋 has𝑚𝑘 cycles of length 𝑘. We have

(6.10) 𝑧(𝜋(2)) =
𝑛
∏
𝑘=1

𝑡𝑚𝑘⌊(𝑘−1)/2⌋
𝑘 𝑡𝑚𝑘

𝑘/2 𝑡
𝑘(𝑚𝑘

2 )
𝑘 ∏

1≤𝑘<𝑙≤𝑛
𝑡𝑚𝑘𝑚𝑙 gcd(𝑘,𝑙)
lcm(𝑘,𝑙) ,

where the exponent factors of𝑚𝑘, (𝑚𝑘
2 ), and𝑚𝑘𝑚𝑙 count the number of ways to choose

a single cycle of length 𝑘, a pair of cycles both of length 𝑘, and two cycles one of length
𝑘 and one of length 𝑙, respectively. Note that this expression depends only on the cycle
type of𝜋 and not directly on𝜋 itself. So wewill be able to combine termswith the same
index by using the following result.

Proposition 6.4.3. If 𝜆 = (1𝑚1 , . . . , 𝑛𝑚𝑛), then the number of 𝜋 ∈ 𝔖𝑛 with cycle type 𝜆
is

𝑘𝜆 =
𝑛!

∏𝑛
𝑘=1 𝑘𝑚𝑘 𝑚𝑘!

.

Proof. Consider a template of 𝑛 blank spaces arranged in cycles corresponding to a
product of the given cycle type. An example follows this proof. There are 𝑛!ways to fill
the spaces with the elements of [𝑛]. So to complete the count we just need to divide by
the number of fillings that give the same permutation. If we fill a blank 𝑘-cycle with
any of (𝑎1, 𝑎2, . . . , 𝑎𝑘), (𝑎2, 𝑎3, . . . , 𝑎𝑘, 𝑎1), . . . , (𝑎𝑘, 𝑎1, . . . , 𝑎𝑘−1), then the permutation
will not change. This gives a total of 𝑘𝑚𝑘 possibilities for the 𝑚𝑘 cycles of length 𝑘.
Also, since disjoint cycles commute, we can permute any of these 𝑚𝑘 cycles among
themselves. This explains the factor of𝑚𝑘! and finishes the proof. □
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As an example, suppose𝜆 = (32). Then the templatewould look like ( , , )( , , ).
Of the 6! ways to fill the template, (1, 2, 3)(4, 5, 6) would be the same as (2, 3, 1)(4, 5, 6)
since (1, 2, 3) = (2, 3, 1). Also (1, 2, 3)(4, 5, 6) corresponds to the same permutation as
(4, 5, 6)(1, 2, 3) since cycles commute.

Combining (6.10) and Proposition 6.4.3, as well as canceling the 1/𝑛! in the cycle
index into the 𝑛! in 𝑘𝜆, gives

(6.11) 𝑍(𝔖(2)
𝑛 ) = ∑

𝜆⊢𝑛

𝑛
∏
𝑘=1

1
𝑘𝑚𝑘 𝑚𝑘!

𝑡𝑚𝑘⌊(𝑘−1)/2⌋+𝑘(𝑚𝑘
2 )

𝑘 𝑡𝑚𝑘
𝑘/2 ∏

1≤𝑘<𝑙≤𝑛
𝑡𝑚𝑘𝑚𝑙 gcd(𝑘,𝑙)
lcm(𝑘,𝑙)

where 𝜆 = (1𝑚1 , . . . , 𝑛𝑚𝑛). By Theorem 6.4.2, we obtain the generating function (6.9)
for unlabeled graphs by number of edges using the substitution

∑
𝑚≥0

𝑔𝑚𝑡𝑚 = 𝑍(𝔖(2)
𝑛 , 1 + 𝑡, 1 + 𝑡2, . . . , 1 + 𝑡𝑛).

As a check, suppose 𝑛 = 3. Then there are three summands in (6.11) given in the
chart

𝜆 summand

(13) 𝑡31/6
(1, 2) 𝑡1𝑡2/2
(3) 𝑡3/3

so that
𝑍(𝔖(2)

𝑛 ) = 1
6𝑡

3
1 +

1
2𝑡1𝑡2 +

1
3𝑡3.

Thus the generating function for unlabeled graphs on three vertices by number of edges
is

1
6(1 + 𝑡)3 + 1

2(1 + 𝑡)(1 + 𝑡2) + 1
3(1 + 𝑡3) = 1 + 𝑡 + 𝑡2 + 𝑡3,

a fact which can be easily verified using Figure 6.4.

6.5. An application to proving congruences

We now show how group actions and Möbius inversion can be combined to prove var-
ious congruences from number theory. The advantages of this approach are twofold.
One is that it can be used to prove a large array of congruences; see [77] formany exam-
ples. The other is that these demonstrations can be approached in a uniform manner
rather than having to use ad hoc techniques for each of them.

Suppose 𝑎, 𝑏 ∈ ℤ and𝑚 ∈ ℙ. Recall that 𝑎 and 𝑏 are congruent modulo𝑚, which
we write as 𝑎 ≡ 𝑏 (mod𝑚), if 𝑎 and 𝑏 both leave the same remainder on division by𝑚.
Equivalently,𝑚 ∣ 𝑎−𝑏. We will start with the easiest case, which is when the modulus
𝑚 is a prime.

Lemma 6.5.1. Let 𝑝 be a prime. Let 𝐺 = ⟨𝑔⟩ be a group with #𝐺 = 𝑝. Then for any
finite set 𝑋 on which 𝐺 acts

#𝑋 ≡ #𝑋𝑔 (mod𝑝).
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Proof. By Lemma 6.1.2(c), for any orbit𝒪𝑥 of the action, we have#𝐺𝑥 = #𝐺/#𝒪𝑥. So
𝒪𝑥must divide evenly into#𝐺 = 𝑝. Since𝑝 is prime, the only possibilities are#𝒪𝑥 = 1
or 𝑝. In the latter case, #𝒪𝑥 ≡ 0 (mod𝑝). And in the former, 𝑥 ∈ 𝑋𝑔. Since the orbits
partition 𝑋 by Lemma 6.1.2(a), we have

#𝑋 = ∑
𝒪
#𝒪 ≡ ∑

𝑥∈𝑋𝑔
1 = #𝑋𝑔 (mod𝑝)

where the first sum is over the distinct orbits of 𝐺 acting on 𝑋 . □

We will now use this lemma to prove three well-known congruences. The first is
named Fermat’s Little Theorem. As described in Burton [22, p. 514], Pierre de Fermat
stated this theorem in a letter to his friend Frénicle de Bessy in 1640. However, the first
published proof seems to be in a 1736 paper of Euler according toOre’s book [67, p. 273].
The proof we give here, as well as the one forWilson’s Theoremwhich follows, are due
to Julius Petersen in a paper from 1872 [68].

Theorem 6.5.2 (Fermat’s Little Theorem). Let 𝑎 ∈ ℤ and let 𝑝 be prime. Then
𝑎𝑝 ≡ 𝑎 (mod𝑝).

Proof. It suffices to prove this for one element out of every congruence class mod-
ulo 𝑝, so we can assume 𝑎 > 0. Let 𝑋 = [𝑝], 𝑌 = [𝑎] and consider the action of
𝐺 = ⟨(1, 2, . . . , 𝑝)⟩ on 𝑌𝑋 . Of course, we picked this action because |𝑌𝑋 | = 𝑎𝑝. And
according to Lemma 6.2.2, the fixed points of 𝑔 = (1, 2, . . . , 𝑝) are the 𝑓 which are con-
stant on this cycle. But this means 𝑓(1) = 𝑓(2) = ⋯ = 𝑓(𝑝) ∈ [𝑎]. It follows that
#(𝑌𝑋)𝑔 = 𝑎. The congruence now follows from Lemma 6.5.1. □

We next turn to Wilson’s Congruence. It was stated around 1000 AD by Ibn al-
Haytham; see O’Connor and Robertson [65]. In 1770, Waring [97] mentioned that the
result had been found by his student, Wilson, but neither of them could prove it. A
demonstration was give by Lagrange [56] one year later. To prove this result, we will
need to consider that action of 𝔖𝑛 on itself by conjugation.

Lemma 6.5.3. Suppose 𝜋, 𝜎 ∈ 𝔖𝑛 and let 𝜏 = 𝜎𝜋𝜎−1. Then the cycles of 𝜏 are exactly
those of the form (𝜎(𝑖), 𝜎(𝑗), . . . , 𝜎(𝑘)) where (𝑖, 𝑗, . . . , 𝑘) is a cycle of 𝜋.

Proof. Since 𝜋 is a bijection, it suffices to show that if (𝑖, 𝑗, . . . , 𝑘) is a cycle of 𝜋, then
(𝜎(𝑖), 𝜎(𝑗), . . . , 𝜎(𝑘)) is a cycle of 𝜏. Equivalently, we must demonstrate that if 𝜋(𝑖) = 𝑗,
then 𝜏(𝜎(𝑖)) = 𝜎(𝑗). But

𝜏(𝜎(𝑖)) = 𝜎𝜋𝜎−1(𝜎(𝑖)) = 𝜎𝜋(𝑖) = 𝜎(𝑗)
so we are done. □

It is not hard to show, and so left as an exercise, that there is an action of 𝔖𝑛 itself
where 𝜎∶ 𝔖𝑛 → 𝔖𝑛 sends 𝜋 to 𝜎𝜋𝜎−1. From this definition it is clear that the action
can be restricted to any subset of 𝔖𝑛 which is a union of conjugacy classes. And by
the previous result, a conjugacy class consists of all permutations of the same cycle
type since given two cycles, one can always construct a 𝜎 such that the first is obtained
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from the second by applying 𝜎 to each of its elements. We can also obviously act with
a subgroup of 𝔖𝑛 rather than the whole group.

Theorem 6.5.4 (Wilson’s Congruence). If 𝑝 is prime, then

(𝑝 − 1)! ≡ −1 (mod𝑝).

Proof. Let 𝐺 = ⟨𝜎⟩where 𝜎 = (1, 2, . . . , 𝑝) acts on the conjugacy class 𝑋 of𝔖𝑛 consist-
ing of all 𝑝-cycles. By Proposition 4.3.1 we have #𝑋 = (𝑝− 1)!. It suffices to show that
#𝑋𝜍 = 𝑝 − 1 since then, by Lemma 6.5.1

(𝑝 − 1)! = #𝑋 ≡ #𝑋𝜍 ≡ −1 (mod𝑝).

In fact, we claim that 𝑋𝜍 = {𝜎𝑖 ∣ 0 < 𝑖 < 𝑝}. Note that 𝜎𝑖 is in 𝑋 for 0 < 𝑖 < 𝑝 since
𝑝 is prime and so these powers are all 𝑝-cycles. Also, 𝜎𝑖 ∈ 𝑋𝑔 since 𝜎𝜎𝑖𝜎−1 = 𝜎𝑖. To
show that these are the only elements fixed by 𝜎, suppose 𝜋 ∈ 𝑋𝜍. Since 𝜋 is a single
cycle we must have 𝜋(1) = 1 + 𝑖 for some 𝑖 with 0 < 𝑖 < 𝑝. We will show that 𝜋 = 𝜎𝑖.
Since 𝜋 ∈ 𝑋𝜍 we have 𝜎𝑗𝜋𝜎−𝑗 = 𝜋 for any 𝑗. So, by Lemma 6.5.3, 𝜋 must also send
𝜎𝑗(1) = 1+𝑗 to 𝜎𝑗(1+ 𝑖) = 1+𝑖+𝑗 for any 𝑗. In particular, 𝜋 sends 1+𝑖 to 1+2𝑖, 1+2𝑖
to 1 + 3𝑖, and so forth, where all values are taken modulo 𝑝. It follows that 𝜋 = 𝜎𝑖 as
desired. □

Our next goal is to prove a congruence of Lucas [59]. It gives a way of evaluating a
binomial coefficients modulo a prime in terms of the digits in the 𝑝-ary expansions of
the two arguments. First, we will prove a warm-up result which gives a recursion for
the binomial coefficients modulo 𝑝. Note how this recurrence relation is the same as
the one in Theorem 1.3.3(a) except that every −1 has been replaced by a −𝑝.

Lemma 6.5.5. Let 𝑝 be prime and let 𝑛 ≥ 𝑝. We have

(𝑛𝑘) ≡ (𝑛 − 𝑝
𝑘 − 𝑝) + (𝑛 − 𝑝

𝑘 ) (mod𝑝).

Proof. When 𝑘 < 0 or 𝑘 > 𝑛, then it is easy to check that both sides are zero. If
0 ≤ 𝑘 ≤ 𝑛, then let 𝜎 = (1, 2, . . . , 𝑝)(𝑝 + 1)(𝑝 + 2) . . . (𝑛) and consider the action of
𝐺 = ⟨𝜎⟩ on 𝑋 = ([𝑛]𝑘 ). So #𝑋 = (𝑛𝑘). Because of the cycle structure of 𝜎, Lemma 6.3.1(a)
implies that 𝑆 ∈ 𝑋𝜍 if and only if [𝑝] ⊆ 𝑆 or [𝑝] ⊆ [𝑛]−𝑆. In the first case, the number
of ways to choose the remaining 𝑘 − 𝑝 elements of 𝑆 from the elements of [𝑛] − [𝑝] is
(𝑛−𝑝𝑘−𝑝). In the second, we must choose 𝑘 elements from [𝑛] − [𝑝] to be in 𝑆 for a total of
(𝑛−𝑝𝑘 ) choices. Adding the two counts and using Lemma 6.5.1 finishes the proof. □

Theorem 6.5.6 (Lucas’s Congruence). Let 𝑝 be prime and let 0 ≤ 𝑘 ≤ 𝑛. Consider the
base 𝑝 expansions 𝑛 = ∑𝑖≥0 𝑛𝑖𝑝𝑖 and 𝑘 = ∑𝑖≥0 𝑘𝑖𝑝𝑖 where 0 ≤ 𝑛𝑖, 𝑘𝑖 < 𝑝 for all 𝑖. We
have

(𝑛𝑘) ≡∏
𝑖≥0

(𝑛𝑖𝑘𝑖
) (mod𝑝).
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Proof. Dividing by 𝑝 we can write 𝑛 = 𝑝𝑛′ + 𝑛0 and 𝑘 = 𝑝𝑘′ + 𝑘0. We will prove that

(𝑛𝑘) ≡ (𝑛
′

𝑘′)(
𝑛0
𝑘0
) (mod𝑝)

from which Lucas’s result follows by induction on 𝑛. Let 𝐺 = ⟨𝜎⟩ for the permutation
𝜎 = 𝜎1𝜎2⋯𝜎𝑛′(𝑝𝑛′ + 1)(𝑝𝑛′ + 2)⋯ (𝑛),

where 𝜎𝑖 = (𝑝(𝑖 − 1) + 1, 𝑝(𝑖 − 1) + 2, . . . , 𝑝𝑖). Then 𝐺 acts on 𝑋 = ([𝑛]𝑘 ). Since 𝑘0 <
𝑝, for 𝑆 ∈ 𝑋 to be fixed by 𝜎 we must have that 𝑆 is the union of 𝑘0 elements from
𝑝𝑛′ + 1, 𝑝𝑛′ + 2, . . . , 𝑛 together with 𝑘′ of the cycles 𝜎𝑖. So the number of ways of
choosing the elements of the first type is (𝑛0𝑘0), and of the second (

𝑛′
𝑘′). This completes

the proof. □

To prove congruenceswith a nonprimemodulus, we need to useMöbius inversion.
Let𝐺 be a group acting on𝑋 with𝐺,𝑋 finite. Call𝑥 ∈ 𝑋 aperiodic if𝐺𝑥 = 𝑒, the identity
element of 𝐺. (For sets of one element we sometimes dispense with the curly braces.)
By Lemma 6.1.2(c), this is equivalent to 𝑥 lying in an orbit of size #𝐺. Since distinct
orbits are disjoint by Lemma 6.1.2(a), the number of aperiodic elements is divisible by
#𝐺.

Now consider𝐿(𝐺), the lattice of subgroups of𝐺 ordered by inclusion. If𝐻 ∈ 𝐿(𝐺),
then we define two functions

𝛼(𝐻) = #{𝑥 ∈ 𝑋 ∣ 𝐺𝑥 = 𝐻}
and

𝛽(𝐻) = #{𝑥 ∈ 𝑋 ∣ 𝐺𝑥 ≥ 𝐻}.
It follows immediately that 𝛽(𝐻) = ∑𝐾≥𝐻 𝛼(𝐾). Furthermore𝛼(𝑒) is, by definition, the
set of aperiodic elements. So, by the previous paragraph, 𝛼(𝑒) ≡ 0 (mod#𝐺). Applying
the Möbius Inversion Theorem, Theorem 5.5.5(a), and using the fact that {𝑒} is the 0̂
element of 𝐿(𝐺), we have proved the following result.
Theorem 6.5.7. Suppose 𝐺 acts on 𝑋 with 𝐺, 𝑋 finite. We have

∑
𝐻∈𝐿(𝐺)

𝜇(𝐻)𝛽(𝐻) ≡ 0 (mod#𝐺). □

Before applying this result, we note that it has Lemma 6.5.1 as a corollary. Indeed,
by Lagrange’s Theorem, any 𝐻 ≤ 𝐺 has #𝐻 ∣ #𝐺. So if #𝐺 = 𝑝 is prime, then #𝐻 = 1
or#𝐻 = 𝑝. It follows that𝐻 = 𝑒 and𝐻 = 𝐺 are the only subgroups of𝐺 and𝐿(𝐺) ≅ 𝐶1,
the chain with two elements. Thus 𝜇(𝑒) = 1, 𝜇(𝐺) = −1, and Theorem 6.5.7 becomes

𝛽(𝑒) − 𝛽(𝐺) ≡ 0 (mod𝑝).
But 𝛽(𝑒) = #𝑋 since every 𝑥 ∈ 𝑋 satisfies 𝐺𝑥 ≥ 𝑒. Furthermore, 𝛽(𝐺) = #𝑋𝑔

where 𝐺 = ⟨𝑔⟩. Indeed, 𝐺𝑥 ≥ 𝐺 implies 𝐺𝑥 = 𝐺, which in turn is equivalent to
𝑔𝑥 = 𝑥 since ⟨𝑔⟩ = 𝐺. Plugging these values into the previous displayed equation
yields Lemma 6.5.1.

We now give an application of Theorem 6.5.7. We first need to characterize 𝐿(𝐺)
when 𝐺 is an arbitrary cyclic group.
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Proposition 6.5.8. If 𝑛 ∈ ℙ and 𝐺 = ⟨(1, 2, . . . , 𝑛)⟩, then 𝐿(𝐺) ≅ 𝐷𝑛, the lattice of
divisors of 𝑛.

Proof. Let 𝑔 = (1, 2, . . . , 𝑛). Since 𝐺 is cyclic, so is every subgroup. For 𝑑 ∣ 𝑛 let
𝐻𝑑 = ⟨𝑔𝑑⟩ so that #𝐻𝑑 = 𝑛/𝑑. We now have a bijection from the set of 𝐻𝑑 to 𝐷𝑛 given
by𝐻𝑑 ↦ 𝑛/𝑑. Clearly this map and its inverse are order preserving. So we will be done
if we can show that every subgroup of 𝐺 is one of the 𝐻𝑑.

Suppose 𝐻 ≤ 𝐺. Since 𝐻 is cyclic, we can write 𝐻 = ⟨𝑔𝑑⟩ and choose 𝑑 with
0 ≤ 𝑑 < 𝑛 that isminimumover all generators of𝐻. We claim𝐻 = 𝐻𝑑 whichwill finish
the proof. For this, it suffices to show that 𝑑 ∣ 𝑛. Suppose, towards a contradiction, that
this is not the case. Then dividing 𝑛 by 𝑑 gives 𝑛 = 𝑞𝑑 + 𝑟 where 0 ≤ 𝑟 < 𝑑. Now
𝑔𝑟 = 𝑔𝑛−𝑞𝑑 = (𝑔−𝑞)𝑑 ∈ 𝐻. But this contradicts the fact that 𝑑was the smallest possible
exponent of an element of 𝐻. So the proof is complete. □

We can now prove an analogue of Lemma 6.5.5 modulo 𝑝2.

Proposition 6.5.9. Let 𝑝 be prime and 𝑛 ≥ 𝑝2. We have

(𝑛𝑘) ≡
𝑝
∑
𝑖=0

(𝑝𝑖 )(
𝑛 − 𝑝2
𝑘 − 𝑖𝑝) (mod𝑝

2).

Proof. Let 𝑔 = (1, 2, . . . , 𝑝2) ∈ 𝔖𝑛 where we do not write down any cycles of length
one. If 𝐺 = ⟨𝑔⟩, then, by the previous proposition and its proof, 𝐿(𝐺) consists of three
groups 𝑒, 𝐻 = ⟨𝑔𝑝⟩, and 𝐺, with Möbius values 𝜇(𝑒) = 1, 𝜇(𝐻) = −1, and 𝜇(𝐺) = 0.
So from Theorem 6.5.7 we have 𝛽(𝑒) ≡ 𝛽(𝐻) (mod𝑝2) for any 𝑋 on which 𝐺 acts. Let
𝑋 = ([𝑛]𝑘 ). Then 𝛽(𝑒) = #𝑋 = (𝑛𝑘). So we will be done if we can show that 𝛽(𝐻) is the
right-hand sum in the statement of the proposition.

Note that

𝑔𝑝 = (1, 1 + 𝑝, 1 + 2𝑝, . . . )(2, 2 + 𝑝, 2 + 2𝑝, . . . )⋯ (𝑝, 2𝑝, 3𝑝, . . . )
and so consists of 𝑝 cycles each with 𝑝 elements. By Lemma 6.3.1(a), 𝑔𝑝𝑆 = 𝑆 if and
only if each of these cycles is either entirely in 𝑆 or in its complement. If 𝑖 of the cycles
are in 𝑆, 0 ≤ 𝑖 ≤ 𝑝, then there are (𝑝𝑖) ways to choose which cycles. Once these cycles
are chosen, we must choose 𝑘 − 𝑖𝑝 other elements to be in 𝑆 from the 𝑛 − 𝑝2 elements
of [𝑛] − [𝑝2]. Since this can be done in (𝑛−𝑝2𝑘−𝑖𝑝) ways, we are done. □

6.6. The cyclic sieving phenomenon

As we saw in Chapter 2, one can often express the solution to a counting problem as
a sum where the summands have positive and negative coefficients. So one might ex-
pect that there are also situations where 𝑛th roots of unity come into play for 𝑛 > 2.
This is indeed the case with instances of the cyclic sieving phenomenon, so called be-
cause these roots of unity form a cyclic group. This concept was introduced by Reiner,
Stanton, and White [72]. For a survey of such results see [80].
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Table 6.1. The action of (1, 2, 3) on (([3]2 ))

(1, 2, 3)11 = 22, (1, 2, 3)22 = 33, (1, 2, 3)33 = 11,
(1, 2, 3)12 = 23, (1, 2, 3)13 = 12, (1, 2, 3)23 = 13.

Let 𝐺 be a multiplicative group with identity element 𝑒. If 𝑔 ∈ 𝐺, then we let
𝑜(𝑔) be the order of 𝑔, that is, the smallest positive integer such that 𝑔𝑜(𝑔) = 𝑒. In
particular, we will be interested in the cyclic group ⟨𝑒2𝜋𝑖/𝑛⟩ ⊂ ℂ consisting of all 𝑛th
roots of unity. An 𝑛th root of unity 𝜔 is primitive if 𝑜(𝜔) = 𝑛. So the primitive 𝑛th roots
are exactly those of the form 𝑒2𝑘𝜋𝑖/𝑛 where gcd(𝑘, 𝑛) = 1. We will use the notation 𝜔𝑛
for a primitive 𝑛th root of unity. We need the following facts.

Lemma 6.6.1. Let 𝜔 ≠ 1 be an 𝑛th root of unity.
(a) 1 + 𝜔 + 𝜔2 +⋯+ 𝜔𝑛−1 = 0.
(b) If 𝜔 is primitive, then 1 + 𝜔 + 𝜔2 +⋯+ 𝜔𝑖 ≠ 0 for 0 ≤ 𝑖 < 𝑛 − 1.

Proof. We will prove (a) and leave (b) as an exercise. Since 𝜔 is an 𝑛th root of unity,
𝜔𝑛 = 1 which can be rewritten as

0 = 1 − 𝜔𝑛 = (1 − 𝜔)(1 + 𝜔 + 𝜔2 +⋯+ 𝜔𝑛−1).

Since 𝜔 ≠ 1 we have 1 − 𝜔 ≠ 0. It follows that the second factor in the displayed
equation above is zero, which completes the proof. □

Suppose we are given a cyclic group 𝐺, a set 𝑋 on which 𝐺 acts, and a polynomial
𝑓(𝑞) ∈ ℕ[𝑞]. The triple (𝑋, 𝐺, 𝑓(𝑞)) exhibits the cyclic sieving phenomenon or CSP if for
all 𝑔 ∈ 𝐺 we have

(6.12) #𝑋𝑔 = 𝑓(𝜔𝑜(𝑔)).

Sowe can count the fixed points of 𝑔 by plugging into 𝑓(𝑞) a root of unity which has the
same order. This is quite surprising since there is, a priori, no promise that substituting
a complex number into 𝑓(𝑞) will yield an integer, much less that it will count some-
thing! Nevertheless, many examples of the CSP have been found and we will explore
one in this section. Before we do this, note that a special case of (6.12) is

𝑓(1) = #𝑋𝑒 = #𝑋.

So 𝑓(𝑞) will be a 𝑞-analogue of #𝑋 .
For our running example we will take 𝐺 = ⟨(1, 2, . . . , 𝑛)⟩ acting on the set of mul-

tisets 𝑋 = (([𝑛]𝑘 )) by
𝑔{{𝑥1, . . . , 𝑥𝑘}} = {{𝑔𝑥1, . . . , 𝑔𝑥𝑘}}.

For ease of notation, in this section we will dispense with the curly braces and commas
and just write 𝑥1 . . . 𝑥𝑛 for a multiset with the understanding that this is not a permu-
tation. To be really concrete, let 𝑛 = 3 and 𝑘 = 2. So

𝑋 = {11, 22, 33, 12, 13, 23}.
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The action of (1, 2, 3) on𝑋 is given inTable 6.1. RecallingTheorem1.3.4 and the remark
at the end of the previous paragraph, a natural choice for our polynomial is

𝑓(𝑞) = [ 𝑛 + 𝑘 − 1
𝑘 ]

𝑞
.

In the special case under consideration

𝑓(𝑞) = [ 4
2 ] = 1 + 𝑞 + 2𝑞2 + 𝑞3 + 𝑞4.

Note that (1, 2, 3) has the same order as a root 𝜔 = 𝜔3. And in this case, using Lemma
6.6.1(a),

𝑓(𝜔) = 1 + 𝜔 + 2𝜔2 + 𝜔3 + 𝜔4 = (1 + 𝜔 + 𝜔2)(1 + 𝜔2) = 0 = #𝑋(1,2,3)

where the last equality can be seen from Table 6.1. The rest of this section will be
devoted to proving the following result. Another example of the CSP will be found in
the exercises.

Theorem 6.6.2. The cyclic sieving phenomenon is exhibited by the triple

((([𝑛]𝑘 )), ⟨(1, 2, . . . , 𝑛)⟩, [
𝑛 + 𝑘 − 1

𝑘 ]
𝑞
).

Theorem 6.6.2 will be proved by a sequence of results which will permit us to ex-
plicitly evaluate the two sides of (6.12). We will start on the left. We first need an
analogue of Lemma 6.3.1 for multisets. The disjoint union of two multisets is defined
by

𝑎𝑙𝑎 . . . 𝑐𝑙𝑐 ⊎ 𝑎𝑚𝑎 . . . 𝑐𝑚𝑐 = 𝑎𝑙𝑎+𝑚𝑎 . . . 𝑐𝑙𝑐+𝑚𝑐 .
Note that this definition also applies to sets, where a set is just a multiset with all mul-
tiplicities zero or one. So, for example,

123 ⊎ 123 ⊎ 254 = 12233254.

The proof of the next lemma is similar to that of Lemma 6.3.1(a) and so is left as an
exercise.

Lemma 6.6.3. Let 𝐺 act on 𝑋 with both finite and let 𝑔 ∈ 𝐺. For 𝑀 ∈ ((𝑋𝑘)) we have
𝑔𝑀 = 𝑀 if and only if𝑀 is a disjoint union of (not necessarily distinct) cycles of 𝑔. □

It is now easy to count fixed points in this situation. To simplify notation, let 𝐶𝑛 =
⟨(1, 2, . . . , 𝑛)⟩.

Corollary 6.6.4. Let 𝑋 = (([𝑛]𝑘 )) and suppose 𝑔 ∈ 𝐶𝑛 has 𝑜(𝑔) = 𝑑. We have

#𝑋𝑔 =
⎧⎪
⎨⎪
⎩

((𝑛/𝑑𝑘/𝑑)) if 𝑑 ∣ 𝑘,

0 otherwise.
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Proof. Since 𝑔 is a power of (1, 2, . . . , 𝑛) its disjoint cycle decomposition must consist
of 𝑛/𝑖 cycles of length 𝑖 for some 𝑖 ∣ 𝑛. It follows that if 𝑜(𝑔) = 𝑑, then 𝑔 is a product of
𝑛/𝑑 cycles of length 𝑑. So if 𝑑 does not divide 𝑘, then amultiset with 𝑘 elements cannot
be written as a disjoint union of cycles of 𝑔. Thus Lemma 6.6.3 forces #𝑋𝑔 = 0. On the
other hand, if 𝑑 ∣ 𝑘, then, by the same lemma, the fixed points are those𝑀 which are a
disjoint union of 𝑘/𝑑 of the 𝑛/𝑑 cycles of 𝑔. Since cycles can be chosen with repetition,
we have now verified the count for #𝑋𝑔 in this case as well. □

For the right-hand side of (6.12), we need the following lemma.

Lemma 6.6.5. Suppose𝑚 ≡ 𝑛 (mod𝑑) and 𝜔 = 𝜔𝑑. We have

(6.13) lim
𝑞→𝜔

[𝑚]𝑞
[𝑛]𝑞

= {
𝑚
𝑛 if 𝑑 ∣ 𝑛,

1 otherwise.

Proof. By the assumption about𝑚, 𝑛we can write𝑚 = 𝑘𝑑+𝑟 and 𝑛 = 𝑙𝑑+𝑟 for some
𝑘, 𝑙 ∈ ℕ and 0 ≤ 𝑟 < 𝑑. Using the definition of [𝑛]𝑞 in equation (3.2), we see that
(6.14) [𝑛]𝑞 = [𝑟]𝑞 + 𝑞𝑟[𝑑]𝑞[𝑙]𝑞𝑑
where the reader will note the substitution of 𝑞𝑑 for 𝑞 in the last factor. A similar
expression holds for [𝑚]𝑞. So if 𝑟 ≠ 0, then Lemma 6.6.1 gives [𝑚]𝜔 = [𝑟]𝜔 = [𝑛]𝜔
where [𝑟]𝜔 ≠ 0. The “otherwise” case of the lemma follows immediately. If 𝑟 = 0, then
we can use the displayed equation and the fact that 𝜔𝑑 = 1 to write

lim
𝑞→𝜔

[𝑚]𝑞
[𝑛]𝑞

= lim
𝑞→𝜔

[𝑑]𝑞[𝑘]𝑞𝑑
[𝑑]𝑞[𝑙]𝑞𝑑

= [𝑘]1
[𝑙]1

= 𝑘
𝑙 =

𝑚
𝑛

as desired. □

As a corollary, we can evaluate certain 𝑞-binomial coefficients when substituting
𝜔.

Corollary 6.6.6. Suppose 𝜔 = 𝜔𝑑 where 𝑑 ∣ 𝑛. We have

[ 𝑛 + 𝑘 − 1
𝑘 ]

𝜔
=
⎧⎪
⎨⎪
⎩

(𝑛/𝑑 + 𝑘/𝑑 − 1
𝑘/𝑑 ) if 𝑑 ∣ 𝑘,

0 otherwise.

Proof. After canceling [𝑛 − 1]𝑞! we have

[ 𝑛 + 𝑘 − 1
𝑘 ]

𝑞
=
[𝑛]𝑞[𝑛 + 1]𝑞⋯[𝑛 + 𝑘 − 1]𝑞

[1]𝑞[2]𝑞⋯[𝑘]𝑞
.

Since 𝑑 ∣ 𝑛 we have, using Lemma 6.6.1 and equation (6.14), that in the product
[𝑛]𝜔[𝑛 + 1]𝜔⋯[𝑛+ 𝑘− 1]𝜔 the first factor and every 𝑑th factor after that is zero while
the other factors are nonzero. Furthermore, the factors which become zero have 𝜔 as a
root with multiplicty one. By the same token, in [1]𝜔[2]𝜔⋯[𝑘]𝜔 the zero factors have
period 𝑑 but one starts with 𝑑 − 1 nonzero factors, and again each zero factor has 𝜔 as
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a root exactly once. It follows that the number of times 𝜔 is a root in the numerator is
always greater than or equal to the number in the denominator, with equality if and
only if 𝑑 ∣ 𝑘. So if 𝑑 does not divide 𝑘, then, because the 𝑞-binomial coefficient is a
polynomial in 𝑞, this polynomial will have a factor whose root is 𝜔. Thus the second
case of the corollary is proved.

To see what happens when 𝑑 ∣ 𝑘, we use the previous lemma to obtain

[ 𝑛 + 𝑘 − 1
𝑘 ]

𝜔
= lim

𝑞→𝜔
(
[𝑛]𝑞
[𝑘]𝑞

⋅
[𝑛 + 1]𝑞
[1]𝑞

⋅
[𝑛 + 2]𝑞
[2]𝑞

⋯
[𝑛 + 𝑘 − 1]𝑞
[𝑘 − 1]𝑞

)

= 𝑛
𝑘 ⋅ 1⋯1 ⋅ 𝑛 + 𝑑

𝑑 ⋅ 1⋯1 ⋅ 𝑛 + 2𝑑
2𝑑 ⋅ 1⋯

= 𝑛/𝑑
𝑘/𝑑 ⋅ 𝑛/𝑑 + 1

1 ⋅ 𝑛/𝑑 + 2
2 ⋯

= (𝑛/𝑑 + 𝑘/𝑑 − 1
𝑘/𝑑 )

which is what we wished to prove in this case. □

Comparing Corollaries 6.6.4 and 6.6.6 while remembering Theorem 1.3.4 com-
pletes the proof of Theorem 6.6.2. Another way to prove this result using symmetric
functions and representation theory will be found in Section 7.9.

Exercises

(1) Complete the proof of Proposition 6.1.1.
(2) (a) Prove that (6.2) satisfies the definition of a group action.

(b) Consider the action of 𝐺 = ⟨(1, 2, 3, 4)⟩ on the set 𝑃([4], 2) of 2-permutations
of [4] given by

𝑔(𝑥𝑦) = 𝑔(𝑥)𝑔(𝑦).
Compute the orbits and stabilizers of this action and verify that the parts of
Lemma 6.1.2 are satisfied.

(3) Show that if 𝐺 acts on 𝑋 , then 𝑔𝑥 = 𝑦 if and only if 𝑥 = 𝑔−1𝑦.
(4) (a) Let 𝐺 act on 𝑋 and let 𝑌 be another set. For 𝑓 ∈ 𝑌𝑋 , define 𝑔𝑓 = 𝑓 ∘ 𝑔 and

show that this definition does not satisfy part (a) of the definition of a group
action.

(b) Let 𝐺 act on 𝑌 and let 𝑋 be another set. For 𝑓 ∈ 𝑌𝑋 , define 𝑔𝑓 = 𝑔 ∘ 𝑓 and
show that this defines a group action on 𝑌𝑋 .

(5) Complete the proof of Lemma 6.2.2(a).
(6) Prove that 4 ∣ 𝑟4 + 𝑟2 + 2𝑟 for all 𝑟 ∈ ℤ by considering the possible congruence

classes of 𝑟modulo 4.
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(7) (a) Show that the number of distinct 𝑛-bead, 𝑟-color necklaces under rotation is

1
𝑛

𝑛
∑
𝑖=1

𝑟gcd(𝑖,𝑛) = 1
𝑛 ∑𝑑∣𝑛

𝜙(𝑛/𝑑)𝑟𝑑

where 𝜙 is Euler’s function. Hint: For the second sum, use the hint for Exer-
cise 24(a) in Chapter 5.

(b) Use part (a) to give two new proofs of the formula obtained in the text when
𝑛 = 4.

(8) (a) The group of symmetries of a regular 𝑛-gon is called a dihedral group and
consists of the𝑛 rotations and𝑛 reflectionswhichmap the𝑛-gon to itself. Find
the number of different 4-bead, 𝑟-color necklaces if necklaces are considered
the same when one is a rotation or reflection of the other.

(b) Find an expression for the number of distinct 𝑛-bead, 𝑟-color necklaces if two
are the same when one is a rotation or a reflection of the other.

(9) (a) Howmany distinct cubes are there under rotation if the edges are colored from
a set with 𝑟 colors?

(b) Repeat part (a) if you are coloring the vertices.
(10) (a) Howmany distinct regular tetrahedra are there under rotation if the faces are

colored from a set with 𝑟 colors?
(b) Show in two ways that you get the same answer in (a) if you color vertices:

one using Burnside’s Lemma and one without using it.
(11) Calculate the cycle index of 𝐺 acting on 𝑋 for the following pairs.

(a) 𝐺 = ⟨(1, 2, . . . , 𝑛)⟩ and 𝑋 = [𝑛].
(b) 𝐺 is the dihedral group of a regular 𝑛-gon (see Exercise 8(a)) and 𝑋 = [𝑛].
(c) 𝐺 is the group of rotations of the cube and 𝑋 is the faces of the cube.
(d) Repeat part (c) for 𝑋 being the edges and vertices of the cube.

(12) Complete the proof of Lemma 6.3.1(a).
(13) Using the notation of Theorem 6.3.2, give two proofs of each of the following facts

about the 𝑏𝑘 and 𝑝𝑘, one using their definition in terms of orbits and one using the
expression for their generating functions in terms of 𝑍(𝐺).
(a) 𝑏0 = 𝑝0 = 1.
(b) 𝑝𝑛 = 𝑝𝑛−1.
(c) 𝑏𝑛 = 1.

(14) Call a sequence 𝑎0, . . . , 𝑎𝑛 symmetric or palindromic if 𝑎𝑘 = 𝑎𝑛−𝑘 for all 𝑘 with
0 ≤ 𝑘 ≤ 𝑛. In this case also call the associated generating function ∑𝑛

𝑘=0 𝑎𝑘𝑡𝑘
symmetric or palindromic.
(a) Give three proofs that the sequence (𝑛0), (

𝑛
1), . . . , (

𝑛
𝑛) is palindromic: one us-

ing (1.5), one inductive, and one combinatorial.
(b) Prove that the product of palindromic unimodal polynomials is palindromic

and unimodal.
(c) Use (b) to give another proof of (a).
(d) Prove that the generating function in Theorem 6.3.2(a) is palindromic.
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(15) (a) Consider 4-bead 𝑟-colored necklaces under rotation. Find the number of dis-
tinct necklaces which have 2 beads of one color and 2 beads of another color
in two ways: by using Theorem 6.4.2 and by making a direct count.

(b) Consider the cube under rotationwhere the faces have been colored black and
white. Find the generating function for the number of orbits by the number
of white and number of black faces in two ways: by using Theorem 6.4.2 and
by making a direct count.

(c) Repeat part (b) for coloring the edges and for coloring the vertices.
(16) Find the generating function for unlabeled digraphs on 𝑛 vertices by the number

of arcs.
(17) Let 𝐾𝑛 denote the unlabeled complete graph on 𝑛 vertices.

(a) Find a polynomial 𝑝(𝑟) which counts the number of colorings of the edges of
𝐾𝑛 with 𝑟 colors.

(b) Show that 𝑝(2) equals the result of plugging 𝑡 = 1 into equation (6.9).
(18) Use the fact that every integer can be written uniquely as a product of primes to

show that if 𝑘, 𝑙 ∈ ℙ, then

lcm(𝑘, 𝑙) = 𝑘𝑙
gcd(𝑘, 𝑙) .

(19) Call 𝑎, 𝑏 ∈ ℤ relatively prime if gcd(𝑎, 𝑏) = 1. Recall that every integer can be
written uniquely as a product of primes.
(a) Show that if gcd(𝑎,𝑚) = gcd(𝑏,𝑚) = 1, then gcd(𝑎𝑏,𝑚) = 1.
(b) Let 𝑚 ∈ ℙ and let [𝑎] denote the congruence class of 𝑎 modulo 𝑚. Use part

(a) to show that
𝐺𝑚 = {[𝑎] ∣ gcd(𝑎,𝑚) = 1}

is a group.
(c) Use part (b) to give two proofs that if 𝑝 is prime and gcd(𝑎, 𝑝) = 1, then

𝑎𝑝−1 ≡ 1 (mod𝑝),
one demonstration using Fermat’s Little Theorem and one using Lagrange’s
Theorem from group theory.

(d) Prove Euler’s Theorem: if 𝑎 and 𝑛 are relatively prime, then
𝑎𝜙(𝑛) ≡ 1 (mod𝑛)

where 𝜙 is the Euler phi function from Exercise 6 of Chapter 2. Hint: Use the
ideas in the second proof of part (c).

(e) Show that Fermat’s Little Theorem is a special case of part (d).
(20) (a) Use Theorem 6.5.7 to prove that if 𝑎, 𝑛 ∈ ℙ, then

∑
𝑑∣𝑛

𝜇(𝑛/𝑑)𝑎𝑑 ≡ 0 (mod𝑛).

(b) Show that Fermat’s Little Theorem can be derived from part (a).
(21) (a) Show that the map 𝜎∶ 𝔖𝑛 → 𝔖𝑛 which sends 𝜋 to 𝜎𝜋𝜎−1 defines an action of

𝔖𝑛 on itself.
(b) Show that the converse of Wilson’s Theorem is true: for 𝑛 > 1 we have that

(𝑛 − 1)! ≡ −1 (mod𝑛) implies 𝑛 is prime.
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(22) (a) Let 𝑝 be prime and let 𝑛 ≥ 𝑝. Show for the Stirling numbers of the first kind
that

𝑐(𝑛, 𝑘) ≡ 𝑐(𝑛 − 𝑝, 𝑘 − 𝑝) − 𝑐(𝑛 − 𝑝, 𝑘 − 1) (mod𝑝).
(b) Let 𝑝 be prime and let 𝑛 > 𝑘𝑝. Show that

𝑐(𝑛, 𝑘) ≡ 0 (mod𝑝).
Hint: Use part (a).

(c) Let 𝑝 be prime. Given 𝑛 ≥ 𝑘 ≥ 0, write 𝑛 = 𝑛″𝑝 + 𝑛′ where 0 ≤ 𝑛′ < 𝑝 and
𝑘 = 𝑘″(𝑝 − 1) + 𝑘′ where 0 ≤ 𝑘′ < 𝑝 − 1. Then

𝑐(𝑛, 𝑛 − 𝑘) ≡ (−1)𝑘″(𝑛
″

𝑘″)𝑐(𝑛
′, 𝑛′ − 𝑘′) (mod𝑝).

Hint: Use part (a).
(d) Consider two polynomials 𝑓(𝑥), 𝑔(𝑥) ∈ ℤ[𝑥] and let𝑚 ∈ ℙ. We say that 𝑓(𝑥)

is congruent to 𝑔(𝑥)modulo𝑚 if every coefficient of 𝑓(𝑥) − 𝑔(𝑥) is divisible by
𝑚. If 𝑝 is prime, show that

𝑥↓𝑝≡ 𝑥𝑝 − 𝑥 (mod𝑝)
where 𝑥↓𝑝= 𝑥(𝑥 − 1)⋯ (𝑥 − 𝑝 + 1). Hint: Use Theorem 3.1.2 and part (a).

(23) Finish the proof of Theorem 6.5.6
(24) (a) Show that if 𝐺 acts on 𝑋 , then it also acts on 𝑆(𝑋, 𝑘), the set of partitions of 𝑋

into 𝑘 blocks.
(b) Let 𝑝 be prime and let 𝑛 ≥ 𝑝. Show for the Stirling numbers of the second

kind that
𝑆(𝑛, 𝑘) ≡ 𝑆(𝑛 − 𝑝, 𝑘 − 𝑝) + 𝑆(𝑛 − 𝑝 + 1, 𝑘) (mod𝑝).

(c) If 𝑝 is prime and 𝑘 ∈ ℤ, then show

𝑆(𝑝, 𝑘) ≡ { 1 if 𝑘 = 1 or 𝑝
0 otherwise (mod𝑝).

(d) Suppose 𝑝 is prime and 0 ≤ 𝑘 ≤ 𝑛. If 𝑗 satisfies 𝑝𝑗 ≤ 𝑘 < 𝑝𝑗+1, then
𝑆(𝑛 + 𝑝𝑗(𝑝 − 1), 𝑘) ≡ 𝑆(𝑛, 𝑘) (mod𝑝).

Hint: Use part (b).
(25) (a) Recall from Exercise 10 in Chapter 1 that Pascal’s triangle is fractal modulo 2.

Give a second proof of this by using Lucas’s Congruence (Theorem 6.5.6) to
show that if 0 ≤ 𝑛 < 2𝑚 and 0 ≤ 𝑘 ≤ 𝑛 + 2𝑚, then

(𝑛 + 2𝑚
𝑘 ) ≡

⎧
⎪
⎪
⎨
⎪
⎪
⎩

(𝑛𝑘) if 0 ≤ 𝑘 ≤ 𝑛

0 if 𝑛 < 𝑘 < 2𝑚

( 𝑛
𝑘 − 2𝑚) if 2𝑚 ≤ 𝑘 ≤ 𝑛 + 2𝑚

(mod 2).

(b) Find and prove the analogue of part (a) for an arbitrary prime 𝑝 ≥ 2.
(26) Use Proposition 6.5.8 to prove an analogue of Proposition 6.5.9 for any 𝑛 ∈ ℙ.
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(27) (a) Prove that for any group 𝐺 the poset 𝐿(𝐺) is a lattice. In particular, if 𝐻,𝐾 ∈
𝐿(𝐺), then𝐻 ∧𝐾 = 𝐻 ∩𝐾 and𝐻 ∨𝐾 is the subgroup of 𝐺 generated by𝐻,𝐾.

(b) Let ℤ𝑝 be the integers modulo 𝑝 and consider the direct sum ℤ𝑛𝑝 of 𝑛 copies
of ℤ𝑝. Show that if 𝑝 is prime, then 𝐿(ℤ𝑛𝑝 ) ≅ 𝐿𝑛(𝑝), the subspace lattice of
dimension 𝑛 over the Galois field with 𝑝 elements.

(c) Use part (b) to prove a congruence modulo 𝑝2 for the binomial coefficients.
(28) Prove Lemma 6.6.1(b).
(29) Prove Lemma 6.6.3.
(30) Let 𝑝 ∈ ℙ and 𝑔 = (1, 2, . . . , 𝑝). Consider the group 𝐺 = ⟨𝑔⟩ acting on the set of

multisets 𝑋 = (([𝑛]𝑘 )).
(a) Suppose𝑀 = {{1𝑚1 , 2𝑚2 , . . . , 𝑛𝑚𝑛 }}. Show that 𝑔𝑀 = 𝑀 if and only if

𝑚1 = 𝑚2 = ⋯ = 𝑚𝑝.
(b) Show that if 𝑝 is prime, then

((𝑛𝑘)) ≡ ∑
𝑚≥0

(( 𝑛 − 𝑝
𝑘 − 𝑚𝑝)) (mod𝑝).

(31) (a) Prove that 𝑒2𝑘𝜋𝑖/𝑛 is a primitive 𝑛th root of unity if and only if gcd(𝑘, 𝑛) = 1.
(b) Prove that the CSP is exhibited by the triple

(([𝑛]𝑘 ), ⟨(1, 2, . . . , 𝑛)⟩, [
𝑛
𝑘 ]

𝑞
).
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Chapter 7

Counting with
Symmetric Functions

A formal power series is symmetric if it is invariant under permutation of its variables.
We have already seen generating functions of this type arise naturally in Theorem6.4.2.
Symmetric functions have many other connections to combinatorics some of which
we will discuss in this chapter. In particular, we will see that they arise when studying
log-concavity, Young tableaux, various posets, chromatic polynomials, and the cyclic
sieving phenomenon. They are also intimately connected with group representations.
The appendix to this book contains a summary of the facts we will need in this regard,
and more information can be found in Sagan’s text [79]. For a wealth of information
about symmetric functions in general, see Macdonald’s book [60].

7.1. The algebra of symmetric functions, Sym

In this section we formally define the algebra of symmetric functions and introduce
some of its standard bases. Along the way, we prove the Fundamental Theorem of
Symmetric Functions and show how the coefficients of a polynomial can be expressed
as a symmetric function of its roots.

Let 𝐱 = {𝑥1, 𝑥2, 𝑥3, . . . } be a countably infinite set of commuting variables. Con-
sider the algebra of formal power series ℂ[[𝐱]]. A monomial 𝑚 = 𝑥𝜆1𝑖1 𝑥

𝜆2
𝑖2 ⋯𝑥𝜆𝑙𝑖𝑙 has

degree deg𝑚 = ∑𝑖 𝜆𝑖. For example, deg(𝑥52𝑥4𝑥68) = 5 + 1 + 6 = 12. We say that
𝑓(𝐱) ∈ ℂ[[𝐱]] is homogeneous of degree 𝑛 if deg𝑚 = 𝑛 for all monomials𝑚 appearing
in 𝑓(𝐱). A weaker condition is that 𝑓(𝐱) have bounded degree which means that there
is an 𝑛 with deg𝑚 ≤ 𝑛 for all 𝑚 appearing in 𝑓(𝐱). To illustrate, 𝑓(𝐱) = ∑𝑖<𝑗 𝑥𝑖𝑥2𝑗 is
homogeneous of degree 3. On the other hand
(7.1) 𝑓(𝐱) =∏

𝑖≥1
(1 + 𝑥𝑖)

is not of bounded degree.

219
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There is an action of 𝔖𝑚 on ℂ[[𝐱]]. Specifically, if we have 𝜋 ∈ 𝔖𝑚 and
𝑓(𝑥1, 𝑥2, 𝑥3, . . . ) ∈ ℂ[[𝐱]], then we let
(7.2) 𝜋𝑓(𝑥1, 𝑥2, 𝑥3, . . . ) = 𝑓(𝑥𝜋(1), 𝑥𝜋(2), 𝑥𝜋(3), . . . )
where 𝜋(𝑖) = 𝑖 for 𝑖 > 𝑚. For example,
(7.3) (1, 2)(𝑥21 + 2𝑥1𝑥32 + 5𝑥41𝑥3 − 𝑥3𝑥4) = 𝑥22 + 2𝑥31𝑥2 + 5𝑥42𝑥3 − 𝑥3𝑥4.
Call 𝑓(𝐱) symmetric if 𝜋𝑓 = 𝑓 for all 𝜋 in every symmetric group 𝔖𝑚. Equivalently,
any twomonomials 𝑥𝜆1𝑖1 𝑥

𝜆2
𝑖2 ⋯𝑥𝜆𝑙𝑖𝑙 and 𝑥

𝜆1
𝑗1 𝑥

𝜆2
𝑗2 ⋯𝑥𝜆𝑙𝑗𝑙 , where 𝑖1, . . . , 𝑖𝑙 are distinct and sim-

ilarly for 𝑗1, . . . , 𝑗𝑙, have the same coefficient in 𝑓(𝐱) since one can always find a per-
mutation 𝜋 such that 𝜋(𝑖𝑘) = 𝑗𝑘 for all 𝑘. Another equivalent description is that any
monomial 𝑥𝜆1𝑖1 𝑥

𝜆2
𝑖2 ⋯𝑥𝜆𝑙𝑖𝑙 has the same coefficient as 𝑥

𝜆1
1 𝑥

𝜆2
2 ⋯𝑥𝜆𝑙𝑙 in 𝑓(𝐱). To illustrate,

(7.4) 𝑓(𝐱) = 4𝑥51 + 4𝑥52 + 4𝑥53 +⋯− 6𝑥21𝑥22 − 6𝑥21𝑥23 − 6𝑥22𝑥23 −⋯
is symmetric. Let

Sym𝑛 = Sym𝑛(𝐱)
= {𝑓 ∈ ℂ[[𝐱]] ∣ 𝑓 is symmetric and homogeneous of degree 𝑛}.

The algebra of symmetric functions is

Sym = Sym(𝐱) =⨁
𝑛≥0

Sym𝑛(𝐱).

Alternatively, Sym(𝐱) is the set of all symmetric power series in ℂ[[𝐱]] of bounded
degree. This is because elements of the direct sum can only have a finite number of
components which are nonzero. So the series in (7.4) is in Sym, but the ones in (7.1)
and (7.3) are not.

There are a number of interesting bases for Sym. We start with those functions
obtained by symmetrizing a monomial. If 𝜆 = (𝜆1, 𝜆2, . . . , 𝜆𝑙) is a partition, then the
associatedmonomial symmetric function is

𝑚𝜆 = 𝑚𝜆(𝐱) = ∑𝑥𝜆1𝑖1 𝑥
𝜆2
𝑖2 ⋯𝑥𝜆𝑙𝑖𝑙

where the sum is over all distinct monomials having exponents 𝜆1, 𝜆2,⋯ , 𝜆𝑙. We will
often drop the parentheses and commas in the subscript 𝜆 as well as use multiplicity
notation. As examples, in (7.4) we have 𝑓 = 4𝑚(5) − 6𝑚(2,2) = 4𝑚5 − 6𝑚22 , and

(7.5) 𝑚21 = 𝑥21𝑥2 + 𝑥1𝑥22 + 𝑥21𝑥3 + 𝑥1𝑥23 + 𝑥22𝑥3 + 𝑥2𝑥23 +⋯ .
We must verify that we have defined a basis for Sym.
Theorem 7.1.1. The 𝑚𝜆 as 𝜆 varies over all partitions form a basis for Sym. Conse-
quently

dimSym𝑛 = 𝑝(𝑛),
the number of partitions of 𝑛.

Proof. The second sentence follows immediately from the first. And it is clear that
the𝑚𝜆 are independent since no two contain a monomial in common. So it suffices to
show that every 𝑓 ∈ Sym can be written as a linear combination of the 𝑚𝜆. Suppose
𝑥𝜆1𝑖1 𝑥

𝜆2
𝑖2 ⋯𝑥𝜆𝑙𝑖𝑙 is a monomial appearing in 𝑓 and having coefficient 𝑐 ∈ ℂ. Without loss
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of generality we can assume the indices have been arranged so that 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑙
and let 𝜆 = (𝜆1, 𝜆2, . . . , 𝜆𝑙). Since 𝑓 is symmetric, every monomial in 𝑓 with exponents
𝜆1, 𝜆2, . . . , 𝜆𝑙 appears with coefficient 𝑐. So 𝑓 − 𝑐𝑚𝜆 is still symmetric and contains no
monomials with these exponents. Since 𝑓 is of bounded degree, we can repeat this
process a finite number of times until we reach the zero power series. It follows that
𝑓 will be a linear combination of the monomial symmetric functions which appear
during this algorithm. □

There are three bases which are formedmultiplicatively in that one first defines 𝑓𝑛
for 𝑛 ∈ ℙ and then sets
(7.6) 𝑓𝜆 = 𝑓𝜆1𝑓𝜆2 ⋯𝑓𝜆𝑙
where 𝜆 = (𝜆1, 𝜆2, . . . , 𝜆𝑙). Specifically, for𝑛 ≥ 1wedefine the𝑛th power sum symmetric
function

𝑝𝑛 = 𝑚(𝑛) = ∑
𝑖≥1

𝑥𝑛𝑖 ,

the 𝑛th elementary symmetric function
𝑒𝑛 = 𝑚(1𝑛) = ∑

𝑖1<⋯<𝑖𝑛
𝑥𝑖1 ⋯𝑥𝑖𝑛 ,

and the 𝑛th complete homogeneous symmetric function
ℎ𝑛 = ∑

𝜆⊢𝑛
𝑚𝜆 = ∑

𝑖1≤. . .≤𝑖𝑛
𝑥𝑖1 ⋯𝑥𝑖𝑛 .

We also let 𝑒0 = ℎ0 = 1 because of the empty product. To illustrate, when 𝑛 = 3 we
have

𝑝3 = 𝑥31 + 𝑥32 + 𝑥33 +⋯ ,
𝑒3 = 𝑥1𝑥2𝑥3 + 𝑥1𝑥2𝑥4 + 𝑥1𝑥3𝑥4 + 𝑥2𝑥3𝑥4 +⋯ ,
ℎ3 = 𝑥31 + 𝑥32 +⋯+ 𝑥21𝑥2 + 𝑥1𝑥22 +⋯+ 𝑥1𝑥2𝑥3 + 𝑥1𝑥2𝑥4 +⋯ .

Note that we have already met the power sum symmetric functions 𝑝𝑛 since they oc-
curred as the substitutionsmade for the variables of the cycle index polynomial in The-
orem 6.4.2. Also note that 𝑒𝑛 can be thought of as the sum of all square-freemonomials
of degree 𝑛, while ℎ𝑛 is the sum of all monomials of degree 𝑛. We now define 𝑝𝜆, 𝑒𝜆,
and ℎ𝜆 using (7.6). So, for example,

𝑝(4,2) = (𝑥41 + 𝑥42 + 𝑥43 +⋯)(𝑥21 + 𝑥22 + 𝑥23 +⋯).

To show that these are bases for Sym, it will be helpful to use generating functions.
Define the following elements of ℂ[[𝐱, 𝑡]]:

𝑃(𝑡) = ∑
𝑛≥1

𝑝𝑛(𝐱)
𝑡𝑛
𝑛 ,

𝐸(𝑡) = ∑
𝑛≥0

𝑒𝑛(𝐱)𝑡𝑛,

𝐻(𝑡) = ∑
𝑛≥0

ℎ𝑛(𝐱)𝑡𝑛.

The preliminary version made available with permission of the publisher, the American Mathematical Society



222 7. Counting with Symmetric Functions

Note that 𝐸(𝑡) and 𝐻(𝑡) are ogfs, while we have not dealt with a generating function
like 𝑃(𝑡) previously.
Proposition 7.1.2. We have the following identities.

(a) 𝐸(𝑡) =∏
𝑖≥1

(1 + 𝑥𝑖𝑡).

(b) 𝐻(𝑡) =∏
𝑖≥1

1
1 − 𝑥𝑖𝑡

.

(c) 𝑃(𝑡) = ln∏
𝑖≥1

1
1 − 𝑥𝑖𝑡

.

Proof. (a) We will use weight-generating functions where the set is the same one used
in the proof of Theorem 3.5.5; namely 𝑆 is all partitions 𝜆with distinct parts. Weweight
𝜆 = (𝜆1, 𝜆2, . . . , 𝜆𝑛) ∈ 𝑆 by

wt 𝜆 = 𝑡𝑛𝑥𝜆1𝑥𝜆2 ⋯𝑥𝜆𝑛 .
Since 𝑒𝑛 is the sum of all square-free monomials of degree 𝑛, we have the weight-
generating function

𝑓𝑆(𝐱, 𝑡) = ∑
𝜆∈𝑆

wt 𝜆 = ∑
𝑛≥0

𝑡𝑛 ∑
𝑙(𝜆)=𝑛

𝑥𝜆1𝑥𝜆2 ⋯𝑥𝜆𝑛 = ∑
𝑛≥0

𝑒𝑛(𝐱)𝑡𝑛

where ℓ(𝜆) is 𝜆’s length. On the other hand, we have the decomposition of 𝑆 in the
demonstration of Theorem 3.5.5

𝑆 = ({10} ⊎ {11}) ⊕ ({20} ⊎ {21}) ⊕ ({30} ⊎ {31}) ⊕⋯ .
Applying the Sum and Product Rules for weight-generating functions gives

𝑓𝑆(𝐱, 𝑡) = (1 + 𝑥1𝑡)(1 + 𝑥2𝑡)(1 + 𝑥3𝑡)⋯
so we are done.

(b) This proof is similar to the one for (a) and so is left to the reader.

(c) Using the expansion of ln 1
1−𝑥 gives

ln∏
𝑖≥1

1
1 − 𝑥𝑖𝑡

= ∑
𝑖≥1

ln 1
1 − 𝑥𝑖𝑡

= ∑
𝑖≥1

∑
𝑛≥1

(𝑥𝑖𝑡)𝑛
𝑛 = ∑

𝑛≥1

𝑡𝑛
𝑛 ∑

𝑖≥1
𝑥𝑛𝑖 = ∑

𝑛≥1
𝑝𝑛(𝐱)

𝑡𝑛
𝑛

as desired. □

In order to prove that the 𝑝𝜆 and 𝑒𝜆 are bases, we will want to encode their expres-
sions as linear combinations of the𝑚𝜆. For that we will need a total order on the 𝜆 ⊢ 𝑛
to index the rows and columns of the corresponding matrix. Say that (𝜆1, . . . , 𝜆𝑙) <
(𝜇1, . . . , 𝜇𝑘) in lexicographic order if, for the smallest index 𝑖 where 𝜆 and 𝜇 differ, we
have 𝜆𝑖 < 𝜇𝑖.
Theorem 7.1.3. We have the following bases for Sym𝑛.

(a) {𝑝𝜆 ∣ 𝜆 ⊢ 𝑛}.
(b) {𝑒𝜆 ∣ 𝜆 ⊢ 𝑛}.
(c) {ℎ𝜆 ∣ 𝜆 ⊢ 𝑛}.
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Proof. (a) The set of 𝑝𝜆 has cardinality 𝑝(𝑛) = dimSym𝑛 by Theorem 7.1.1. So we
only need to show that the 𝑝𝜆 span Sym𝑛. Express each 𝑝𝜆 as a linear combination
of the 𝑚𝜇 basis and let 𝐴 = [𝑎𝜆,𝜇] be the matrix of coefficients where the rows and
columns are listed in lexicographic order. It suffices to show that 𝐴 is upper triangular
with nonzero diagonal elements. For then 𝐴−1 exists and so we can write each 𝑚𝜇 in
terms of the 𝑝𝜆. So consider a monomial𝑚 = 𝑥𝜇11 ⋯𝑥𝜇𝑘𝑘 occurring in the expansion of

𝑝𝜆 = (𝑥𝜆11 + 𝑥𝜆12 +⋯)(𝑥𝜆21 + 𝑥𝜆22 +⋯)⋯ .
(By symmetry, our choice of subscripts for 𝑚 is without loss of generality.) It follows
that each 𝜇𝑖 is a sum of 𝜆𝑗 . But it is easy to see that adding parts of a partition make it
larger in lexicographic order. So𝑚𝜆 will have smallest subscript if it occurs. But we can
obtain the given monomial by picking 𝑥𝜆11 out of the first factor, 𝑥𝜆22 out of the second,
and so forth. So the proof is complete.

(b) This demonstration is similar to the one in part (a) except that one shows

𝑒𝜆𝑡 = 𝑚𝜆 + ∑
𝜇<𝜆

𝑏𝜆,𝜇𝑚𝜇

where 𝜆𝑡 is the conjugate of 𝜆.

(c) It suffices to show that each 𝑒𝑛 can bewritten as a polynomial in the ℎ𝑘. Indeed,
by multiplicativity this implies that the 𝑒𝜇 are linearly spanned by the ℎ𝜆. And since
the number of ℎ𝜆 is the dimension of Sym𝑛, they must form a basis.

From Proposition 7.1.2 we see that

𝐻(𝑡)𝐸(−𝑡) = 1.
Taking the coefficient of 𝑡𝑛 on both sides for 𝑛 ≥ 1 yields

𝑛
∑
𝑖=0

(−1)𝑖ℎ𝑛−𝑖𝑒𝑖 = 0.

Solving for 𝑒𝑛 gives
𝑒𝑛 = ℎ1𝑒𝑛−1 − ℎ2𝑒𝑛−2 +⋯ .

By induction on 𝑛, the 𝑒𝑖 on the right in this sum are polynomials in the ℎ𝑘, so the same
is true of 𝑒𝑛. □

We note that (b) of the previous theorem is sometimes called the Fundamental
Theorem of Symmetric Functions and is expressed in the following manner: any sym-
metric function can be written uniquely as a polynomial in the 𝑒𝑛. Also note that since
the triangular transition matrix from the 𝑚𝜆 to the 𝑒𝜆 in (b) has ones down the diag-
onal, we have actually proved that any symmetric function with integer coefficients is
in fact an integral linear combination of the 𝑒𝜆.

Wewish to examine a corollary of Proposition 7.1.2(a) which shows that the coeffi-
cients of a polynomial can be expressed as elementary symmetric functions of its roots.
This will be useful for proving a log-concavity result in the next section. This result is
well known for quadratic polynomials (and follows easily from the quadratic formula)
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but holds in general. In what follows we will specialize our symmetric functions to the
first𝑚 variables by setting 𝑥𝑖 = 0 for 𝑖 > 𝑚. For example,

𝑒2(𝑥1, 𝑥2, 𝑥3, 𝑥4) = 𝑥1𝑥2 + 𝑥1𝑥3 + 𝑥1𝑥4 + 𝑥2𝑥3 + 𝑥2𝑥4 + 𝑥3𝑥4.

Lemma 7.1.4. Let
(7.7) 𝑓(𝑡) = 𝑎0𝑡𝑛 + 𝑎1𝑡𝑛−1 + 𝑎2𝑡𝑛−2 +⋯+ 𝑎𝑛
be a monic polynomial (so 𝑎0 = 1) with complex coefficients. Let the roots of 𝑓(𝑡) be
𝑟1, . . . , 𝑟𝑛. Then for all 𝑘 ≥ 0 we have

𝑎𝑘 = 𝑒𝑘(−𝑟1, −𝑟2, . . . , −𝑟𝑛).

Proof. From the definitions

𝑓(𝑡) = (𝑡 − 𝑟1)(𝑡 − 𝑟2)⋯ (𝑡 − 𝑟𝑛).
Using this and Proposition 7.1.2(a) gives

𝑡𝑛𝑓(1/𝑡) = (1 − 𝑟1𝑡)(1 − 𝑟2𝑡)⋯ (1 − 𝑟𝑛𝑡) = ∑
𝑘≥0

𝑒𝑘(−𝑟1, −𝑟2, . . . , −𝑟𝑛)𝑡𝑘.

On the other hand, because of (7.7),

𝑡𝑛𝑓(1/𝑡) = 𝑎𝑛𝑡𝑛 +⋯+ 𝑎1𝑡 + 1.
Comparing the last two displayed equations finishes the proof. □

7.2. The Schur basis of Sym

There is an important basis for Sym𝑛 whose elements are called the Schur functions.
To construct these functions, we will use certain tableaux built out of Young diagrams.
Expressing the Schur functions in the elementary, complete homogeneous, and power
sum bases will lead to interesting connections with the Lindström–Gessle–Viennot
technique and representations of symmetric groups. This will also permit us to prove
a result noted in Section 5.6 relating log-concavity to the roots of the corresponding
generating polynomial.

Let 𝜆 be a partition of 𝑛. A standard Young tableau (SYT) of shape 𝜆 is a bijective
filling 𝑇 of the boxes of the Young diagram for 𝜆with the elements of [𝑛] such that rows
increase from left to right and columns increase from top to bottom. We let

SYT(𝜆) = {𝑇 ∣ 𝑇 is a standard Young tableau of shape 𝜆}

1 2
3 4
5

1 2
3 5
4

1 3
2 4
5

1 3
2 5
4

1 4
2 5
3

Figure 7.1. The standard Young tableaux of shape 𝜆 = (2, 2, 1)

The preliminary version made available with permission of the publisher, the American Mathematical Society



7.2. The Schur basis of Sym 225

1 1 1 1 2 2 2 3 3 3 3
2 2 2 3 3 3 4 4
3 4 6

𝜄→

1 1 1 1 2 2 2 2 2 2 3
2 2 3 3 3 3 4 4
3 4 6

Figure 7.2. Two semistandard Young tableaux illustrating a Bender–Knuth inter-
change

and
𝑓𝜆 = #SYT(𝜆).

We also write sh 𝑇 for the shape of 𝑇 and call 𝑇 a standard 𝜆-tableau if sh 𝑇 = 𝜆. The
SYT of shape 𝜆 = (2, 2, 1) are listed in Figure 7.1 so 𝑓(2,2,1) = 5.

A semistandard Young tableau (SSYT) of shape 𝜆 is a filling 𝑇 of the boxes of the
Young diagram for 𝜆 with elements of ℙ such that rows weakly increase and columns
strictly increase. As expected, we let

SSYT(𝜆) = {𝑇 ∣ 𝑇 is a semistandard Young tableau of shape 𝜆}
and call the elements of this set semistandard 𝜆-tableaux. Two semistandard Young
tableaux of shape (11, 8, 3) are displayed in Figure 7.2. (The reader should ignore the
underlines and overlines for now.) We denoted by 𝑐 = (𝑖, 𝑗) the square, also called a
cell, in row 𝑖 and column 𝑗 of the Young diagram of 𝜆 where rows and columns are
indexed as in a matrix. The entry in cell (𝑖, 𝑗) of 𝑇 is denoted 𝑇𝑖,𝑗 . For example, the first
tableau in Figure 7.2 has 𝑇2,7 = 4. The content of an SSYT 𝑇 is the weak composition
𝛼 = co𝑇 where 𝛼𝑖 is the number of occurrences of 𝑖 in 𝑇. The first tableau in Figure 7.2
has co 𝑌 = [4, 6, 8, 3, 0, 1]. Strictly speaking, one could add as many zeros as one liked
to the end of co 𝑇, but usually we will terminate the composition with a positive entry.
The Kostka numbers are

𝐾𝜆,𝛼 = #{𝑇 ∈ SSYT(𝜆) ∣ co 𝑇 = 𝛼}.
If we wish to use a content which is a partition 𝜇 and not just a weak composition, we
will write 𝐾𝜆,𝜇. Note that if 𝜆 ⊢ 𝑛, then 𝐾𝜆,(1𝑛) = 𝑓𝜆.

To define the Schur functions, we will weight a 𝑇 ∈ SSYT(𝜆) by letting
𝐱𝑇 = ∏

(𝑖,𝑗)∈𝜆
𝑥𝑇𝑖,𝑗 .

Note that if co 𝑇 = [𝛼1, 𝛼2, . . . , 𝛼𝑘], then 𝐱𝑇 = 𝑥𝛼1
1 𝑥𝛼2

2 ⋯𝑥𝛼𝑘
𝑘 . The tableau on the left in

Figure 7.2 has 𝐱𝑇 = 𝑥41𝑥62𝑥83𝑥34𝑥6. The Schur function corresponding to a partition 𝜆 is
𝑠𝜆 = ∑

𝑇∈SSYT(𝜆)
𝐱𝑇 .
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For example, if 𝜆 = (2, 1), then a partial list of the semistandard tableaux of shape 𝜆 is

𝑇 ∶ 1 1
2

1 2
2

1 1
3

1 3
3

. . . 1 2
3

1 3
2

1 2
4

1 4
2

. . .

so that

𝑠(2,1) = 𝑥21𝑥2 + 𝑥1𝑥22 + 𝑥21𝑥3 + 𝑥1𝑥23 +⋯+ 2𝑥1𝑥2𝑥3 + 2𝑥1𝑥2𝑥4 +⋯ .
Note that it is not obvious from the definition that 𝑠𝜆 is even symmetric, but we will
prove this shortly. As special cases, if 𝜆 is a single row, then the corresponding 𝑇 are
just a weakly increasing sequences of integers so that

𝑠(𝑛) = ℎ𝑛.
Similarly, if 𝜆 is a single column, then the 𝑇 are strictly increasing sequences, which
gives

𝑠(1𝑛) = 𝑒𝑛.
Wewill see generalizations of these equations shortly when we study the Jacobi–Trudi
Determinants. For now, we must show that 𝑠𝜆 ∈ Sym. We will use a clever combina-
torial involution of Bender and Knuth [6] for the proof.

Proposition 7.2.1. The function 𝑠𝜆(𝐱) is symmetric.

Proof. Since the adjacent transpositions generate the symmetric group, it suffices to
show that

(𝑖, 𝑖 + 1)𝑠𝜆(𝐱) = 𝑠𝜆(𝐱)
where the action is the one given by (7.2). To do this, we will define an involution
𝜄∶ SSYT(𝜆) → SSYT(𝜆) such that if 𝜄(𝑇) = 𝑇 ′, then the number of 𝑖’s and (𝑖 + 1)’s are
exchanged in passing from 𝑇 to 𝑇 ′ while all other entries are unchanged. If a column
of 𝑇 contains both 𝑖 and 𝑖 + 1, then such pairs are called fixed. All other entries equal
to 𝑖 or 𝑖 + 1 are called free. See Figure 7.2 where 𝑖 = 2, the fixed entries are underlined,
and the free ones are overlined. Themap 𝜄 takes each row containing 𝑘 free 𝑖’s followed
by 𝑙 free (𝑖 + 1)’s and replaces these entries by 𝑙 free 𝑖’s followed by 𝑘 free (𝑖 + 1)’s. This
clearly preserves the weakly increasing condition on the rows. And the columns are
still strictly increasing because of the definition of free. Also, the number of 𝑖’s and
(𝑖 + 1)’s are interchanged since this is true for the free elements by construction and
the fixed elements come in pairs. Finally, it is clear that this map is its own inverse and
hence an involution. This finishes the proof. □

Theorem 7.2.2. For 𝜆 ⊢ 𝑛 we have
𝑠𝜆 = ∑

𝜇≤𝜆
𝐾𝜆,𝜇𝑚𝜇

where the sum is over partitions 𝜇 of 𝑛 and 𝐾𝜆,𝜆 = 1. So the set
{𝑠𝜆 ∣ 𝜆 ⊢ 𝑛}

is a basis for Sym𝑛.
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Proof. The second sentence follows from the first in the same way as the proof of
Theorem 7.1.3(a). The fact that 𝐾𝜆,𝜇 is the coefficient of 𝑚𝜇 in the expansion of 𝑠𝜆
comes from the previous proposition and the definitions of 𝑠𝜆 and𝐾𝜆,𝜇. Clearly there is
only one element of SSYT(𝜆, 𝜆), namely the tableau whose 𝑖th row consists completely
of 𝑖’s for all 𝑖 ≥ 1. So it remains to show that if 𝐾𝜆,𝜇 ≠ 0, then 𝜇 ≤ 𝜆. Suppose 𝜆 ≠ 𝜇
since equality has already been considered, and pick 𝑇 ∈ SSYT(𝜆, 𝜇). Let 𝑗 be the first
index where 𝜆𝑗 ≠ 𝜇𝑗 . Then for 𝑖 < 𝑗, the 𝑖th row of 𝑇 is all 𝑖’s. It follows from column
strictness that the 𝑗th row must contain all the 𝑗’s. So

𝜇𝑗 = number of 𝑗’s < number of boxes in row 𝑗 = 𝜆𝑗
as desired. □

We now wish to find the expansion of 𝑠𝜆 in the elementary and complete homo-
geneous bases. These are best expressed as determinants which were discovered by
Jacobi [44] and subsequently simplified by his student Trudi [94]. For the proof, we
will use a weighted version of the Lindström–Gessle–Viennot Lemma, Lemma 2.5.4.
In it, all cardinalities are replaced by the corresponding weight-generating function
over the set being counted. The only extra information which needs to be checked
in this case is that the involution Ω in (2.12) is weight preserving in the sense that
wt(𝑃𝑖, 𝑃𝑗) = wt(𝑃′𝑖 , 𝑃′𝑗 ) where, as usual, the weight of a Cartesian product is the prod-
uct of the weights.

Theorem 7.2.3 (Jacobi–Trudi Determinants). Suppose 𝜆 = (𝜆1, . . . , 𝜆𝑙).
(a) 𝑠𝜆 = det[ℎ𝜆𝑖−𝑖+𝑗]1≤𝑖,𝑗≤𝑙.
(b) 𝑠𝜆𝑡 = det[𝑒𝜆𝑖−𝑖+𝑗]1≤𝑖,𝑗≤𝑙.

Before beginning the proof, we note that a goodway of remembering the subscripts
in these determinants is to put the parts of 𝜆 down the diagonal and then in each row
add 1 or subtract 1 as one moves right or left, respectively. So, for example,

𝑠(7,4,1) = det[
ℎ7 ℎ8 ℎ9
ℎ3 ℎ4 ℎ5
ℎ−1 ℎ0 ℎ1

] = det[
ℎ7 ℎ8 ℎ9
ℎ3 ℎ4 ℎ5
0 1 ℎ1

] .

Proof. (a) We will use northeast lattice paths 𝑃 in the extension of the integer lattice
ℤ2 obtained by adding a vertex (𝑖,∞) for each 𝑖 ∈ ℤ. One can only reach (𝑖,∞) by
taking an infinite number of north steps along the line 𝑥 = 𝑖. We label the east steps
of 𝑃 ∶ 𝑠1𝑠2𝑠3 . . . by letting 𝐿(𝑠𝑖) be the 𝑦-coordinate of 𝑠𝑖 if 𝑠𝑖 = 𝐸. See, for example, the
path on the left in Figure 7.3 where we are assuming the path starts at the point (1, 1).
If 𝑃 only has a finite number of east steps all on or above 𝑦 = 1, we weight it by

wt 𝑃 =∏
𝑠𝑖
𝑥𝐿(𝑠𝑖)

where the product is over all 𝑠𝑖 which are east steps of 𝑃. In Figure 7.3 we have wt 𝑃 =
𝑥1𝑥23𝑥4.

Now let 𝑢 = (𝑖, 1) and 𝑣 = (𝑖 + 𝑛,∞) where 𝑛 ≥ 0. Then all 𝑃 ∈ 𝒫(𝑢; 𝑣) have
exactly 𝑛 east steps. Furthermore, as 𝑃 varies over all elements of 𝒫(𝑢; 𝑣) we see that
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(1, 1)

1

3 3

4

(1, 1)

1

4 5

7

Figure 7.3. A path with the ℎ-labeling on the left and the 𝑒-labeling on the right

wt 𝑃 varies over all products 𝑥𝑗1𝑥𝑗2 ⋯𝑥𝑗𝑛 with 1 ≤ 𝑗1 ≤ 𝑗2 ≤ ⋯ ≤ 𝑗𝑛. It follows that
wt𝒫(𝑢; 𝑣) = ℎ𝑛. To apply Lemma 2.5.4, let the initial and final vertices be

𝑢𝑖 = (1 − 𝑖, 1) and 𝑣𝑖 = (𝜆𝑖 − 𝑖 + 1,∞)

for 𝑖 ∈ [𝑙]. See Figure 7.4 for an example where 𝜆 = (3, 3, 1). With this choice of ver-
tices, the weighted entries of the Lindström–Gessle–Viennot matrix give (up to trans-
position which does not affect the determinant) those on the right in part (a) of this
theorem. Indeed, if 𝑃 goes from 𝑢𝑖 to 𝑣𝑗 , then it has

(7.8) (𝜆𝑗 − 𝑗 + 1) − (1 − 𝑖) = 𝜆𝑗 + 𝑖 − 𝑗

east steps so that the set of such paths has weight ℎ𝜆𝑗+𝑖−𝑗 . Also note that since the
weight of a step only depends upon its height, the mapΩ is weight preserving. We also
need to show that any path family 𝑃 whose associated permutation is not the identity
must be intersecting. This will be left as an exercise.

Finally, to complete the proof, we merely need to show that the weight-generating
function for the nonintersecting path families is 𝑠𝜆. For this it suffices to give a weight-
preserving bijection from such paths to SSYT(𝜆). Map such a path family (𝑃1, . . . , 𝑃𝑙) to
the tableau 𝑇 whose 𝑖th row consists of the labels on 𝑃𝑖 read left to right. An example
is in Figure 7.4. Since 𝑃𝑖 goes from 𝑢𝑖 to 𝑣𝑖 it has 𝜆𝑖 east steps by (7.8), so 𝑇 has shape
𝜆. Further, the definition of the map and the labeling of the paths show that the rows
are weakly increasing. To show that the columns are strictly increasing, we need to
check that for all 𝑖 and 𝑗, the 𝑗th step on 𝑃𝑖 is lower than the 𝑗th step on 𝑃𝑖+1. But this
is forced by the nonintersecting condition. It is easy to describe an inverse sending a
tableau back to a path family, so we leave this detail to the reader.
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𝑢1𝑢2𝑢3

⋮
𝑣1

⋮
𝑣2

⋮
𝑣3

1 1

3

2

4 4

5

↔
1 1 3
2 4 4
5

Figure 7.4. Nonintersecting paths and the associated semistandard Young tableau

(b) The proof is similar to that of (a) except that we label the east steps of 𝑃 by
𝐿′(𝑠𝑖) = 𝑖. See the path on the right in Figure 7.3 for an example. The reader will find
it a good exercise to fill in the rest of the proof. □

The expansion of 𝑠𝜆 in the power sum basis is also important. But the proof is
beyond the scope of this book. See [79, Theorem 4.6.4] for a demonstration of the next
result. In it, we let 𝑝𝜋 = 𝑝𝜆 if 𝜋 ∈ 𝔖𝑛 has cycle type 𝜆. Also, 𝜒𝜆 is the character of the
irreducible representation of 𝔖𝑛 corresponding to 𝜆.

Theorem 7.2.4. If 𝜆 ⊢ 𝑛, then

𝑠𝜆 =
1
𝑛! ∑

𝜋∈𝔖𝑛

𝜒𝜆(𝜋)𝑝𝜋. □

We now have the tools we need to prove a result postponed from Section 5.6.

Theorem7.2.5. Let𝑎0, 𝑎1, . . . , 𝑎𝑛 be a sequence of real numberswith generating function
𝑓(𝑡) = ∑𝑘≥0 𝑎𝑘𝑡𝑘. If 𝑓(𝑡) has only real roots none of which are positive, then the sequence
is log-concave.

Proof. Clearly 𝑎0, 𝑎1, . . . , 𝑎𝑛 is log-concave if and only if 𝑎𝑛, . . . , 𝑎1, 𝑎0 is. And 𝑓(𝑡) has
only real, nonpositive roots if and only if 𝑔(𝑡) = 𝑡𝑛𝑓(1/𝑡) = ∑𝑘≥0 𝑎𝑛−𝑘𝑡𝑘 does. We can
also assume, without loss of generality, that 𝑎0 ≠ 0. Now write 𝑔(𝑡) = 𝑎0ℎ(𝑡) where
ℎ(𝑡) is monic and has the same roots 𝑟1, . . . , 𝑟𝑛 as 𝑔(𝑡). So applying Lemma 7.1.4 to ℎ(𝑡)
and multiplying by 𝑎0 we get

𝑎𝑘 = 𝑎0 𝑒𝑘(−𝑟1, . . . , −𝑟𝑛)
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for 0 ≤ 𝑘 ≤ 𝑛. Now let 𝜆 = (𝑘, 𝑘) and use Theorem 7.2.3(b) to obtain

𝑎2𝑘 − 𝑎𝑘−1𝑎𝑘+1 = det[ 𝑎𝑘 𝑎𝑘+1
𝑎𝑘−1 𝑎𝑘

]

= det[ 𝑎0 𝑒𝑘(−𝑟1, . . . , −𝑟𝑛) 𝑎0 𝑒𝑘+1(−𝑟1, . . . , −𝑟𝑛)
𝑎0 𝑒𝑘−1(−𝑟1, . . . , −𝑟𝑛) 𝑎0 𝑒𝑘(−𝑟1, . . . , −𝑟𝑛)

]

= 𝑎20 𝑠(𝑘,𝑘)𝑡(−𝑟1, . . . , −𝑟𝑛).
Since 𝑠𝜆(𝐱) has nonnegative coefficients and−𝑟𝑖 ≥ 0 for all 𝑖, we have 𝑎2𝑘−𝑎𝑘−1𝑎𝑘+1 ≥
0, which is what we wished to show. □

7.3. Hooklengths

In this sectionwewill derive formulae for counting standard Young tableaux and semi-
standard Young tableaux of a given shape. These expressions will be based on the sizes
of certain subsets of the Young diagram called hooks.

Given a Young diagram 𝜆, a cell 𝑐 = (𝑖, 𝑗) ∈ 𝜆 has hook
𝐻𝑐 = 𝐻𝑖,𝑗 = {(𝑖′, 𝑗) ∈ 𝜆 ∣ 𝑖′ ≥ 𝑖} ∪ {(𝑖, 𝑗′) ∈ 𝜆 ∣ 𝑗′ ≥ 𝑗}.

The partition 𝜆 = (7, 7, 6, 6, 4) is displayed on the left in Figure 7.5 and the cells in the
hook 𝐻2,3 are marked with dotted lines. The hooklength of 𝑐 = (𝑖, 𝑗) is

ℎ𝑐 = ℎ𝑖,𝑗 = #𝐻𝑐.
Using the previous example, we have ℎ2,3 = 8. And on the right in the same figure, we
have displayed the hooklengths of all the cells for the shape (2, 2, 1). It is not hard to
show that
(7.9) ℎ𝑖,𝑗 = 𝜆𝑖 + 𝜆𝑡𝑗 − 𝑖 − 𝑗 + 1.

There is a beautiful formula for the number of standard Young tableau of given
shape due to Frame, Robinson, and Thrall [29]. We will give a probabilistic proof of

4 2

3 1

1

Figure 7.5. The hook 𝐻2,3 in 𝜆 = (72, 62, 4) and the hooklengths of 𝜆 = (22, 1)
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this result discovered by Greene, Nijenhuis, andWilf [35], which has the added benefit
of providing an algorithm for choosing an SYT of shape 𝜆 uniformly at random. For
the demonstration we will need the concept of an inner corner of a Young diagram 𝜆
which is a cell 𝑐 at the end of its row and column. Equivalently ℎ𝑐 = 1. The inner
corners of the 𝜆 = (72, 62, 4) in Figure 7.5 are (2, 7), (4, 6), and (5, 4). Note that in any
SYT of shape 𝛼 ⊢ 𝑛 one must have 𝑛 in one of the inner corners of 𝜆.

Theorem 7.3.1 (Hook Formula). If 𝜆 ⊢ 𝑛, then

(7.10) 𝑓𝜆 = 𝑛!
∏(𝑖,𝑗)∈𝜆 ℎ𝑖,𝑗

.

Before proving this result, let us verify it for 𝜆 = (2, 2, 1) ⊢ 5. Using the hook-
lengths in Figure 7.5 we see that

𝑛!
∏(𝑖,𝑗)∈𝜆 ℎ𝑖,𝑗

= 5!
4 ⋅ 3 ⋅ 2 ⋅ 12 = 5

which agrees with the count in Figure 7.1.

Proof. Consider the following algorithm for constructing a standard Young tableau 𝑇
of shape 𝜆. In it, 𝐴 ≔ 𝐵 means that 𝐴 is to be replace by 𝐵.

GNW1 Pick 𝑐 ∈ 𝜆 with probability 1/𝑛.
GNW2 While 𝑐 is not an inner corner, pick 𝑐′ ∈ 𝐻𝑐 − {𝑐} with probability

1/(ℎ𝑐 − 1) and update 𝑐′ ≔ 𝑐.
GNW3 Let 𝑇𝑐 = 𝑛 and update 𝑛 ≔ 𝑛 − 1, 𝜆 ≔ 𝜆 − {𝑐}. If 𝑛 > 0, then return to

GNW1; otherwise terminate.

The sequence of cells chosen in GNW2 is called a trial 𝑡. In Figure 7.6 the solid
dots and lines show a possible trial in 𝜆 = (72, 62, 4) with probability

Pr(𝑡) = 1
30 ⋅

1
7 ⋅

1
4 ⋅

1
1 =

1
840 .

𝑐1 𝑐2

𝑐3 𝑐4

Figure 7.6. A trial in 𝜆 = (72, 62, 4)
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In order to prove (7.10) it suffices to show that for any SYT 𝑇 of shape 𝜆 ⊢ 𝑛, the
probability that GNW1–GNW3 will produce 𝑇 is

(7.11) Pr(𝑇) =
∏(𝑖,𝑗)∈𝜆 ℎ𝑖,𝑗

𝑛! .

We will induct on 𝑛, where the case 𝑛 = 1 is trivial. Suppose (𝛼, 𝜔) is the cell of 𝑇
containing 𝑛. Also let 𝜆′ = 𝜆− {(𝛼, 𝜔)} and let 𝑇 ′ be the tableau of shape 𝜆′ obtained by
removing 𝑛 from 𝑇. Then Pr(𝑇) = Pr(𝛼, 𝜔) ⋅ Pr(𝑇 ′) where Pr(𝛼, 𝜔) is the probability
that a trial ends at (𝛼, 𝜔). Note that the hooklengths of 𝑇 ′ are the same as those in 𝑇
except for the ones in row 𝛼 or column𝜔which have each been decreased by one. Also,
we can assume by induction that Pr(𝑇 ′) has the desired form. So it suffices to show
that, using ℎ′𝑖,𝑗 for the hooklengths in 𝑇 ′,

Pr(𝛼, 𝜔) =
∏(𝑖,𝑗)∈𝜆 ℎ𝑖,𝑗/𝑛!

∏(𝑖,𝑗)∈𝜆′ ℎ′𝑖,𝑗/(𝑛 − 1)!

= 1
𝑛 ∏

1≤𝑖<𝛼

ℎ𝑖,𝜔
ℎ𝑖,𝜔 − 1 ∏

1≤𝑗<𝜔

ℎ𝛼,𝑗
ℎ𝛼,𝑗 − 1

= 1
𝑛 ∏

1≤𝑖<𝛼
(1 + 1

ℎ𝑖,𝜔 − 1) ∏
1≤𝑗<𝜔

(1 + 1
ℎ𝛼,𝑗 − 1)

= 1
𝑛 ∑

𝐼⊆[𝛼−1]
𝐽⊆[𝜔−1]

∏
𝑖∈𝐼

1
ℎ𝑖,𝜔 − 1∏𝑗∈𝐽

1
ℎ𝛼,𝑗 − 1.

We will prove that this last expression equals Pr(𝛼, 𝜔) by giving a probabilistic in-
terpretation to each summand as follows. Given a trial 𝑐1 = (𝑖1, 𝑗1), 𝑐2 = (𝑖2, 𝑗2), . . . , 𝑐𝑚
= (𝑖𝑚, 𝑗𝑚) = (𝛼, 𝜔) we define its row and column projections to be the sets 𝐼′ =
{𝑖1, 𝑖2, . . . , 𝑖𝑚} and 𝐽′ = {𝑗1, 𝑗2, . . . , 𝑗𝑚}, respectively. For the trial in Figure 7.6 we have
𝐼′ = {2, 4} and 𝐽′ = {3, 5, 6} corresponding to the solid and dotted lines in the dia-
gram. Note that since we assume the trial ends at (𝛼, 𝜔) we always have 𝛼 = max 𝐼′
and 𝜔 = max 𝐽′. Let 𝐼 = 𝐼′− {𝛼} and 𝐽 = 𝐽′− {𝜔}. Let Pr(𝐼′, 𝐽′) be the probability that a
trial ending at (𝛼, 𝜔) has row and column projections 𝐼′ and 𝐽′, respectively. We claim
that

(7.12) Pr(𝐼′, 𝐽′) = 1
𝑛∏𝑖∈𝐼

1
ℎ𝑖,𝜔 − 1∏𝑗∈𝐽

1
ℎ𝛼,𝑗 − 1.

If this is true, then we are done since, by definition of the probabilities which are in-
volved, Pr(𝛼, 𝜔) = ∑𝐼′,𝐽′ Pr(𝐼′, 𝐽′) which is the same as the sum at the end of the pre-
vious paragraph.

To prove the claim, we induct on𝑚, the number of cells in the trial. If𝑚 = 1, then
this is clearly true since then 𝐼 = 𝐽 = ∅ and 1/𝑛 is the probability of picking (𝛼, 𝜔) as
the only cell of the trial. If 𝑚 > 1, then the trial must begin by going from (𝑖1, 𝑗1) to
either (𝑖2, 𝑗1) or (𝑖1, 𝑗2). So

Pr(𝐼′, 𝐽′) = 1
ℎ𝑖1,𝑗1 − 1[Pr(𝐼

′ − 𝑖1, 𝐽′) + Pr(𝐼′, 𝐽′ − 𝑗1)].
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Letting 𝑃 be the right-hand side of (7.12) we have, by induction, that
Pr(𝐼′ − 𝑖1, 𝐽′) = (ℎ𝑖1,𝜔 − 1)𝑃

and
Pr(𝐼′, 𝐽′ − 𝑗1) = (ℎ𝛼,𝑗1 − 1)𝑃.

It is also easy to show, using (7.9), that
(7.13) ℎ𝑖1,𝑗1 − 1 = (ℎ𝑖1,𝜔 − 1) + (ℎ𝛼,𝑗1 − 1).
Thus

Pr(𝐼′, 𝐽′) = 1
ℎ𝑖1,𝑗1 − 1[(ℎ𝑖1,𝜔 − 1)𝑃 + (ℎ𝛼,𝑗1 − 1)𝑃] = 𝑃

as desired. □

Wenow derive a generating function for semistandard Young tableaux𝑇 of a given
shape 𝜆 by the sum of the parts which is denoted |𝑇| = ∑(𝑖,𝑗)∈𝜆 𝑇𝑖,𝑗 . It will be conve-
nient to consider a related type of array. A reverse plane partition (RPP) of shape 𝜆 is a
filling 𝑅 of the Young diagram of 𝜆with elements of ℕ such that the rows and columns
weakly increase. (The term “reverse” comes from the fact that ordinary partitions of 𝑛
are written in weakly decreasing, rather than increasing, order.) The first row of Fig-
ure 7.7 contains a list of six RPPs. We use notation for semistandard Young tableaux
in the obvious way applied to reverse plane partitions. Let rpp𝑛(𝜆) be the number of
reverse plane partitions 𝑅 with sh 𝑅 = 𝜆 and |𝑅| = 𝑛. We note that there is a bijec-
tion 𝑇 ↦ 𝑅 where 𝑇 is an SSYT, 𝑅 is an RPP, and sh 𝑇 = sh𝑅 = 𝜆, given by letting
𝑅𝑖,𝑗 = 𝑇𝑖,𝑗 − 𝑖 for all (𝑖, 𝑗) ∈ 𝜆. Notice that in this case |𝑅| = |𝑇| + ∑𝑖 𝑖𝜆𝑖. So finding
the generating function for RPPs is equivalent to finding the one for SSYT. The former
generating function was first derived by Stanley [84]. The algorithmic proof we give is
due to Hillman and Grassl [43].

Theorem 7.3.2. For any partition 𝜆 we have

(7.14) ∑
𝑛≥0

rpp𝑛(𝜆)𝑥𝑛 = ∏
(𝑖,𝑗)∈𝜆

1
1 − 𝑥ℎ𝑖,𝑗

.

Proof. By Lemma 3.4.1, the right-hand side of (7.14) is theweight-generating function
for the product

𝑆 = ⨉
(𝑖,𝑗)∈𝜆

{{ℎ𝑚𝑖,𝑗
𝑖,𝑗 ∣ 𝑚𝑖,𝑗 ≥ 0}}

where if we have a multiset𝑀 ∈ 𝑆, then wt𝑀 = 𝑥∑(𝑖,𝑗)∈𝜆𝑚𝑖,𝑗ℎ𝑖,𝑗 . Note that even if two
hooks have the same length, they contribute to different components of the product. So
we need a weight-preserving bijection between RPPs 𝑅 and multisets of hooklengths
𝑀.

Given 𝑅, we find the hooklengths in𝑀 by producing a series of RPPs
(7.15) 𝑅 = 𝑅0, 𝑅1, . . . , 𝑅𝑚
where𝑅𝑚 is the all-zeroRPP and, at each stage,𝑅𝑘 is obtained from𝑅𝑘−1 by subtracting
one from all the elements of 𝑅𝑘−1 along a path 𝑝𝑘 which is constructed so that |𝑝𝑘| =
ℎ𝑖𝑘,𝑗𝑘 for some (𝑖𝑘, 𝑗𝑘).

The preliminary version made available with permission of the publisher, the American Mathematical Society



234 7. Counting with Symmetric Functions

𝑅𝑘 ∶ 1 2 2 2
3 3 3
3

1 1 1 1
2 2 3
2

0 0 0 0
1 2 3
1

0 0 0 0
1 2 2
1

0 0 0 0
1 1 1
1

0 0 0 0
0 0 0
0

ℎ𝑖𝑘,𝑗𝑘 ∶ ℎ1,1 ℎ1,1 ℎ2,3 ℎ2,2 ℎ2,1

Figure 7.7. The Hillman–Grassl Algorithm

Given 𝑅, we find the path 𝑝 = 𝑝1 as follows.
HG1 Start 𝑝 at (𝑎, 𝑏) which is the northeastmost cell in 𝑅 such that 𝑅𝑎,𝑏 ≠ 0.
HG2 Continue 𝑝 by

(𝑖, 𝑗) ∈ 𝑝 ⟹ { (𝑖, 𝑗 − 1) ∈ 𝑝 if 𝑇𝑖,𝑗−1 = 𝑇𝑖,𝑗 ,
(𝑖 + 1, 𝑗) ∈ 𝑝 otherwise.

HG3 Terminate 𝑝 when trying to apply HG2 leads to (𝑖 + 1, 𝑗) ∉ 𝜆.
Note that HG2 amounts to saying that 𝑝 moves down unless forced to move left so as
not to violate the weakly increasing condition on the rows once the ones are subtracted
from 𝑅. Note also that the termination condition in HG3 forces 𝑝 to be at the bottom
of some column 𝑐. Since all southwest lattice paths from (𝑎, 𝑏) to the bottom of column
𝑐 have the same length, we must have |𝑝| = ℎ𝑎,𝑐. One also needs to check that the
algorithm is well-defined in that the output array is actually an RPP; that is, it has
weakly increasing rows and columns. But this verification will be left as an exercise.

To illustrate, let 𝑅 be the first RPP in Figure 7.7. Then using HG1–HG3 returns the
path given by the dots in

• • •
• •
•

and upon subtraction one obtains the second RPP in the figure. Notice that we have
subtracted a total of ℎ1,1 = 6 as indicated on the bottom line. The rest of the figure
illustrates finding the other RPPs in the sequence (7.15). So, in this case,

𝑅 ↦ 𝑀 = {{ℎ21,1, ℎ2,3, ℎ2,2, ℎ2,1}}.

To reverse the procedure and find an inverse map, we first need to determine in
what order hooklengths are removed from 𝑅 to form 𝑀. We claim that ℎ𝑖′,𝑗′ was re-
moved before ℎ𝑖″,𝑗″ in the hook decomposition of 𝑅 if and only if
(7.16) 𝑖′ < 𝑖″ or 𝑖′ = 𝑖″ and 𝑗′ ≥ 𝑗″.
It is easy to see that this is a total order on the cells of 𝜆, so it suffices to prove the forward
direction. Andby transitivity, one can reduce to the casewhenℎ𝑖″,𝑗″ is removeddirectly
after ℎ𝑖′,𝑗′ . Let 𝑅′ and 𝑅″ be the reverse plane partitions from which ℎ𝑖′,𝑗′ and ℎ𝑖″,𝑗″
were removed using paths 𝑝′ and 𝑝″, respectively. Since entries decrease in passing
from 𝑅′ to 𝑅″, the initial condition in HG1 forces 𝑖′ ≤ 𝑖″. If this inequality is strict,
then we are done. If 𝑖′ = 𝑖″, then we assert that every cell on 𝑝″ is weakly left of a cell
of 𝑝′. So if 𝑝′ ends in column 𝑗′, then 𝑝″ must end in a column 𝑗″ ≤ 𝑗′ as claimed.
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The assertion is proven by induction, for suppose (𝑖, ℎ) ∈ 𝑝″ isweakly left of (𝑖, 𝑗) ∈
𝑝′ so that ℎ ≤ 𝑗. If the next step of 𝑝′ is to (𝑖 + 1, 𝑗), then 𝑝″ will enter row 𝑖 + 1 still
weakly left of column 𝑗. If the next step of 𝑝′ is to (𝑖, 𝑗−1), then the given cell of 𝑝″ will
still be weakly left if ℎ < 𝑗. And if ℎ = 𝑗, then 𝑝″ must move to (𝑖, 𝑗 − 1) as well since
𝑝′ only moves left if 𝑇′𝑖,𝑗−1 = 𝑇′𝑖,𝑗 , and after subtraction we will also have 𝑇″𝑖,𝑗−1 = 𝑇″𝑖,𝑗 .
So the assertion, and hence (7.16), holds.

To construct the inverse map, given a multiset 𝑀, we arrange its elements in a
sequence according to (7.16):

ℎ𝑖1,𝑗1 , ℎ𝑖2,𝑗2 , . . . , ℎ𝑖𝑚,𝑗𝑚 .
From this, we construct a sequence of RPPs

𝑅𝑚, 𝑅𝑚−1, . . . , 𝑅0 = 𝑅
where 𝑅𝑚 is the all-zero RPP and 𝑅𝑘−1 is obtained by adding a one to a total of ℎ𝑖𝑘,𝑗𝑘
elements of 𝑅𝑘 for 𝑘 = 𝑚,𝑚− 1, . . . , 1. Given an RPP 𝑅, we add back ℎ𝑎,𝑐 ones along a
reverse path 𝑟 defined as follows.

GH1 Start 𝑟 at the bottom cell in column 𝑐 of 𝑅.
GH2 Continue 𝑟 by

(𝑖, 𝑗) ∈ 𝑟 ⟹ { (𝑖, 𝑗 + 1) ∈ 𝑟 if 𝑇𝑖,𝑗+1 = 𝑇𝑖,𝑗 ,
(𝑖 − 1, 𝑗) ∈ 𝑟 otherwise.

GH3 Terminate 𝑟 when it passes through the rightmost cell in row 𝑎.
Note that this is a step-by-step reversal of the construction of the (forward) path in
HG1–HG3. So this will be an inverse map provided that it is well-defined, that is, pro-
vided that in GH3 the reverse path actually reaches the target cell in row 𝑎. This is
forced by (7.16) and the proof of this implication is left to the reader. We also leave as
an exercise the check that adding back ones along the reverse path yields an RPP. □

7.4. 𝑃-partitions

It is natural to wonder if there is any relationship between equations (7.10) and (7.14).
In fact, the latter can be used to derive the former. In order to do this, we will need to
develop the theory of 𝑃-partitions, 𝑃 being a poset, which is due to Stanley [84].

We start with the central concept of compatibility of a permutation and a function.
A function 𝑓∶ [𝑛] → ℕ is compatible with a permutation 𝜋 = 𝜋1 . . . 𝜋𝑛 ∈ 𝔖𝑛 if

C1 𝑓(𝜋1) ≥ 𝑓(𝜋2) ≥ ⋯ ≥ 𝑓(𝜋𝑛) and
C2 𝑓(𝜋𝑖) > 𝑓(𝜋𝑖+1) whenever 𝑖 ∈ Des 𝜋.

By way of example, suppose 𝜋 = 37814526. It is easy to check that 𝑓∶ [8] → ℕ defined
by
(7.17) 𝑓(3) = 𝑓(7) = 𝑓(8) = 21, 𝑓(1) = 𝑓(4) = 20, 𝑓(5) = 10, 𝑓(2) = 𝑓(6) = 0
is compatible with 𝜋 since

𝑓(𝜋1), 𝑓(𝜋2), . . . , 𝑓(𝜋8) = 21 ≥ 21 ≥ 21 > 20 ≥ 20 ≥ 10 > 0 ≥ 0.

The preliminary version made available with permission of the publisher, the American Mathematical Society



236 7. Counting with Symmetric Functions

For 𝜋 ∈ 𝔖𝑛, let

𝒞(𝜋) = {𝑓∶ [𝑛] → ℕ ∣ 𝑓 is compatible with 𝜋}.

These sets partition the set of all functions from [𝑛] to ℕ.

Lemma 7.4.1. Every 𝑓∶ [𝑛] → ℕ is compatible with a unique 𝜋 ∈ 𝔖𝑛. Thus

(7.18) {𝑓 ∣ 𝑓∶ [𝑛] → ℕ} = ⨄
𝜋∈𝔖𝑛

𝒞(𝜋).

Proof. We first show how, given 𝑓, we can construct a 𝜋 with which 𝑓 is compatible.
The reader may wish to follow the construction using the example 𝑓 in (7.17). Let the
image of 𝑓 be the set 𝑆 = {𝑠1 > 𝑠2 > ⋯ > 𝑠𝑘} ⊂ ℕ. Since 𝑓 is weakly decreasing on 𝜋 by
condition C1, those 𝑟with 𝑓(𝑟) = 𝑠1must come first in 𝜋. Furthermore, such 𝑟must be
arranged in increasing order since, if not, then there would be a descent which would
force two of these 𝑟 to have distinct images by C2. Similar considerations show that the
next elements in 𝜋must be those such that 𝑓(𝑟) = 𝑠2 in increasing order, and so forth.
Since all of the choices made in constructing 𝜋 are forced on us by the definition, the
permutation is unique and we have proved the first statement of the proposition.

As for (7.18), the uniqueness statement just proved shows that the union is disjoint.
And existence of a compatible 𝜋 for each 𝑓 shows containment of the left-hand side
in the right. The other containment is trivial since each 𝒞(𝜋) consists of functions
𝑓∶ [𝑛] → ℕ. □

Define the size of 𝑓∶ [𝑛] → ℕ to be

(7.19) |𝑓| =
𝑛
∑
𝑖=1

𝑓(𝑖).

Continuing our example

|𝑓| = 21 + 21 + 21 + 20 + 20 + 10 + 0 + 0 = 113.

It will also be instructive to consider the following subsets of𝒞(𝜋)where themaximum
of a function is the maximum of the values in its image

𝒞𝑚(𝜋) = {𝑓 ∈ 𝒞(𝜋) ∣ max 𝑓 ≤ 𝑚}.

There are nice generating functions associated with 𝒞(𝜋) and 𝒞𝑚(𝜋).

Lemma 7.4.2. For any 𝜋 ∈ 𝔖𝑛 we have

(7.20) ∑
𝑓∈𝒞(𝜋)

𝑥|𝑓| = 𝑥maj𝜋

(1 − 𝑥)(1 − 𝑥2)⋯ (1 − 𝑥𝑛)

and

(7.21) ∑
𝑚≥0

#𝒞𝑚(𝜋)𝑥𝑚 = 𝑥des𝜋
(1 − 𝑥)𝑛+1 .
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Proof. We will prove the first equality as the demonstration of the second is similar
and so is left as an exercise. The basic idea behind the proof is the same as used in
the demonstration of Theorem 1.3.4 where one adds or subtracts sufficient amounts to
turn weak inequalities into strict ones or vice versa. An example will follow the proof.

Let 𝜋 = 𝜋1𝜋2 . . . 𝜋𝑛 with Des𝜋 = {𝑑1 < 𝑑2 < ⋯ < 𝑑𝑘}. We will construct a
bijection 𝜙∶ 𝒞(𝜋) → Λ𝑛 where Λ𝑛 is the set of all partitions 𝜆 satisfying the length
restriction ℓ(𝜆) ≤ 𝑛. Given 𝑓 ∈ 𝒞(𝜋), we will construct a sequence of functions 𝑓 =
𝑓0, . . . , 𝑓𝑘 where 𝑓𝑖 will remove the strict inequality restriction at index 𝑑𝑖 from 𝑓𝑖−1. So
let 𝑓1 be obtained from 𝑓 by subtracting one from each of 𝑓(𝜋1), . . . , 𝑓(𝜋𝑑1) and leaving
the other 𝑓 values the same. Similarly, 𝑓2 is constructed from 𝑓1 by subtracting one
from 𝑓1(𝜋1), . . . , 𝑓1(𝜋𝑑2) with other values constant, and so forth. By the end, the only
restrictions on 𝑓𝑘 are that we have 𝑓𝑘(𝜋1) ≥ ⋯ ≥ 𝑓𝑘(𝜋𝑛) ≥ 0. So the nonzero images
of 𝑓𝑘 form a partition 𝜆 ∈ Λ𝑛 and we let 𝜙(𝑓) = 𝜆. This is a bijection as its inverse is
easy to construct. Furthermore, from the definition of the algorithm, it follows that

|𝑓| = |𝑓1| + 𝑑1 = ⋯ = |𝜆| +
𝑘
∑
𝑖=1

𝑑𝑖 = |𝜆| + maj 𝜋.

Now appealing to Corollary 3.5.4 we have

∑
𝑓∈𝒞(𝜋)

𝑥|𝑓| = ∑
𝜆∈Λ𝑛

𝑥|𝜆|+maj𝜋 = 𝑥maj𝜋

(1 − 𝑥)(1 − 𝑥2)⋯ (1 − 𝑥𝑛)

as desired. □

Using our running example, the vector of values of the initial function on 𝜋 is
given by 𝑓 = (21, 21, 21, 20, 20, 10, 0, 0). Since Des𝜋 = {3, 6} our first step is to subtract
one from the first 3 values to obtain 𝑓1 = (20, 20, 20, 20, 20, 10, 0, 0). Next we subtract
one from the first 6 values so that 𝑓2 = (19, 19, 19, 19, 19, 9, 0, 0). Taking the nonzero
components gives 𝜆 = (19, 19, 19, 19, 19, 9).

We now have all the tools needed to find generating functions for partitions whose
parts are distributed over a poset. Let 𝑃 be a partial order on the set [𝑛]. In order to
distinguish the usual total order on integers from the partial order in 𝑃, we will use
𝑖 ≤ 𝑗 for the former and 𝑖 ⊴ 𝑗 for the latter. So in the poset on the left in Figure 7.8
we have 3 ⊲ 2, but 2 < 3 as integers. If 𝑃 is a poset on [𝑛], then a 𝑃-partition is a map

1 3

2

4

15 3 7

25

40

Figure 7.8. A poset 𝑃 on [4] on the left and a 𝑃-partition on the right
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𝑓∶ 𝑃 → ℕ such that

PP1 𝑖 ⊴ 𝑗 implies 𝑓(𝑖) ≥ 𝑓(𝑗) and
PP2 𝑖 ⊴ 𝑗 and 𝑖 > 𝑗 implies 𝑓(𝑖) > 𝑓(𝑗).

So PP1 says that 𝑓 is weakly decreasing on 𝑃, while PP2 means that 𝑓 is strictly de-
creasing on “descents” of 𝑃. A 𝑃-partition for the poset in Figure 7.8 is shown on the
right with the values of 𝑓 circled. Note that by transitivity, it suffices to assume that
PP1 and PP2 hold when 𝑖 is covered by 𝑗. Let

Par 𝑃 = {𝑓∶ 𝑃 → ℕ ∣ 𝑓 is a 𝑃-partition}.
For the poset in Figure 7.8 we have

Par 𝑃 = {𝑓∶ [4] → ℕ ∣ 𝑓(1) ≥ 𝑓(2), 𝑓(3) > 𝑓(2), 𝑓(2) ≥ 𝑓(4)}.
We will also need the Jordan–Hölder set of an (arbitrary) poset 𝑃 which is

ℒ(𝑃) = {𝜋 ∣ 𝜋 is a linear extension of 𝑃}.
Note that if 𝑃 is a poset on [𝑛], then ℒ(𝑃) ⊆ 𝔖𝑛. Continuing the Figure 7.8 example,
ℒ(𝑃) = {1324, 3124}. The next result, while not hard to prove, is crucial, as its name
suggests.

Lemma 7.4.3 (Fundamental Lemma of 𝑃-Partitions). Let 𝑃 be a poset on [𝑛]. Then we
have 𝑓 ∈ Par 𝑃 if and only if 𝑓 ∈ 𝒞(𝜋) for some 𝜋 ∈ ℒ(𝑃). Thus

Par 𝑃 = ⨄
𝜋∈ℒ(𝑃)

𝒞(𝜋).

Proof. We will just prove the forward implication as the reverse is similar. And the
proof of the equation for Par 𝑃 is also omitted as it follows the same lines as for (7.18).
So suppose 𝑓 ∈ Par 𝑃. We know from the first part of Lemma 7.4.1 that 𝑓 is compatible
with a unique 𝜋 ∈ 𝔖𝑛. So we just need to show that 𝜋 ∈ ℒ(𝑃); that is, if 𝑖 ⊲ 𝑗, then 𝑖
should appear before 𝑗 in 𝜋. Assume, to the contrary, that we have
(7.22) 𝜋 = . . . 𝑗 . . . 𝑖 . . .
being the order of the two elements in 𝜋. Since 𝑓 ∈ Par 𝑃 and 𝑖 ⊲ 𝑗 we must have
𝑓(𝑖) ≥ 𝑓(𝑗) by condition PP1. But C1 and the form of 𝜋 in (7.22) force 𝑓(𝑗) ≥ 𝑓(𝑖).
Thus 𝑓(𝑖) = 𝑓(𝑗). This equality together with (7.22) and C2 imply 𝑗 < 𝑖. But now we
have 𝑖 ⊲ 𝑗 and 𝑖 > 𝑗 as well as 𝑓(𝑖) = 𝑓(𝑗) which contradicts P2. This is the desired
contradiction. □

We now translate the previous result in terms of generating functions. Just as with
compatible functions, use the notation

Par𝑚 𝑃 = {𝑓 ∈ Par 𝑃 ∣ max 𝑓 ≤ 𝑚}.

Theorem 7.4.4. For any poset 𝑃 on [𝑛] we have

(7.23) ∑
𝑓∈Par𝑃

𝑥|𝑓| =
∑𝜋∈ℒ(𝑃) 𝑥maj𝜋

(1 − 𝑥)(1 − 𝑥2)⋯ (1 − 𝑥𝑛)
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and

(7.24) ∑
𝑚≥0

| Par𝑚 𝑃| 𝑥𝑚 =
∑𝜋∈ℒ(𝑃) 𝑥des𝜋

(1 − 𝑥)𝑛+1 .

Proof. We prove (7.23), leaving (7.24) as an exercise. Using the previous lemma and
then (7.20) yields

∑
𝑓∈Par𝑃

𝑥|𝑓| = ∑
𝜋∈ℒ(𝑃)

∑
𝑓∈𝒞(𝜋)

𝑥|𝑓| =
∑𝜋∈ℒ(𝑃) 𝑥maj𝜋

(1 − 𝑥)(1 − 𝑥2)⋯ (1 − 𝑥𝑛)

which is what we wished to demonstrate. □

As a check, consider the poset 𝑃 which is the chain 1 ⊲ 2 ⊲ . . . ⊲ 𝑛. Then the only
inequalities satisfied by 𝑓 ∈ Par 𝑃 are 𝑓(1) ≥ 𝑓(2) ≥ ⋯ ≥ 𝑓(𝑛) ≥ 0. So 𝑓 corresponds
to a partition 𝜆 with at most 𝑛 parts. On the other hand ℒ(𝑃) consists of the single
permutation 𝜋 = 12 . . . 𝑛 withmaj 𝜋 = 0. So (7.23) becomes

(7.25) ∑
ℓ(𝜆)≤𝑛

𝑥|𝜆| = 1
(1 − 𝑥)(1 − 𝑥2)⋯ (1 − 𝑥𝑛)

which agrees with Corollary 3.5.4. Of course, this cannot be considered a new proof of
the corollary since it was used in the demonstration of (7.20). But at least it suggests
we haven’t made any mistakes!

Another case is the chain 𝑛 ⊲ 𝑛 − 1 ⊲ . . . ⊲ 1. Now the 𝑓 ∈ Par 𝑃 satisfy the
inequalities 𝑓(𝑛) > 𝑓(𝑛 − 1) > ⋯ > 𝑓(1) ≥ 0. The set ℒ(𝑃) still contains a unique
element, but it is 𝜋 = 𝑛 . . . 21 which has

maj 𝜋 = 1 + 2 +⋯+ (𝑛 − 1) = (𝑛2).

Plugging into (7.23) we see that

(7.26) ∑
𝑓∈Par𝑃

𝑥|𝑓| = 𝑥(𝑛2)
(1 − 𝑥)(1 − 𝑥2)⋯ (1 − 𝑥𝑛) .

The reader may find it instructive to write down the bijection which permits one to
derive this equation from (7.25). This map is a special case of the one used in the proof
of (7.20) but it is easier to see what is going on in this simple case.

The timehas come to fulfill our promise from the beginning of this section to derive
the Hook Formula, (7.10), from the generating function for reverse plane partitions,
(7.14). Let 𝜆 be the Young diagram of a partition of 𝑛. We turn 𝜆 into a poset 𝑃𝜆 by
partially ordering the cells of 𝜆 componentwise: (𝑖, 𝑗) ⊴ (𝑖′, 𝑗′) whenever 𝑖 ≤ 𝑖′ and
𝑗 ≤ 𝑗′. See Figure 7.9 for an example where 𝜆 = (4, 3, 1). So 𝑃𝜆 is formed from the
Young diagram of 𝜆 by rotating 135∘ counterclockwise and imposing a grid of covers.
Note that #ℒ(𝑃𝜆) = 𝑓𝜆 because there is a simple bijection between SYT 𝑇 of shape 𝜆
and linear extensions of 𝑃𝜆: each tableau𝑇 corresponds to a linear extension of the cells
𝑐1, . . . , 𝑐𝑛 where they are ordered so that 𝑐𝑖 is the cell of 𝑇 containing 𝑖 for 1 ≤ 𝑖 ≤ 𝑛.
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𝜆 𝑃𝜆 𝑃∗𝜆

Figure 7.9. A Young diagram and associated posets

Now consider the poset dual 𝑃∗𝜆 and label its elements with the numbers in [𝑛]
in any way which corresponds to a linear extension of 𝑃∗𝜆 as described in the previous
paragraph for 𝑃𝜆. It is easy to see that the 𝑃∗𝜆 -partitions are precisely the reverse plane
partitions of shape 𝜆. (The use of the dual corresponds to these plane partitions being
“reverse”.) And clearly we still have #ℒ(𝑃∗𝜆 ) = 𝑓𝜆. Combining (7.14) and (7.23) yields.

∏
(𝑖,𝑗)∈𝜆

1
1 − 𝑥ℎ𝑖,𝑗

= ∑
𝑛≥0

rpp𝑛(𝜆)𝑥𝑛 =
𝑝(𝑥)

(1 − 𝑥)(1 − 𝑥2)⋯ (1 − 𝑥𝑛)

where 𝑝(𝑥) = ∑𝜋∈ℒ(𝑃∗
𝜆)
𝑥maj𝜋. Thus

𝑓𝜆 = 𝑝(1) = lim
𝑥→1

(1 − 𝑥)(1 − 𝑥2)⋯ (1 − 𝑥𝑛)
∏(𝑖,𝑗)∈𝜆 1 − 𝑥ℎ𝑖,𝑗

= 𝑛!
∏(𝑖,𝑗)∈𝜆 ℎ𝑖,𝑗

which is the Hook Formula.

7.5. The Robinson–Schensted–Knuth correspondence

This section will be devoted to proving the following important identity.

Theorem 7.5.1. For any given 𝑛 ≥ 0 we have
(7.27) ∑

𝜆⊢𝑛
(𝑓𝜆)2 = 𝑛! .

From the point of view of representation theory this is just the special case of equa-
tion (A.9) in the appendix where𝐺 = 𝔖𝑛 and the dimensions are given by (A.7). How-
ever, we wish to give a bijective proof of (7.27). This map was discovered in two very
different forms by Robinson [75] and Schensted [81]. It is the latter description which
will be presented here. We will also see that this algorithm and the corresponding
identity can be generalized from standard to semistandard Young tableaux.

To prove (7.27), it suffices to construct a bijection

(7.28) 𝜋 RS↦ (𝑃,𝑄)
between permutations 𝜋 ∈ 𝔖𝑛 and pairs of SYT (𝑃, 𝑄) of the same shape 𝜆 ⊢ 𝑛. The
heart of this construction will be amethod of inserting a positive integer into a tableau.
A partial Young tableau (PYT) is a filling of a shape with distinct positive integers such
that the rows and columns increase. A PYT is standard precisely when its entries are
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𝑃 = 1 3 6 9
2 8 10
4
7

1 3 6 9
2 8 10
4
7

← 𝟓 1 3 𝟓 9
2 8 10
4
7

← 𝟔
1 3 5 9
2 𝟔 10
4
7

← 𝟖

1 3 5 9
2 6 10
4 𝟖
7

= 𝑟5(𝑃).

Figure 7.10. Inserting 𝑥 = 5 into a partial tableau 𝑃

[𝑛] for some 𝑛. A partial tableau 𝑃 is shown at the top in Figure 7.10. Now given a PYT
𝑃 and a positive integer 𝑥 ∉ 𝑃, we insert 𝑥 into 𝑃 using the following algorithm:

RS1 Set 𝑅 ≔ the first row of 𝑃.
RS2 While 𝑥 is less than some element of row 𝑅, let 𝑦 be the leftmost such

element and replace 𝑦 by 𝑥 in𝑅. Repeat this stepwith𝑅 ≔ the row below
𝑅 and 𝑥 ≔ 𝑦.

RS3 Now 𝑥 is greater than every element of 𝑅, so place 𝑥 at the end of this
row and terminate.

In step RS2 we say that 𝑥 bumps 𝑦.
An example of inserting 5 into the PYT in Figure 7.10 is given in the second row

of the figure. Elements being bumped are written in boldface and the notation 𝑅 ← 𝑥
means that 𝑥 is being inserted in row 𝑅. If 𝑃′ is the result of inserting 𝑥 into 𝑃 by rows,
then we write

𝑟𝑥(𝑃) = 𝑃′.
The reader should check that this operation is well-defined in that 𝑃′ is still a PYT.

There is a second operation needed to describe the map (7.28) which will be used
for the second component. An outer corner of a shape 𝜆 (or of a tableau of that shape)
is a cell (𝑖, 𝑗) ∉ 𝜆 such that 𝜆 ∪ {(𝑖, 𝑗)} is the Young diagram of a partition. The outer
corners of 𝑄 in Figure 7.11 are (1, 5), (2, 3), (3, 2), and (5, 1). Suppose we have a partial
tableau𝑄, 𝑦 > max𝑄, and (𝑖, 𝑗)which is an outer corner of𝑄. The tableau𝑄′ obtained
by placing 𝑦 in 𝑄 at (𝑖, 𝑗) has all the entries of 𝑄 together with 𝑄′

𝑖,𝑗 = 𝑦. The choice of
an outer corner and the condition on 𝑦 ensure that 𝑄′ is still a PYT. See Figure 7.11 for
an example of a placement.

We are now ready to describe (7.28). Consider 𝜋 as being given in two-line nota-
tion (1.7)

𝜋 = 1 2 . . . 𝑛
𝜋1 𝜋2 . . . 𝜋𝑛

.

We will construct a sequence of pairs of tableaux

(7.29) (𝑃0, 𝑄0) = (∅, ∅), (𝑃1, 𝑄1), (𝑃2, 𝑄2), . . . , (𝑃𝑛, 𝑄𝑛) = (𝑃, 𝑄)
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𝑄 = 1 2 6 7
4 5
8
9

𝑄′ = 1 2 6 7
4 5
8 10
9

Figure 7.11. The result 𝑄′ of placing 10 at (3, 2) in 𝑄

by starting with the empty pair and then letting

𝑃𝑘 = 𝑟𝜋𝑘(𝑃𝑘−1),
𝑄𝑘 = place 𝑘 in 𝑄𝑘−1 at the cell where 𝑟𝜋𝑘 terminates,

for 𝑘 = 1, 2, . . . , 𝑛. We then let (𝑃, 𝑄) = (𝑃𝑛, 𝑄𝑛). Note that by construction we have
sh 𝑃𝑘 = sh𝑄𝑘 for all 𝑘. A complete example is worked out in Figure 7.12 where the
elements of the lower line of 𝜋 as well as their counterparts in the 𝑃𝑘 are set in bold. If
RS(𝜋) = (𝑃, 𝑄), we also write 𝑃(𝜋) = 𝑃 and call 𝑃 the 𝑃-tableau or insertion tableau of
𝜋. Similarly we use the notation 𝑄(𝜋) = 𝑄 for the 𝑄-tableau of 𝜋 which is also called
the recording tableau.

We now come to our main theorem about this procedure.

Theorem 7.5.2. The map

𝜋 RS↦ (𝑃,𝑄)
is a bijection between permutations 𝜋 ∈ 𝔖𝑛 and pairs (𝑃, 𝑄) of SYT of the same shape
𝜆 ⊢ 𝑛.

Proof. It suffices to construct the inverse. This will be done by reversing the algorithm
step by step. So we will build the sequence (7.29) backwards, starting from (𝑃𝑛, 𝑄𝑛) =
(𝑃, 𝑄) and, in the process, recover 𝜋. Assume that we have reached (𝑃𝑘, 𝑄𝑘) and let
(𝑖, 𝑗) be the cell containing 𝑘 in 𝑄𝑘. To obtain 𝑄𝑘−1 we merely erase 𝑘 from 𝑄𝑘. As for
finding 𝑃𝑘−1 and 𝜋𝑘, we note that (𝑖, 𝑗)must have been the cell at which the insertion
into𝑃𝑘−1 terminated. Sowe use the following deletion procedure to undo this insertion.

SR1 Let 𝑥 be the (𝑖, 𝑗) entry of 𝑃𝑘 and erase it from 𝑃𝑘. Set 𝑅 ≔ the (𝑖 − 1)st
row of 𝑃𝑘.

SR2 While 𝑅 is not the zeroth row of 𝑃𝑘, let 𝑦 be the rightmost element of 𝑅
smaller than 𝑥 and replace 𝑦 by 𝑥 in 𝑃𝑘. Repeat this step with 𝑅 ≔ the
row above 𝑅 and 𝑥 ≔ 𝑦.

SR3 Now 𝑅 is the zeroth row so let 𝜋𝑘 = 𝑥 and terminate.
It should be clear from the constructions that insertion and deletion are inverses of
each other. So we are done. □

In order to generalize (7.27), we will consider two sets of variables 𝐱 = {𝑥1, 𝑥2, . . . }
and 𝐲 = {𝑦1, 𝑦2, . . . }. The next result is called Cauchy’s Identity and it can be found in
Littlewood’s text [58].
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𝜋 = 1 2 3 4 5 6 7
𝟓 𝟐 𝟑 𝟔 𝟒 𝟏 𝟕 .

𝐏𝐤 ∶ ∅ 𝟓 𝟐
𝟓

𝟐 𝟑
𝟓

𝟐 𝟑 𝟔
𝟓

𝟐 𝟑 𝟒
𝟓 𝟔

𝟏 𝟑 𝟒
𝟐 𝟔
𝟓

𝟏 𝟑 𝟒 𝟕
𝟐 𝟔
𝟓

= 𝐏

𝑄𝑘 ∶ ∅, 1 1
2

1 3
2

1 3 4
2

1 3 4
2 5

1 3 4
2 5
6

1 3 4 7
2 5
6

= 𝑄

Figure 7.12. The Robinson–Schensted map

Theorem 7.5.3. We have

(7.30) ∑
𝜆
𝑠𝜆(𝐱)𝑠𝜆(𝐲) = ∏

𝑖,𝑗≥1

1
1 − 𝑥𝑖𝑦𝑗

where the sum is over all partitions 𝜆 of any nonnegative integer.

To give a bijective proof of this formula, we must interpret each side as a weight-
generating function. On the left, we clearly have the weight ogf for pairs (𝑇, 𝑈) of
semistandard tableaux of the same shape 𝜆 where

wt(𝑇,𝑈) = 𝐱𝑈𝐲𝑇 .

For the right-hand side, consider the setMat of all infinite matrices 𝑀 with rows
and columns indexed by ℙ, entries in ℕ, and only finitely many entries nonzero. A
matrix𝑀 ∈ Mat is shown in the upper-left corner of Figure 7.13 where all entries not
shown are zero. Weight these matrices by

wt𝑀 = ∏
𝑖,𝑗≥1

(𝑥𝑖𝑦𝑗)𝑀𝑖,𝑗 .

Our example matrix has weight
wt𝑀 = (𝑥1𝑦2)2(𝑥1𝑦3)3(𝑥2𝑦1)(𝑥2𝑦2)2(𝑥3𝑦1)(𝑥3𝑦3) = 𝑥51𝑥32𝑥23𝑦21𝑦42𝑦43.

𝑀 =
⎡
⎢
⎢
⎢
⎢
⎣

0 2 3 0 ⋯
1 2 0 0 ⋯
1 0 1 0 ⋯
0 0 0 0 ⋯
⋮ ⋮ ⋮ ⋮

⎤
⎥
⎥
⎥
⎥
⎦

↦ 𝜋 = 1 1 1 1 1 2 2 2 3 3
2 2 3 3 3 1 2 2 1 3

RSK↦ (𝑇,𝑈) = (
1 1 2 2 3 3
2 2 3
3

, 1 1 1 1 1 3
2 2 2
3

)

Figure 7.13. The Robinson–Schensted–Knuth map
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So, by the Sum and Product Rules for weight ogfs

∑
𝑀∈Mat

wt𝑀 = ∏
𝑖,𝑗≥1

∑
𝑘≥0

(𝑥𝑖𝑦𝑗)𝑘 = ∏
𝑖,𝑗≥1

1
1 − 𝑥𝑖𝑦𝑗

.

Thus we need a weight-preserving bijection

(7.31) 𝑀 RSK↦ (𝑇,𝑈)
between matrices𝑀 ∈ Mat and pairs (𝑇, 𝑈) ∈ SSYT(𝜆) × SSYT(𝜆) as 𝜆 varies over all
partitions. Such a map was given by Knuth [49].

It will be convenient to reinterpret the elements ofMat as two-line arrays. Given
𝑀 ∈ Mat, we create an array 𝜋 such that

𝑀𝑖,𝑗 = the number of times a column 𝑖
𝑗 occurs in 𝜋,

and the columns are arranged in lexicographic order with the top row taking prece-
dence. The two-line array 𝜋 associated with the matrix in Figure 7.13 is displayed at
the top right.

We can now define the map (7.31). Given𝑀, construct its two-line array 𝜋. Now,
starting with the empty tableau, insert the elements of the lower row of 𝜋 sequentially
to form 𝑇 using exactly the same rules RS1–RS3 as before. Note that this algorithm
never used the assumption that 𝑥 ∉ 𝑃 and so it applies equally well to semistandard
tableaux. As one does the insertions, one places the corresponding elements of the
upper row of 𝜋 in 𝑈 so that the two tableaux always have the same shape. Figure 7.13
displays the final output of this algorithm on the bottom line. The reader should now
be able to fill in the details of the proof of the following theorem.
Theorem 7.5.4. The map

𝑀 RSK↦ (𝑇,𝑈)
is a weight-preserving bijection betweenmatrices𝑀 ∈ Mat and pairs (𝑇, 𝑈) of SSYT such
that sh 𝑇 = st𝑈. □

We will use the notation RSK(𝑀) = RSK(𝜋) = (𝑇,𝑈) where 𝜋 is the two-line
array corresponding to𝑀.

7.6. Longest increasing and decreasing subsequences

One of Schensted’s motivations [81] for introducing the algorithm which bears his
name was to study the lengths of longest increasing and decreasing subsequences of
a permutation. He proved that these quantities were given by the length of the first
row and the length of the first column, respectively, of the associated tableaux. In this
section, we will prove his result. Along the way we will see what effect reversing a
sequence has on its insertion tableau.

Consider a permutation 𝜋 = 𝜋1𝜋2 . . . 𝜋𝑛 ∈ 𝔖𝑛. Then an increasing subsequence of
𝜋 of length 𝑙 is 𝜋𝑖1 < 𝜋𝑖2 < ⋯ < 𝜋𝑖𝑙 where 𝑖1 < 𝑖2 < ⋯ < 𝑖𝑙. A decreasing subsequence
is defined similarly with the inequalities among the 𝜋𝑖𝑗 reversed. We let

lis 𝜋 = length of a longest increasing subsequence of 𝜋
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and
lds 𝜋 = length of a longest decreasing subsequence of 𝜋.

If 𝜋 = 5236417 is the permutation in Figure 7.12, then 𝜋 has increasing subsequences
2347 and 2367 of length 4 and none longer, so lis(𝜋) = 4. Similarly, lds(𝜋) = 3 because
of the subsequence 531, among others. The reader will notice from Figure 7.12 that the
first row of the insertion tableau 𝑃 (or of the recording tableau𝑄) has length 4 = lis(𝜋)
and the length of the first column is 3 = lds 𝜋. This is always the case.

Theorem 7.6.1. If 𝜋 RS↦ (𝑃,𝑄) with sh 𝑃 = sh𝑄 = 𝜆, then

lis 𝜋 = 𝜆1.

Proof. Let 𝑃𝑘−1 be the tableau formed after inserting 𝜋1 . . . 𝜋𝑘−1. We claim that if 𝜋𝑘
enters 𝑃𝑘−1 in column 𝑗, then the length of a longest increasing subsequence of 𝜋 end-
ing with 𝜋𝑘 is 𝑗. Note that the claim proves the theorem since after inserting all of 𝜋we
will have an increasing sequence of length 𝜆1 ending at the element 𝑃1,𝜆1 . And there is
no longer subsequence since there is no element of 𝑃 in cell (1, 𝜆1 + 1).

To prove the claim, we induct on 𝑘, where the case 𝑘 = 1 is trivial. For the induc-
tion step, suppose 𝑥 is the element in cell (1, 𝑗 − 1) of 𝑃𝑘−1. Then there is an increasing
subsequence 𝜎 of 𝜋1 . . . 𝜋𝑘−1 of length 𝑗 − 1 ending in 𝑥. Since 𝜋𝑘 entered 𝑃𝑘−1 in a
column to the right of 𝑥 we must have 𝑥 < 𝜋𝑘−1 by RS2 and RS3. It follows that the
concatenation 𝜎𝜋𝑘 is an increasing subsequence of 𝜋 of length 𝑗 ending in 𝜋𝑘.

To show that 𝑗 is the length of a longest such subsequence suppose, towards a
contradiction, that 𝜏𝜋𝑘 is increasing of length greater than 𝑗. Let 𝑦 be the last element
of 𝜏. Then, by induction, when 𝑦 was inserted it entered in a column 𝑗′ ≥ 𝑗. Since
𝑦 < 𝜋𝑘 and rows increase, the element in cell (1, 𝑗) just after 𝑦’s insertion must be less
than 𝜋𝑘. And since elements only bump elements larger than themselves, the element
in cell (1, 𝑗) in 𝑃𝑘−1 must still be smaller than 𝜋𝑘. But this contradicts the fact that 𝜋𝑘
enters in column 𝑗 since it must bump an element larger than itself. □

Note that the previous proof did not show that the first row of 𝑃 is actually an
increasing subsequence of𝜋. In fact, this assertion is false as can be seen in Figure 7.12.

To prove our suspicion about lds 𝜋, we need to do insertion by columns. Define
column insertion of 𝑥 ∉ 𝑃, where 𝑃 is a partial tableau, using RS1–RS3 but with “row”
replaced by “column” everywhere and “leftmost” by “uppermost”. Denote the result of
column insertion by 𝑐𝑥(𝑃). Amazingly, the row and column operators commute.

Lemma 7.6.2. Let 𝑃 be a partial tableau and 𝑥, 𝑦 distinct positive integers with 𝑥, 𝑦 ∉ 𝑃.
Then

𝑐𝑦𝑟𝑥(𝑃) = 𝑟𝑥𝑐𝑦(𝑃).

Proof. Let
𝑚 = max({𝑥, 𝑦} ⊎ 𝑃).
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𝑃 =

𝑥
𝑚

𝑚

𝑥

Figure 7.14. The case 𝑦 = 𝑚 in the proof of Lemma 7.6.2

Note that by RS2 and RS3, 𝑚 cannot bump any element during the insertion process.
There are two cases depending on which set𝑚 comes from.

Case 1: 𝑦 = 𝑚. (The case 𝑥 = 𝑚 is similar.) Represent 𝑃 schematically as on the
left in Figure 7.14. Since𝑚 is the maximum element, 𝑐𝑚 will insert𝑚 at the end of the
first column of whatever tableau to which the operator is applied. Suppose 𝑥 is the last
element to be bumped during the insertion 𝑟𝑥(𝑃), and suppose 𝑥 comes to rest in cell
𝑢. If 𝑢 is at the end of the first column, then it is easy to check that 𝑐𝑚𝑟𝑥(𝑃) and 𝑟𝑥𝑐𝑚(𝑃)
are both the middle diagram in Figure 7.14. Similarly, if 𝑢 is not at the end of the first
column, then both insertions result in the diagram on the right in Figure 7.14.

Case 2: 𝑚 ∈ 𝑃. We induct on #𝑃. The case when #𝑃 = 1 is easy to check. Let
𝑃 = 𝑃 − {𝑚}, that is, 𝑃 with𝑚 erased from its cell. Using the fact that𝑚 never bumps
another element as well as induction gives

𝑐𝑦𝑟𝑥(𝑃) − {𝑚} = 𝑐𝑦𝑟𝑥(𝑃) = 𝑟𝑥𝑐𝑦(𝑃) = 𝑟𝑥𝑐𝑦(𝑃) − {𝑚}.

So to finish the proof, we need to show that 𝑚 is in the same position in both 𝑐𝑦𝑟𝑥(𝑃)
and 𝑟𝑥𝑐𝑦(𝑃). Let 𝑥 be the last element displaced during 𝑟𝑥(𝑃) and let 𝑢 be the cell it
occupies at the end of the insertion. Similarly define 𝑦 and 𝑣 for 𝑐𝑥(𝑃). We now have
two subcases depending on the relative locations of 𝑢 and 𝑣.

Subcase 2a: 𝑢 = 𝑣. The first two schematic diagrams in Figure 7.15 illustrate 𝑟𝑥(𝑃)
and 𝑐𝑦(𝑃) in this case. If (1, 𝑗1), (2, 𝑗2), . . . , (𝑘, 𝑗𝑘) are the cells whose elements change
during a row insertion, then it is easy to prove that 𝑗1 ≥ 𝑗2 ≥ ⋯ ≥ 𝑗𝑘. So during
𝑟𝑥(𝑃) the only columns which are disturbed are those weakly right of the column of 𝑢.
Similarly, the insertion 𝑐𝑦(𝑃) only changes rows which are weakly below the row of 𝑢.
It follows that the insertion paths for 𝑟𝑥 and 𝑐𝑦 in either order do not intersect until they
come to 𝑢.

If 𝑥 < 𝑦 (the case 𝑦 < 𝑥 is similar), then 𝑐𝑦𝑟𝑥(𝑃) and 𝑟𝑥𝑐𝑦(𝑃) will both be as in the
last diagram in Figure 7.15. Note also that 𝑥 and 𝑦 must be in the same column since
this is clearly true for 𝑐𝑦𝑟𝑥(𝑃). Now if𝑚was not in cell 𝑢 in 𝑃, then it will not be bumped
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𝑥𝑟𝑥(𝑃) = 𝑦𝑐𝑦(𝑃) = 𝑥
𝑦

Figure 7.15. The subcase 𝑢 = 𝑣 in the proof of Lemma 7.6.2

by either insertion and so will remain in its cell. If𝑚 is in cell 𝑢, then it is easy to check
that it will be bumped into the column just to the right of 𝑢 in both orders of insertion.
This completes this subcase.

Subcase 2b: 𝑢 ≠ 𝑣. This subcase is taken care of using arguments similar to those
in the rest of the proof, so it is left as an exercise. □

If𝜋 = 𝜋1𝜋2 . . . 𝜋𝑛 ∈ 𝔖𝑛, then its reversal (as defined in Exercise 37(a) of Chapter 1)
is 𝜋𝑟 = 𝜋𝑛𝜋𝑛−1 . . . 𝜋1. The insertion tableaux of 𝜋 and 𝜋𝑟 are intimately related.
Theorem 7.6.3. If 𝑃(𝜋) = 𝑃, then 𝑃(𝜋𝑟) = 𝑃𝑡 where 𝑡 denotes transpose.

Proof. Clearly, inserting a single element into an empty tableau gives the same result
whether it be by rows or columns. Using this and the previous lemma repeatedly

𝑃(𝜋𝑟) = 𝑟𝜋1 ⋯𝑟𝜋𝑛−1𝑟𝜋𝑛(∅)
= 𝑟𝜋1 ⋯𝑟𝜋𝑛−1𝑐𝜋𝑛(∅)
= 𝑐𝜋𝑛𝑟𝜋1 ⋯𝑟𝜋𝑛−1(∅)
⋮
= 𝑐𝜋𝑛𝑐𝜋𝑛−1 ⋯𝑐𝜋1(∅)
= 𝑃𝑡

which is the conclusion we seek. □

We can now characterize lds(𝜋) in terms of the shape of its output tableaux.

Corollary 7.6.4. If 𝜋 RS↦ (𝑃,𝑄) with sh 𝑃 = sh𝑄 = 𝜆, then
lds 𝜋 = 𝜆𝑡1,

where 𝜆𝑡 is the transpose of 𝜆.

Proof. Reversing a permutation interchanges increasing anddecreasing subsequences
so that lds 𝜋 = lis 𝜋𝑟. By Theorem 7.6.1, lis 𝜋𝑟 is the length of the first row of 𝑃(𝜋𝑟).
And 𝑃(𝜋𝑟) = 𝑃𝑡 by Theorem 7.6.3. So lds 𝜋 is the length of the first column of 𝑃, as
desired. □

The preliminary version made available with permission of the publisher, the American Mathematical Society



248 7. Counting with Symmetric Functions

We note that Greene [34] has proved the following extension of Schensted’s theo-
rem.

Theorem 7.6.5. Let lis𝑘(𝜋) be the longest length of a subsequence of 𝜋 which is a union
of 𝑘 disjoint increasing subsequences. If 𝜋 RS↦ (𝑃,𝑄) with sh 𝑃 = sh𝑄 = 𝜆, then

lis𝑘(𝜋) = 𝜆1 + 𝜆2 +⋯+ 𝜆𝑘
and similarly for decreasing subsequences.

Interestingly, there does not seem to be an easy interpretation of the individual 𝜆𝑖
in the shape of the output tableaux. For example, if we consider 𝜋 = 247951368, then

𝑃(𝜋) = 1 3 5 6 8
2 4 9
7

.

So 𝜆1 +𝜆2 = 5+ 3 = 8 and 2479 ⊎ 1368 is a union of two increasing subsequences of 𝜋
and is of length 8. But one can check that there is no length 8 subsequence which is a
disjoint union of two increasing subsequences of lengths 5 and 3.

7.7. Differential posets

In this section we will give a second proof of (7.27) based on properties of Young’s
lattice, 𝑌 . This technique can be generalized to a wider class of posets which were
introduced and further studied by Stanley [88,90]. These posets are called differential
because of an identity which they satisfy.

To connect the summation side of (7.27) with 𝑌 , we will use a simple bijection be-
tween standard Young tableaux of shape 𝜆 and saturated ∅–𝜆 chains in 𝑌 . Specifically,
a 𝑇 ∈ SYT(𝜆) where 𝜆 ⊢ 𝑛 will be associated with the chain 𝐶 ∶ ∅ = 𝜆0 ⋖ 𝜆1 ⋖ ⋯ ⋖
𝜆𝑛 = 𝜆 where 𝜆𝑘 is the shape of the subtableau of 𝑇 containing the elements [𝑘] for
0 ≤ 𝑘 ≤ 𝑛. An example will be found in Figure 7.16. To go the other way, given a chain
𝐶, we define 𝑇 to be the tableau which has 𝑘 in the unique cell of the skew partition
𝜆𝑘/𝜆𝑘−1 where skew partitions were defined in (3.7). It is easy to see that these two
maps are inverses of each other. From this discussion, it should be clear that (𝑓𝜆)2 is
the number of pairs of saturated ∅–𝜆 chains in 𝑌 .

In order to work with this observation, we will use a common technique for turn-
ing sets into vector spaces. If 𝑋 is a set, then consider the set of finite formal linear
combinations

(7.32) ℂ𝑋 = {∑
𝑥∈𝑋

𝑐𝑥𝑥 ∣ 𝑐𝑥 ∈ ℂ for all 𝑥 and only finitely many 𝑐𝑥 ≠ 0} .

𝑇 = 1 3
2 4
5

𝐶 ∶ ∅ ⋖ ⋖ ⋖ ⋖ ⋖

Figure 7.16. The bijection between SYT and saturated chains in Young’s lattice
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𝐷( ) =
+

𝑈( ) =
+ +

Figure 7.17. The down and up operators in Young’s lattice

Now ℂ𝑋 is a vector space with vector addition and scalar multiplication given by

∑
𝑥
𝑐𝑥𝑥 +∑

𝑥
𝑑𝑥𝑥 = ∑

𝑥
(𝑐𝑥 + 𝑑𝑥)𝑥,

𝑐∑
𝑥
𝑐𝑥𝑥 = ∑

𝑥
𝑐𝑐𝑥𝑥.

Note that 𝑋 is a basis for ℂ𝑋 .
We will define two linear operators on ℂ𝑌 . The down operator 𝐷∶ ℂ𝑌 → ℂ𝑌 is

defined by
𝐷(𝜆) = ∑

𝜆−⋖𝜆
𝜆−

and linear extension. An example is given in Figure 7.17. It will be useful to think of
𝐷(𝜆) as the sum of all partitions which can be reached by taking a walk of length one
downward from 𝜆 in 𝑌 viewed as a graph. Note that 𝐷(∅) is the empty sum so that
𝐷(∅) = 0, the zero vector. Similarly, the up operator 𝑈∶ ℂ𝑌 → ℂ𝑌 is

𝑈(𝜆) = ∑
𝜆+⋗𝜆

𝜆+.

Again, Figure 7.17 contains an example and a similar walk interpretation holds.
We claim that

(7.33) 𝐷𝑛𝑈𝑛(∅) = (∑
𝜆⊢𝑛

(𝑓𝜆)2)∅.

Indeed, the coefficient of 𝜆 ⊢ 𝑛 in𝑈𝑛(∅) is the number of walks from ∅ to 𝜆 in 𝑌 which
always go up. But such a walk is just a saturated ∅–𝜆 chain so that, by the previous
bijection,

𝑈𝑛(∅) = ∑
𝜆⊢𝑛

𝑓𝜆𝜆.

By the same token
𝐷𝑛𝜆 = 𝑓𝜆∅

since walks which always go down also follow saturated chains. So applying 𝐷𝑛 to the
expression for 𝑈𝑛(∅) and using linearity gives the desired equality.
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Tomake use of (7.33), we need a closer investigation of the structure of 𝑌 . Say that
𝜆 ∈ 𝑌 covers 𝑘 elements if #{𝜆− ∣ 𝜆− ⋖ 𝜆} = 𝑘. Similarly define the phrase “is covered
by 𝑘 elements”. Also say that 𝜆, 𝜇 ∈ 𝑌 cover 𝑙 elements if #{𝜈 ∣ 𝜈 ⋖ 𝜆, 𝜇} = 𝑙 and ditto
for being covered.

Proposition 7.7.1. The poset 𝑌 has the following two properties for all distinct 𝜆, 𝜇 ∈ 𝑌 .
(a) 𝜆 covers 𝑘 elements if and only if it is covered by 𝑘 + 1 elements.
(b) 𝜆, 𝜇 cover 𝑙 elements if and only if they are covered by 𝑙 elements. In this case

𝑙 ≤ 1.

Proof. (a) It suffices to prove the forward direction since then the number of elements
which cover 𝜆 is uniquely determined by the number which it covers. The elements
which 𝜆 covers are precisely those obtained by removing an inner corner of 𝜆. And
those which cover 𝜆 are the partitions obtained by adding an outer corner to 𝜆. But
inner corners and outer corners alternate along the southeast boundary of 𝜆, beginning
with an outer corner at the end of the first row and ending with an outer corner at the
end of the first column. The result follows.

(b) Again, we only need to prove the forward implication. There are two cases. If
there is an element 𝜈 ⋖ 𝜆, 𝜇, then, since 𝑌 is ranked, it must be rk 𝜆 = rk 𝜇 = 𝑛 for
some 𝑛 and rk 𝜈 = 𝑛− 1. Since 𝑌 is a lattice, it follows that 𝜈 = 𝜆∧𝜇 = 𝜆∩𝜇 is unique
and so 𝑙 = 1. Also |𝜆 ∩ 𝜇| = |𝜈| = 𝑛 − 1 so that |𝜆 ∨ 𝜇| = |𝜆 ∪ 𝜇| = 𝑛 + 1. It follows that
𝜆, 𝜇 are covered by a unique element, namely 𝜆 ∨ 𝜇.

If there is no element covered by both 𝜆, 𝜇, then similar considerations show that
no element covers 𝜆, 𝜇. We leave this verification to the reader. □

We can translate this result in terms of the down and up operators.

Proposition 7.7.2. The operators 𝐷,𝑈 on 𝑌 satisfy

(7.34) 𝐷𝑈 − 𝑈𝐷 = 𝐼

where 𝐼 is the identity map.

Proof. By linearity, it suffices to show that this equation is true when applied to a basis
element 𝜆 ∈ ℂ𝑌 . First consider 𝐷𝑈(𝜆). The coefficient of 𝜇 in this expression is the
number of walks 𝜆 to 𝜇 which first go up an edge of 𝑌 and then come down an edge
(possibly the same one). These are precisely the walks of length 2 going through some
element covering both 𝜆 and 𝜇. From the previous proposition, we get

𝐷𝑈(𝜆) = (𝑘 + 1)𝜆 +∑𝜇

where 𝑘 + 1 elements cover 𝜆 and the sum is over all 𝜇 ≠ 𝜆 such that 𝜇, 𝜆 are covered
by a common element. In a similar way

𝑈𝐷(𝜆) = 𝑘𝜆 +∑𝜇

where the sum is over the same set of 𝜇. Subtracting the two equalities gives (7.34). □
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Note that (7.34) is reminiscent of an identity from calculus. Consider a differen-
tiable function 𝑓(𝑡). Let 𝐷 stand for differentiation and let 𝑈 be multiplication by 𝑡.
Then

𝐷𝑈(𝑓(𝑡)) = (𝑡𝑓(𝑡))′ = 𝑓(𝑡) + 𝑡𝑓′(𝑡) = 𝐼(𝑓(𝑡)) + 𝑈𝐷(𝑓(𝑡))
which is just (7.34) with the negative termmoved to the other side of the equation. We
will need an extension of (7.34) where 𝑈 is replaced by an arbitrary operator which is
a polynomial in 𝑈.

Corollary 7.7.3. For any polynomial 𝑝(𝑡) ∈ ℂ[𝑡] we have
𝐷𝑝(𝑈) = 𝑝′(𝑈) + 𝑝(𝑈)𝐷

where 𝑝′(𝑡) is the derivative of 𝑝(𝑡).

Proof. By linearity it suffices to prove this result for the powers𝑈𝑛 for 𝑛 ≥ 0. The base
case 𝑛 = 0 is easy to check. Assuming the result is true for 𝑛 and then applying (7.34)
we obtain

𝐷𝑈𝑛+1 = (𝐷𝑈𝑛)𝑈
= (𝑛𝑈𝑛−1 + 𝑈𝑛𝐷)𝑈
= 𝑛𝑈𝑛 + 𝑈𝑛(𝐼 + 𝑈𝐷)
= (𝑛 + 1)𝑈𝑛 + 𝑈𝑛+1𝐷

as desired. □

We are now ready to reprove (7.27) which we restate here for ease of reference:

(7.35) ∑
𝜆⊢𝑛

(𝑓𝜆)2 = 𝑛! .

Proof. Because of (7.33), it suffices to show that 𝐷𝑛𝑈𝑛(∅) = 𝑛! ∅. We induct on 𝑛,
where the case 𝑛 = 0 is trivial since 𝐷0𝑈0 = 𝐼. Applying Corollary 7.7.3, the fact that
𝐷∅ = 0, and induction gives

𝐷𝑛𝑈𝑛(∅) = 𝐷𝑛−1(𝐷𝑈𝑛)(∅)
= 𝐷𝑛−1(𝑛𝑈𝑛−1 + 𝑈𝑛𝐷)(∅)
= 𝑛𝐷𝑛−1𝑈𝑛−1(∅) + 0(∅)
= 𝑛(𝑛 − 1)! ∅

which is what we wished to show. □

Stanley generalized these ideas using the following definition. Call a poset 𝑃 dif-
ferential if it satisfies the following three properties where 𝑥, 𝑦 are distinct elements
of 𝑃.

DP1 𝑃 is ranked.
DP2 If 𝑥 covers 𝑘 elements, then it is covered by 𝑘 + 1 elements.
DP3 If 𝑥, 𝑦 cover 𝑙 elements, then they are covered by 𝑙 elements.
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From what we have proved, 𝑌 is a differential poset. Another example is given in
Exercise 29. In fact, Stanley defined a more general type of poset called 𝑟-differential
which will be studied in Exercise 30.

As with Young’s lattice, we can show that the parameter 𝑙must satisfy 𝑙 ≤ 1.

Lemma 7.7.4. If poset 𝑃 satisfies DP1 and DP3, then 𝑙 ≤ 1.

Proof. As noted in the proof of Proposition 7.7.1, DP3 implies that its converse is also
true. Suppose the lemma is false and pick a pair 𝑥, 𝑦 with 𝑙 ≥ 2. Since 𝑃 is ranked by
DP1, we must have rk 𝑥 = rk 𝑦. Pick the counterexample pair 𝑥, 𝑦 to be of minimum
rank and let 𝑥′, 𝑦′ be two of the elements covered by 𝑥, 𝑦. But since 𝑥′, 𝑦′ are covered
by at least two elements, they must cover at least two elements. This contradicts the
fact that we took a minimum-rank pair. □

Wewant to define up and down operators in a differential poset. But to make sure
they are well-defined, the sums need to be finite.

Lemma 7.7.5. If 𝑃 satisfies DP1 and DP2, then its 𝑛th rank Rk𝑛 𝑃 is finite for all 𝑛 ≥ 0.

Proof. We induct on 𝑛. Since 𝑃 is ranked by DP1, it has a 0̂ and so the result holds
for 𝑛 = 0. Assume the lemma through rank 𝑛. Now any 𝑥 ∈ Rk𝑛 𝑃 covers at most
#Rk𝑛−1 𝑃 elements. So, by DP2,

#Rk𝑛+1 𝑃 ≤ (#Rk𝑛 𝑃)(1 + #Rk𝑛−1 𝑃)
which forces Rk𝑛+1 𝑃 to be finite. □

Thus we can define two operators on ℂ𝑃 by
𝐷(𝑥) = ∑

𝑥−⋖𝑥
𝑥−

and
𝑈(𝑥) = ∑

𝑥+⋗𝑥
𝑥+.

The proof of the next result is similar enough to that of Proposition 7.7.2 that it is left
as an exercise.

Proposition 7.7.6. Let 𝑃 be a ranked poset with Rk𝑛 𝑃 finite for all 𝑛 ≥ 0. Then

𝑃 is differential ⟺ 𝐷𝑈 −𝑈𝐷 = 𝐼. □

Also, the reader should be able to generalize the operator proof of (7.27) to the
setting of differential posets and show the following.

Theorem 7.7.7. In any differential poset 𝑃 we have
∑

𝑥∈Rk𝑛 𝑃
(𝑓𝑥)2 = 𝑛!

where 𝑓𝑥 is the number of saturated 0̂–𝑥 chains. □
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The reader might wonder if there is a way to give a bijective proof of this theorem
just as the Robinson–Schensted algorithm provides a bijection for (7.27). This has been
done by Fomin as part of his theory of duality of graded graphs [27,28].

7.8. The chromatic symmetric function

Stanley [91] defined a symmetric function associated with graph colorings which gen-
eralizes the chromatic polynomial. In this section we will prove some of his results
about this function, including expressions for its expansion in themonomial and power
sum bases for Sym.

Let 𝐺 be a graph with vertex set 𝑉 = {𝑣1, . . . , 𝑣𝑛}. Consider a coloring 𝑐∶ 𝑉 → ℙ
of 𝐺 using the positive integers as color set. Then 𝑐 has monomial
(7.36) 𝐱𝑐 = 𝑥𝑐(𝑣1)𝑥𝑐(𝑣2)⋯𝑥𝑐(𝑣𝑛).
For example, if 𝐺 is the graph on the left in Figure 7.18 and 𝑐 is the coloring on the
right, then

𝐱𝑐 = 𝑥𝑐(ᵆ)𝑥𝑐(𝑣)𝑥𝑐(𝑤)𝑥𝑐(𝑧) = 𝑥1𝑥22𝑥4.
Now define the chromatic symmetric function of 𝐺 to be

𝑋(𝐺) = 𝑋(𝐺; 𝐱) = ∑
𝑐∶ 𝑉→ℙ

𝐱𝑐

where the sum is over all proper colorings 𝑐∶ 𝑉 → ℙ. To illustrate, let us return to the
graph of Figure 7.18. Because𝐺 contains a triangle, wemust use three or four colors for
a proper coloring. If we use four different colors, then this will give rise to a monomial
𝑥𝑖𝑥𝑗𝑥𝑘𝑥𝑙 for some distinct 𝑖, 𝑗, 𝑘, 𝑙. And any of the 4!= 24ways of assigning these colors
to the four vertices is proper. Since this count is independent of which four colors we
use, the contribution of such colorings to 𝑋(𝐺) is 24𝑚14 . If we use three colors, then
one of them must be used twice and so correspond to a monomial 𝑥2𝑖 𝑥𝑗𝑥𝑘 for distinct
𝑖, 𝑗, 𝑘. One copy of color 𝑖must go on vertex𝑤 and the other can be on 𝑢 or 𝑥, giving two
choices. The other two colors can be distributed among the remaining two vertices in
two ways. So these colorings give a term 4𝑚212 . In total 𝑋(𝐺) = 24𝑚14 + 4𝑚212 which
the reader will note is a symmetric function. We will now prove that this is always the
case, as well as showing a connection with the chromatic polynomial of 𝐺.
Proposition 7.8.1. Let 𝐺 be a graph with vertex set 𝑉 .

(a) 𝑋(𝐺) ∈ Sym𝑛 where 𝑛 = #𝑉 .
(b) If we set 𝑥1 = ⋯ = 𝑥𝑡 = 1 and 𝑥𝑖 = 0 for 𝑖 > 𝑡, written 𝐱 = 1𝑡, then

𝑋(𝐺; 1𝑡) = 𝑃(𝐺; 𝑡).

𝐺 =

𝑧 𝑤

𝑢 𝑣

𝑐 =

1 2

2 4

Figure 7.18. A graph and a coloring using ℙ
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Proof. (a) It is clear that 𝐱𝑐 has 𝑛 factors for any coloring 𝑐 so that 𝑋(𝐺) is homoge-
neous of degree 𝑛. To show that it is symmetric, note that any permutation of the colors
of a proper coloring is proper. This means that permuting the subscripts in 𝑋(𝐺) leaves
it invariant; that is, 𝑋(𝐺) is symmetric.

(b) The given substitution results in 𝐱𝑐 = 1 if 𝑐 only uses colors from [𝑡] and 𝐱𝑐 = 0
otherwise. So 𝑋(𝐺; 1𝑡) is just the number of proper colorings 𝑐∶ 𝑉 → [𝑡]. But this was
the definition of 𝑃(𝐺; 𝑡). □

Since 𝑋(𝐺) is symmetric, we can expand it in terms of various bases for the sym-
metric functions and see if the coefficients have any nice combinatorial interpretation.
We start with themonomial basis. To describe the coefficients, we will need some defi-
nitions. If𝐺 = (𝑉, 𝐸) is a graph, then𝑊 ⊆ 𝑉 is independent or stable if there is no edge
of 𝐺 between any pair of vertices of𝑊 . For example, if 𝐺 = 𝑇1 as in Figure 1.9, then
𝑊 = {2, 5, 6} is stable but 𝑊 = {2, 3, 6} is not because of the edge 36. The reason we
care about stable sets is that if 𝑐 is a proper coloring of𝐺, then the set of all vertices with
a given color 𝑟, in other words the vertices in 𝑐−1(𝑟), form a stable set. Similarly, call a
partition 𝜌 = 𝐵1/ . . . /𝐵𝑘 of 𝑉 independent or stable if each block is. Returning to Fig-
ure 1.9, the partition 13/256/4 is stable in𝑇1. The type of a set partition 𝜌 = 𝐵1/ . . . /𝐵𝑘 is
the integer partition 𝜆(𝜌) = (𝜆1, . . . , 𝜆𝑘) obtained by arranging #𝐵1, . . . , #𝐵𝑘 in weakly
decreasing order. To illustrate, 𝜆(1456/27/38) = (4, 2, 2). For a graph 𝐺, let

𝑖𝜆(𝐺) = number of independent partitions of 𝑉 of type 𝜆.
For the graph in Figure 7.18 we have 𝑖14(𝐺) = 1, 𝑖212(𝐺) = 2 and all other 𝑖𝜆(𝐺) =
0. Any proper coloring 𝑐 of 𝐺 induces a stable partition of 𝑉 whose blocks are the
nonempty 𝑐−1(𝑟) for the colors 𝑟 in the color set. Finally, if 𝜆 = (1𝑚1 , 2𝑚1 , . . . , 𝑛𝑚𝑛) is
an integer partition in multiplicity notation, then let

𝜆! = 𝑚1! 𝑚2! ⋯ 𝑚𝑛! .

Theorem 7.8.2. If graph 𝐺 has #𝑉 = 𝑛, then
𝑋(𝐺) = ∑

𝜆⊢𝑛
𝑖𝜆(𝐺)𝜆!𝑚𝜆.

Proof. If 𝜆 = (𝜆1, . . . , 𝜆𝑘), then the coefficient of 𝑥𝜆11 ⋯𝑥𝜆𝑘𝑘 is the coefficient of 𝑚𝜆
since 𝑋(𝐺) is symmetric. And the coefficient of this monomial is the number of proper
colorings 𝑐∶ 𝑉 → [𝑘] where 𝑖 gets used 𝜆𝑖 times for all 𝑖. By the discussion preceding
this theorem, these colorings can be obtained by taking an independent partition 𝜌 ⊢ 𝑉
and then deciding which colors get assigned to which blocks of 𝜌. The number of
choices for 𝜌 is 𝑖𝜆(𝐺). Now any of the𝑚𝑗 colors which are used 𝑗 times can be used on
any of the 𝑚𝑗 blocks of 𝜌 of size 𝑗. The number of such assignments is 𝑚𝑗! and this is
true for all 𝑗. This gives the factor of 𝜆!. □

The expansion of 𝑋(𝐺) in the power sum basis will be found by Möbius inversion.
Let𝐺 = (𝑉, 𝐸) be a graph. Then any spanning subgraph𝐻 can be identified with its set
of edges 𝐸(𝐻) since we have 𝑉(𝐻) = 𝑉(𝐺). To illustrate, for the graph 𝐺 in Figure 3.5
we would identify 𝐹1 with the edge set {12, 24} and 𝐹2 with the edge set {14, 24}. Given
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𝐹 ⊆ 𝐸, we get a partition 𝜌(𝐹) of the vertex set where a block of 𝜌 is the set of vertices
in a component of the corresponding spanning subgraph. Returning to our example,
𝐹1 and 𝐹2 both have partition 𝜌 = 124/3. Let

𝜆(𝐹) = type of the partition 𝜌(𝐹).
In our running example 𝜆(𝐹1) = 𝜆(𝐹2) = (3, 1).

Theorem 7.8.3. If 𝐺 = (𝑉, 𝐸) is a graph, then
𝑋(𝐺) = ∑

𝐹⊆𝐸
(−1)#𝐹𝑝𝜆(𝐹)

where the sum is over all subsets 𝐹 of the edge set of𝐺 and#𝐹 is the number of edges in 𝐹.

Proof. Consider the Boolean algebra 𝐵𝐸 of all subsets of 𝐸 ordered by containment.
Given 𝐹 ⊆ 𝐸, we define the power series

𝛼(𝐹) = ∑
𝑐
𝐱𝑐

where the sum is over all colorings 𝑐∶ 𝑉 → ℙ such that 𝑐(𝑢) = 𝑐(𝑣) for all 𝑢𝑣 ∈ 𝐹.
These are the colorings which are monochromatic on each component of 𝐹’s spanning
subgraph. So if 𝜌(𝐹) = 𝐵1/ . . . /𝐵𝑘, then each 𝐵𝑖 can get any of the colors inℙ. It follows
that

(7.37) 𝛼(𝐹) =
𝑘
∏
𝑖=1

(𝑥#𝐵𝑖
1 + 𝑥#𝐵𝑖

2 +⋯) = 𝑝𝜆(𝐹).

Also define
𝛽(𝐹) = ∑

𝑐
𝐱𝑐

where the sum is over all colorings 𝑐∶ 𝑉 → ℙ such that 𝑐(𝑢) = 𝑐(𝑣) for all 𝑢𝑣 ∈ 𝐹 and
𝑐(𝑢) ≠ 𝑐(𝑣) for 𝑢𝑣 ∈ 𝐸−𝐹. So these colorings are constant on the components of 𝐹 but
also cannot have any other edge of 𝐸monochromatically colored. Given any spanning
subgraph 𝐹′ and a coloring 𝑐 appearing in 𝛼(𝐹′), one can define a unique spanning
subgraph 𝐹 by letting 𝑢𝑣 ∈ 𝐹 if and only if 𝑐(𝑢) = 𝑐(𝑣). By the definition of 𝛼 it is clear
that 𝐹 ⊇ 𝐹′. Also, the definition of 𝐹 implies that 𝑐 is a coloring in the sum for 𝛽(𝐹). It
follows that

𝛼(𝐹′) = ∑
𝐹⊇𝐹′

𝛽(𝐹)

for all 𝐹′ ⊆ 𝐸. Applying Möbius inversion (Theorem 5.5.5) as well as (5.6) and (7.37)
gives

𝛽(∅) = ∑
𝐹∈𝐵𝐸

𝜇(𝐹)𝛼(𝐹) = ∑
𝐹⊆𝐸

(−1)#𝐹𝑝𝜆(𝐹).

But 𝛽(∅) is the generating function for all colorings 𝑑∶ 𝑉 → ℙ such that 𝑑(𝑢) ≠ 𝑑(𝑣)
for 𝑢𝑣 ∈ 𝐸, and these are exactly the proper colorings. Thus 𝛽(∅) = 𝑋(𝐺) and we are
done. □

We end this section with an open question about 𝑋(𝐺). To appreciate it, we first
prove a result about the chromatic polynomial.

The preliminary version made available with permission of the publisher, the American Mathematical Society



256 7. Counting with Symmetric Functions

Proposition 7.8.4. Let 𝑇 be a graph with#𝑉 = 𝑛. We have that 𝑇 is a tree if and only if

𝑃(𝑇; 𝑡) = 𝑡(𝑡 − 1)𝑛−1.

Proof. We will prove the forward direction and leave the reverse implication as an
exercise. If 𝑣 ∈ 𝑉 , then we color 𝑇 by first coloring 𝑣, then all the neighbors of 𝑣, then
all the uncolored vertices which are neighbors of neighbors of 𝑣, etc. The number of
ways to color 𝑣 is 𝑡. Because 𝑇 is connected and acyclic, when coloring each vertex
𝑤 ∈ 𝑉 − {𝑣} we will have 𝑤 adjacent to exactly one already colored vertex. So the
number of colors available for 𝑤 is 𝑡 − 1. The result follows. □

This proposition is sometimes summarized by saying that the chromatic polyno-
mial does not distinguish trees since all trees on 𝑛 vertices have the same polynomial.
Stanley asked if the opposite was true for his chromatic symmetric function.

Question 7.8.5. If 𝑇1 and 𝑇2 are nonisomorphic trees, is it true that 𝑋(𝑇1) ≠ 𝑋(𝑇2)?

It has been checked for trees with up to 23 vertices that the answer to this question
is “yes” and there are other partial results in the literature.

7.9. Cyclic sieving redux

Cyclic sieving phenomena are often associated to results in representation theory. In
this section we will give a second proof of Theorem 6.6.2 using this approach. To do so,
we will assume the reader is familiar with the material in the appendix in this book.
We start by presenting a general paradigm for proving a CSP by using group actions.

Recall that we start with a set 𝑋 , a cyclic group 𝐺 acting on 𝑋 , and a polynomial
𝑓(𝑞) ∈ ℕ[𝑞]. Also, for the rest of this section we let 𝜔 = 𝑒2𝜋𝑖/𝑛. The triple (𝑋, 𝐺, 𝑓(𝑞))
was said to exhibit the cyclic sieving phenomenon if, for all 𝑔 ∈ 𝐺,

(7.38) #𝑋𝑔 = 𝑓(𝛾)

where 𝛾 is a root of unity satisfying 𝑜(𝛾) = 𝑜(𝑔).
To interpret the left side of (7.38), consider the permutation representation ℂ𝑋 of

𝐺. Since 𝑔 ∈ 𝐺 takes each basis element in 𝑋 to another basis element, the matrix [𝑔]𝑋
consists of zeros and ones. And there is a one on the diagonal precisely when 𝑔𝑥 = 𝑥
for 𝑥 ∈ 𝑋 . So this representation has character

(7.39) 𝜒(𝑔) = tr[𝑔]𝑋 = #𝑋𝑔.

As for the right-hand side of (7.38), let ℎ be a generator of 𝐺 where #𝐺 = 𝑛 and
let 𝜔 = 𝜔𝑛. For 𝑖 ≥ 0, let 𝑉 (𝑖) be the irreducible 𝐺-module such that the matrix of ℎ is
[𝜔𝑖] and let its character be 𝜒(𝑖). Suppose 𝑓 = ∑𝑖≥0𝑚𝑖𝑞𝑖 where𝑚𝑖 ∈ ℕ for all 𝑖. Since
the coefficients are nonnegative integers, we can define a corresponding 𝐺-module

𝑉 𝑓 =⨁
𝑖≥0

𝑚𝑖𝑉 (𝑖)
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with character 𝜒𝑓. Let 𝑔 = ℎ𝑗 and 𝛾 = 𝜔𝑗 . Now using (A.1) and the fact that the 𝑉 (𝑖)

are 1-dimensional,
𝜒𝑓(𝑔) = ∑

𝑖≥0
𝑚𝑖𝜒(𝑖)(ℎ𝑗) = ∑

𝑖≥0
𝑚𝑖𝜔𝑖𝑗 = 𝑓(𝜔𝑗) = 𝑓(𝛾)

which is the right side of (7.38). Now appealing to Theorem A.1.4, we have proved the
following result or Reiner, Stanton, and White [72].

Theorem7.9.1. The triple (𝑋, 𝐺, 𝑓(𝑞)) exhibits the cyclic sieving phenomenon if and only
if ℂ𝑋 ≅ 𝑉 𝑓 as 𝐺-modules. □

We will now give a second proof that the triple

(7.40) ((([𝑛]𝑘 )), ⟨(1, 2, . . . , 𝑛)⟩, [
𝑛 + 𝑘 − 1

𝑘 ]
𝑞
)

exhibits the CSP. We will write vectors in boldface to distinguish them from scalars.
To use the previous theorem, any 𝐺-module isomorphic to ℂ𝑋 will suffice. So we will
construct onewhose structure is easy to analyze. Let𝑉 be a vector space of dimension𝑛
andfix a basis𝐵 = {𝐛1, 𝐛2, . . . , 𝐛𝑛} for𝑉 . Let𝑃𝑘(𝐵) be the set of all formal polynomials of
degree 𝑘 using the elements of 𝐵 as variables and the complex numbers as coefficients.
Clearly 𝑃𝑘(𝐵) is a vector space with basis
(7.41) 𝐵′ = {𝐛𝑖1𝐛𝑖2 ⋯𝐛𝑖𝑘 ∣ 1 ≤ 𝑖1 ≤ 𝑖2 ≤ ⋯ ≤ 𝑖𝑘 ≤ 𝑛}
In particular, if one takes 𝑉 = ℂ[𝑛] with the basis 𝐵 = {𝐢 ∣ 𝑖 ∈ [𝑛]}, then we will write
𝑃𝑘(𝑛) for 𝑃𝑘(𝐵). To illustrate,

𝑃2(3) = {𝑐1𝟏𝟏 + 𝑐2𝟐𝟐 + 𝑐3𝟑𝟑 + 𝑐4𝟏𝟐 + 𝑐5𝟏𝟑 + 𝑐6𝟐𝟑 ∣ 𝑐𝑖 ∈ ℂ for 1 ≤ 𝑖 ≤ 6}.
One can turn 𝑃𝑘(𝑛) into a 𝐺𝑛-module for 𝐺𝑛 = ⟨(1, 2, . . . , 𝑛)⟩ by letting
(7.42) 𝑔(𝐢1𝐢2⋯𝐢𝑘) = 𝑔(𝐢1)𝑔(𝐢2)⋯𝑔(𝐢𝑘)
for 𝑔 ∈ 𝐺𝑛 and extending linearly. It should be clear from the definitions that

(7.43) ℂ(([𝑛]𝑘 )) ≅ 𝑃𝑘(𝑛)

as 𝐺𝑛-modules. So we will use the latter in establishing the CSP.
The advantage of using 𝑃𝑘(𝑛) is that it is also a GL𝑛-module. In particular, we

can define the action of 𝑔 ∈ GL𝑛 exactly as in (7.42), where 𝐢𝑗 is thought of as the 𝑗th
coordinate vector and the linear combinations 𝑔(𝐢1), . . . , 𝑔(𝐢𝑘) are multiplied together
formally to get an element of 𝑃𝑘(𝑛). For example, if 𝑛 = 3, 𝑘 = 2, and

𝑔 = [
1 2 0
3 4 0
0 0 −1

] ,

then
𝑔(𝟏𝟑) = 𝑔(𝟏)𝑔(𝟑) = (𝟏 + 3 𝟐)(−𝟑) = −𝟏𝟑 − 3 𝟐𝟑.

It is not hard to show that this is an action. We will also need the fact that if ̃𝐵 is any
other basis for ℂ[𝑛], then the monomials defined by (7.41) (where one replaces each
𝐛𝑖𝑗 by the corresponding element of ̃𝐵) also form a basis for 𝑃𝑘(𝑛).
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We now compute the character of 𝑃𝑘(𝑛). Notice from Corollary A.1.2 that, since
𝐺𝑛 is cyclic, there is a basis 𝐵 = {𝐛1, 𝐛2, . . . , 𝐛𝑛} for ℂ[𝑛] which diagonalizes [𝑔] for all
𝑔 ∈ 𝐺𝑛; say

[𝑔]𝐵 = diag(𝑥1, 𝑥2, . . . , 𝑥𝑛).
To compute the action of 𝐺𝑛 in 𝑃𝑘(𝑛), we use the basis 𝐵′ in (7.41) and see that

𝑔(𝐛𝑖1𝐛𝑖2 ⋯𝐛𝑖𝑘) = 𝑔(𝐛𝑖1)𝑔(𝐛𝑖2)⋯𝑔(𝐛𝑖𝑘) = 𝑥𝑖1𝑥𝑖2 ⋯𝑥𝑖𝑘𝐛𝑖1𝐛𝑖2 ⋯𝐛𝑖𝑘 .

So 𝐵′ diagonalizes this action with

[𝑔]𝐵′ = diag(𝑥𝑖1𝑥𝑖2 ⋯𝑥𝑖𝑘 ∣ 1 ≤ 𝑖1 ≤ 𝑖2 ≤ ⋯ ≤ 𝑖𝑘 ≤ 𝑛).

This gives the character

𝜒′(𝑔) = ∑
1≤𝑖1≤𝑖2≤. . .≤𝑖𝑘≤𝑛

𝑥𝑖1𝑥𝑖2 ⋯𝑥𝑖𝑘 = ℎ𝑘(𝑥1, 𝑥2, . . . , 𝑥𝑛)

which is just a complete homogeneous symmetric polynomial in the eigenvalues. For
example, if 𝑛 = 3 and 𝑘 = 2, then we would have a basis 𝐵 = {𝐚, 𝐛, 𝐜} such that
[𝑔]𝐵 = diag(𝑥1, 𝑥2, 𝑥3). So in 𝑃2(3)

𝑔(𝐚𝐚) = 𝑥21𝐚𝐚, 𝑔(𝐛𝐛) = 𝑥22𝐛𝐛, 𝑔(𝐜𝐜) = 𝑥23𝐜𝐜,
𝑔(𝐚𝐛) = 𝑥1𝑥2𝐚𝐛, 𝑔(𝐚𝐜) = 𝑥1𝑥3𝐚𝐜, 𝑔(𝐛𝐜) = 𝑥2𝑥3𝐛𝐜,

which gives
𝜒′(𝑔) = 𝑥21 + 𝑥22 + 𝑥23 + 𝑥1𝑥2 + 𝑥1𝑥3 + 𝑥2𝑥3.

To prove the CSPwewill need to relate homogeneous symmetric polynomials to 𝑞-
binomial coefficients. This is done via the principal specializationwhich sets 𝑥𝑖 = 𝑞𝑖−1
for 𝑖 ≥ 1.

Proposition 7.9.2. We have the principal specializations

𝑒𝑘(1, 𝑞, . . . , 𝑞𝑛−1) = 𝑞(𝑘2) [ 𝑛
𝑘 ]

𝑞

and

ℎ𝑘(1, 𝑞, . . . , 𝑞𝑛−1) = [ 𝑛 + 𝑘 − 1
𝑘 ]

𝑞
.

Proof. We will prove the identity for ℎ𝑘, leaving the one for 𝑒𝑘 as an exercise. From
the definition of the complete homogeneous symmetric functions we see that

ℎ𝑘(1, 𝑞, . . . , 𝑞𝑛−1) = ∑
0≤𝑗1≤𝑗2≤⋯≤𝑗𝑘≤𝑛−1

𝑞𝑗1𝑞𝑗2 ⋯𝑞𝑗𝑘 .

But a sequence 𝑗1 ≤ 𝑗2 ≤ ⋯ ≤ 𝑗𝑘 corresponds to an integer partition 𝜆 obtained by
listing the nonzero elements of the sequence in weakly decreasing order. Furthermore
𝑞𝑗1𝑞𝑗2 ⋯𝑞𝑗𝑘 = 𝑞|𝜆| and the bounds on the 𝑗𝑖 imply that 𝜆 ∈ ℛ(𝑘, 𝑛 − 1), the set of
partitions contained in a 𝑘 × (𝑛 − 1) rectangle. The equality now follows from Theo-
rem 3.2.5. □
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We are now ready to complete the representation-theoretic demonstration that the
triple (7.40) exhibits the cyclic sieving phenomenon. Consider [(1, 2, . . . , 𝑛)] acting as a
linear transformation on ℂ[𝑛]. Its characteristic polynomial is 𝑥𝑛 − 1 which has roots
1, 𝜔, 𝜔2, . . . , 𝜔𝑛−1. So, by Corollary A.1.2, there is a diagonalizing basis 𝐵 for the action
of 𝐺𝑛 = ⟨(1, 2, . . . , 𝑛)⟩ with

[(1, 2, . . . , 𝑛)]𝐵 = diag(1, 𝜔, 𝜔2, . . . , 𝜔𝑛−1).

Since any 𝑔 ∈ 𝐺𝑛 has the form 𝑔 = (1, 2, . . . , 𝑛)𝑗 for some 𝑗 and since the generator has
been diagonalized, we have

[𝑔]𝐵 = diag(1𝑗 , 𝜔𝑗 , 𝜔2𝑗 , . . . , 𝜔(𝑛−1)𝑗) = diag(1, 𝛾, 𝛾2, . . . , 𝛾𝑛−1)

where 𝛾 = 𝜔𝑖 is a primitive 𝑜(𝑔)th root of unity. But the previous theorem and the
discussion just preceding it show that

𝜒′(𝑔) = ℎ𝑘(1, 𝛾, 𝛾2, . . . , 𝛾𝑛−1) = [ 𝑛 + 𝑘 − 1
𝑘 ]

𝛾

where 𝜒′ is the character of 𝑃𝑘(𝑛). But, by (7.43),

𝜒′(𝑔) = #(([𝑛]𝑘 ))
𝑔

.

Equating the last two displayed equations completes the proof.

Exercises

(1) (a) Show that (7.2) satisfies the definition of a group action.
(b) Show that Sym is an algebra; that is, it is a vector space which is closed under

multiplication of symmetric functions.
(2) Prove Proposition 7.1.2(b).
(3) Prove Theorem 7.1.3(b).
(4) (a) Prove that lexicographic order is a total order on partitions.

(b) Prove that adding parts of a partition makes it larger in lexicographic order.
(c) Prove that lexicographic order on partitions is a linear extension of dominance

order as introduced in Section 1.12.
(d) Prove that the lexicographic order inequalities in the proof of Theorem7.1.3(a)

and (b) can be strengthened to dominance order inequalities.
(e) Show that part (d) is also true in the statement of Theorem 7.2.2.

(5) Show that 𝔖𝑛 is generated by the adjacent transpositions (𝑖, 𝑖 + 1) for 1 ≤ 𝑖 < 𝑛.
Hint: Induct on inv 𝜋 for 𝜋 ∈ 𝔖𝑛.

(6) Consider the proof of Theorem 7.2.3.
(a) Show in part (a) that every path family whose associated permutation is not

the identity must intersect.
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(b) In part (a), provide a description of the inverse of the map from lattice path
families to SSYT. Be sure to prove that it is well-defined and indeed an inverse
to the forward map.

(c) Prove part (b).
(7) Verify that the real sequence 𝑎0, . . . , 𝑎𝑛 is log-concave if and only if 𝑎0/𝑟, . . . , 𝑎𝑛/𝑟

is, where 𝑟 ∈ ℝ − {0}.
(8) Use Theorem 7.2.5 to prove log-concavity of the following sequences.

(a) (𝑛0), (
𝑛
1), . . . , (

𝑛
𝑛).

(b) 𝑐(𝑛, 0), 𝑐(𝑛, 1), . . . , 𝑐(𝑛, 𝑛) (signless first kind Stirling numbers).
(9) Prove equation (7.9).
(10) Prove equation (7.13).
(11) A plane partition of shape 𝜆 is a filling 𝑃 of the cells of 𝜆 with positive integers so

that rows and columnsweakly decrease. Let𝑝𝑝𝑛 be the number of plane partitions
𝑃 (of any shape) such that |𝑃| = 𝑛. Show that

∑
𝑛≥0

𝑝𝑝𝑛𝑥𝑛 =∏
𝑖≥1

1
(1 − 𝑥𝑖)𝑖

in two ways: by taking a limit in (7.14) and by providing a proof in the spirit of the
Hillman–Grassl algorithm.

(12) (a) Prove that the output array of HG1–HG3 is a reverse plane partition.
(b) Prove that (7.16) is a total order.
(c) Show that inGH3of theHillman–Grassl construction, the reverse path𝑝must

reach the rightmost cell in row 𝑎.
(d) Prove that after adding ones along the reverse path, the result is still a reverse

plane partition.
(13) (a) Construct the inverse of the map used in the proof of (7.20).

(b) Prove (7.21).
(c) Prove (7.24).

(14) Complete the proof of Lemma 7.4.3.
(15) Derive (7.26) from (7.25) using a bijection.
(16) (a) Show that the 𝑃∗𝜆 -partitions are exactly the reverse plane partitions of shape 𝜆.

(b) Show that for any finite poset 𝑃 we have #ℒ(𝑃) = #ℒ(𝑃∗).
(17) (a) Let 𝜏 be a poset. Call 𝜏 a rooted tree if it has a 0̂ and its Hasse diagram is a tree

in the graph-theoretic sense of the term. If #𝜏 = 𝑛, then a natural labeling of
𝜏 is an order-preserving bijection 𝜏 → [𝑛]. See Figure 7.19 for an example of
a rooted tree (on the left) and a natural labeling (in the middle). Let 𝑓𝜏 be the
number of natural labelings of 𝜏. Define the hooklength of 𝑣 ∈ 𝜏 to be

ℎ𝑣 = #𝑈(𝑣)
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Figure 7.19. A rooted tree poset, a natural labeling, and its hooklengths

where 𝑈(𝑣) is the upper-order ideal generated by 𝑣. The right-hand tree in
Figure 7.19 lists its hooklengths. Prove that if #𝜏 = 𝑛, then

𝑓𝜏 = 𝑛!
∏𝑣∈𝜏 ℎ𝑣

in two ways: probabilistically and using induction on 𝑛.
(b) The comb is the infinite poset on the left in Figure 7.20. Let 𝐿𝑛 be the set of

lower-order ideals of the comb which have 𝑛 elements. The three elements of
𝐿3 are displayed on the right in Figure 7.20. Note that the last two order ideals
are considered distinct even though they are isomorphic as posets. Show that
#𝐿𝑛 = 𝑓𝑛, the Fibonacci numbers defined in (1.2).

(c) Using the notation of part (a), show that

∑
𝜏∈𝐿𝑛

(𝑓𝜏)2 = 𝑛! .

(18) (a) Show that if 𝑃 is a PYT and 𝑥 ∉ 𝑃, then 𝑃′ = 𝑟𝑥(𝑃) is still a PYT; that is, the
rows and columns of 𝑃′ still increase.

(b) Show that the RSKmap iswell-defined in that𝑇 and𝑈 are both semistandard.
(19) Consider three sets of variables 𝐱 = {𝑥𝑖}𝑖≥1, 𝐲 = {𝑦𝑗}𝑗≥1, and 𝐱𝐲 = {𝑥𝑖𝑦𝑗}𝑖,𝑗≥1. Prove

that
∑
𝜆⊢𝑛

𝑠𝜆(𝐱)𝑠𝜆(𝐲) = 𝑠𝑛(𝐱𝐲)

where the variables in 𝐱𝐲 can be substituted into the Schur function in any order
since 𝑠𝑛 is symmetric. Hint: Use the Cauchy identity, equation (7.30).

⋅⋅⋅

Figure 7.20. The comb and its three lower-order ideals with 3 elements
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(20) Prove Theorem 7.5.4. Hint: First prove that if 𝑇 is an SSYT into which one inserts
𝑥 and 𝑦 in that order with 𝑥 ≤ 𝑦, then the box added to the shape by the insertion
of 𝑦 is strictly to the right of the box for the insertion of 𝑥.

(21) Show that (7.27) can be derived from (7.30) by taking the coefficient of 𝑥1⋯𝑥𝑛𝑦1
⋯𝑦𝑛 on both sides.

(22) Fill in the details of the proof of Lemma 7.6.2.
(23) If 𝜋 is a two-line array, then let �̂� be the upper line and let �̌� be the lower line.

(a) Show that any two-line array 𝜋with entries in ℙ and columns which are lexi-
cographically weakly increasing corresponds to a matrix𝑀 ∈ Mat.

(b) Show that if RSK(𝜋) = (𝑇,𝑈) with sh 𝑇 = sh𝑈 = 𝜆, then
𝜆1 = the length of a longest weakly increasing subsequence of �̌�

by mimicking the proof of Theorem 7.6.1.
(c) Let 𝑇 be a semistandard Young tableau and suppose that the content of 𝑇 is

co 𝑇 = [𝛼1, 𝛼2, . . . , 𝛼𝑘]. The standardization of 𝑇 is the tableau std 𝑇 obtained
by replacing the ones in 𝑇 by the numbers 1, 2, . . . , 𝛼1 from left to right, replac-
ing the twos in 𝑇 by the numbers 𝛼1 + 1, 𝛼1 + 2, . . . , 𝛼1 + 𝛼2 from left to right,
and so on. Show that std 𝑇 is a standard Young tableau.

(d) Standardize a two-line array 𝜋 by using the same left-to-right replacement as
in the previous part on �̂� and then doing so again on �̌�. Clearly std 𝜋 is a per-
mutation in two-line form if the columns of 𝜋 are lexicographically ordered.
Show that in this case

RS(std(𝜋)) = std(RSK(𝜋)).
(e) Use part (d) and the result (rather than the proof) of Theorem 7.6.1 to give a

second proof of part (b).
(24) (a) Extend column insertion to semistandard tableaux 𝑇 by having an element 𝑥

bump the uppermost element in a column greater than or equal to 𝑥. Show
that with this definition 𝑐𝑥(𝑇) is semistandard.

(b) Give two proofs that for any semistandard Young tableau 𝑇 and positive inte-
gers 𝑥, 𝑦 we have

𝑐𝑦(𝑟𝑥(𝑇)) = 𝑟𝑥(𝑐𝑦(𝑇)),
one by mimicking the proof of Lemma 7.6.2 and one by using the standard-
ization operator std.

(c) Give two proofs that if RSK(𝜋) = (𝑇,𝑈) with sh 𝑇 = sh𝑈 = 𝜆, then
𝜆𝑡1 = the length of a longest decreasing subsequence of 𝜋,

one by using part (b) and one using the standardization operator std from the
previous exercise.

(d) Prove the identity
∑
𝜆
𝑠𝜆(𝐱)𝑠𝜆𝑡(𝐲) = ∏

𝑖,𝑗≥1
(1 + 𝑥𝑖𝑦𝑗).

Hint: Use column insertion to define a weight-preserving bijection 𝑀 →
(𝑇,𝑈) where 𝑀 ∈ Mat is a matrix with all entries zero or one, sh 𝑇 = sh𝑈,
and 𝑇,𝑈𝑡 semistandard.
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Figure 7.21. Part of the poset ℱ

(25) Finish the proof of Proposition 7.7.1.

(26) Show that the base case holds in Corollary 7.7.3.

(27) Prove Proposition 7.7.6.

(28) Prove Theorem 7.7.7.

(29) (a) Letℱ𝑛 be the set of all words𝑤 of ones and twos having∑𝑖 𝑤𝑖 = 𝑛. Show that
for 𝑛 ≥ 0 we have

#ℱ𝑛 = 𝑓𝑛,

the Fibonacci numbers defined in (1.2).
(b) Put a partial order on ℱ = ⨄𝑛≥0ℱ𝑛 with covers 𝑣 ⋖ 𝑤 whenever

F1 𝑣 can be obtained from 𝑤 by removing the first one in 𝑤 or
F2 𝑤 can be obtained from 𝑣 by changing the first one in 𝑣 to a two.

The lower ranks of ℱ are shown in Figure 7.21. Show that ℱ is differential.
(c) Show thatℱ is a lattice. Hint: Prove that 𝑣∧𝑤 exists by induction on rk 𝑣+rk𝑤

and then use Exercise 12(c) in Chapter 5.
(d) Give a second proof that ℱ is a lattice using Exercise 12(d) in Chapter 5.

(30) Let 𝑟 ∈ ℙ. Say poset 𝑃 is 𝑟-differential if it satisfies DP1, DP3, and the following
axiom for any 𝑥 ∈ 𝑃:

DP2r If 𝑥 covers 𝑘 elements, then it is covered by 𝑘 + 𝑟 elements.
Prove the following statements.

(a) If 𝑃 is 𝑟-differential, then #Rk𝑛 𝑃 is finite for all 𝑛. So there are well-defined
𝐷 and 𝑈 operators.

(b) Let 𝑃 be ranked with #Rk𝑛 𝑃 finite for all 𝑛. We have

𝑃 is 𝑟-differential ⟺ 𝐷𝑈 −𝑈𝐷 = 𝑟𝐼.
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(c) In any 𝑟-differential poset we have
∑

𝑥∈Rk𝑛 𝑃
(𝑓𝑥)2 = 𝑟𝑛𝑛!

where 𝑓𝑥 is the number of saturated 0̂–𝑥 chains.
(d) If 𝑃 is 𝑟-differential and 𝑄 is 𝑠-differential, then 𝑃 ×𝑄 is (𝑟+ 𝑠)-differential. In

particular, if 𝑃 is differential, then 𝑃𝑟 is 𝑟-differential.
(31) Show that the backwards implication in Proposition 7.8.4 holds. Hint: Use Theo-

rem 3.8.4.
(32) (a) The star 𝑆𝑛 is the tree with 𝑉 = {𝑣1, . . . , 𝑣𝑛} and with edges 𝐸 = {𝑣1𝑣2, 𝑣1𝑣3,

. . . , 𝑣1𝑣𝑛}. Find expressions for 𝑋(𝑆𝑛) in the monomial basis and in the power
sum basis with coefficients which are, up to sign, products of binomial coef-
ficients. (Of course, every integer is a binomial coefficient since (𝑛1) = 𝑛. But
any such factor should come choosing one thing from 𝑛 things combinatori-
ally.)

(b) Prove that for any graph 𝐺
𝑃(𝐺; 𝑡) = ∑

𝐹⊆𝐸
(−1)#𝐹𝑡ℓ(𝜆(𝐹))

in three ways: by using deletion-contraction, by using a sign-reversing invo-
lution, and by using 𝑋(𝐺).

(33) (a) Show that (7.42) defines an action of GL𝑛 on 𝑃𝑘(𝑛).
(b) Show that if ̃𝐵 = {�̃�1, �̃�2, . . . , �̃�𝑛} is any basis for ℂ[𝑛], then

{�̃�𝑖1 �̃�𝑖2 ⋯�̃�𝑖𝑘 ∣ 𝑖1 ≤ 𝑖2 ≤ ⋯ ≤ 𝑖𝑘}
is a basis for 𝑃𝑘(𝑛).

(34) (a) Let
𝑒𝑘(𝑛) = 𝑒𝑘(𝑥1, 𝑥2, . . . , 𝑥𝑛)

and similarly for ℎ𝑘(𝑛). Prove that 𝑒𝑘(0) = ℎ𝑘(0) = 𝛿𝑘,0 and for 𝑛 ≥ 1
𝑒𝑘(𝑛) = 𝑒𝑘(𝑛 − 1) + 𝑥𝑛𝑒𝑘−1(𝑛 − 1),
ℎ𝑘(𝑛) = ℎ𝑘(𝑛 − 1) + 𝑥𝑛ℎ𝑘−1(𝑛).

(b) Give three proofs of the first identity in Proposition 7.9.2: one by induction,
one using the 𝑞-Binomial Theorem (Theorem 3.2.4), and one using Exercise
7(c) in Chapter 3.

(c) Give two more proofs of the second identity in Proposition 7.9.2: one by in-
duction and one which uses the 𝑞-Binomial Theorem (Theorem 3.2.4).

(35) (a) Prove that
𝑆[𝑛, 𝑘] = ℎ𝑛−𝑘([1]𝑞, [2]𝑞, . . . , [𝑘]𝑞),

where 𝑆[𝑛, 𝑘] is the 𝑞-Stirling number of the second kind introduced in Chap-
ter 3, Exercise 21. Hint: Use part (a) of Exercise 34.

(b) Prove that
𝑐[𝑛, 𝑘] = 𝑒𝑛−𝑘([1]𝑞, [2]𝑞, . . . , [𝑛 − 1]𝑞),

where 𝑐[𝑛, 𝑘] is the signless 𝑞-Stirling number of the first kind introduced in
Chapter 3, Exercise 22. Hint: Use part (a) of Exercise 34.
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(36) Define a relation on the polynomial ringℝ[𝑞] by letting 𝑓(𝑞) ≤ 𝑔(𝑞) if, for all 𝑖 ∈ ℕ,
the coefficient of 𝑞𝑖 in 𝑓(𝑞) is less than or equal to the coefficient of 𝑞𝑖 in 𝑔(𝑞).
(a) Prove that this relation is a partial order on ℝ[𝑞], but not a total order.
(b) Define a sequence of polynomials 𝑓0(𝑞), 𝑓1(𝑞), . . . to be 𝑞-log-concave if

𝑓𝑘(𝑞)2 ≥ 𝑓𝑘−1(𝑞)𝑓𝑘+1(𝑞)
for all 𝑘 ≥ 1. If the polynomial sequence is finite, we let 𝑓𝑘(𝑞) = 0 for all
sufficiently large 𝑘. Prove the following.
(i) For any 𝑛 ∈ ℕ the finite sequence

𝑞(02) [ 𝑛
0 ] , 𝑞(

1
2) [ 𝑛

1 ] , . . . , 𝑞(
𝑛
2) [ 𝑛

𝑛 ]

is 𝑞-log-concave. Hint: Use the first identity in Proposition 7.9.2.
(ii) For any 𝑛 ∈ ℕ the infinite sequence

[ 𝑛
0 ] , [ 𝑛 + 1

1 ] , [ 𝑛 + 2
2 ] , . . .

is 𝑞-log-concave. Hint: Use the second identity in Proposition 7.9.2.
(iii) For any 𝑛 ∈ ℕ the finite sequence

𝑐[𝑛, 0], 𝑐[𝑛, 1], . . . , 𝑐[𝑛, 𝑛]
is 𝑞-log-concave. Hint: Use part (b) of the previous exercise.
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Chapter 8

Counting with
Quasisymmetric Functions

While symmetric functions are invariant under arbitrary permutations of variables,
quasisymmetric functions only need to be preserved by order-preserving bijections on
the variable subscripts. Quasisymmetric functions are implicit in the work of Stanley
on 𝑃-partitions [84] but were first explicitly defined and studied by Gessel [32]. As we
will see in this chapter, these functions also have interesting connections with chain
enumeration in posets, pattern avoidance, and graph coloring.

8.1. The algebra of quasisymmetric functions, QSym

We start by defining what it means for a power series to be quasisymmetric. We will
introduce two important bases for the algebra of quasisymmetric functions and discuss
their relationship with symmetric functions.

As usual, 𝐱 = {𝑥1, 𝑥2, 𝑥3, . . . } will be a countably infinite variable set. A power
series 𝑓(𝐱) ∈ ℂ[[𝐱]] is quasisymmetric if any two monomials of the form 𝑥𝛼1

𝑖1 𝑥
𝛼2
𝑖2 ⋯𝑥𝛼𝑙

𝑖𝑙
with 𝑖1 < 𝑖2 < ⋯ < 𝑖𝑙 and 𝑥𝛼1

𝑗1 𝑥
𝛼2
𝑗2 ⋯𝑥𝛼𝑙

𝑗𝑙 with 𝑗1 < 𝑗2 < ⋯ < 𝑗𝑙 have the same
coefficient. Note the increasing condition on the subscripts which is not present in the
definition of a symmetric function. So this is more a restrictive condition; that is, every
symmetric function is quasisymmetric but not conversely. For example

(8.1) 𝑓(𝐱) = 5𝑥41𝑥2 + 5𝑥41𝑥3 + 5𝑥42𝑥3 +⋯−𝑥1𝑥22𝑥3 −𝑥1𝑥22𝑥4 −𝑥1𝑥23𝑥4 −𝑥2𝑥23𝑥4 −⋯

is quasisymmetric but not symmetric. An equivalent way to define 𝑓(𝐱) being qua-
sisymmetric is to say that anymonomial of the form 𝑥𝛼1

𝑖1 𝑥
𝛼2
𝑖2 ⋯𝑥𝛼𝑙

𝑖𝑙 with 𝑖1 < 𝑖2 < ⋯ < 𝑖𝑙
has the same coefficient as 𝑥𝛼1

1 𝑥𝛼2
2 ⋯𝑥𝛼𝑙

𝑙 .

267
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To set up notation, let
QSym𝑛 = QSym𝑛(𝐱)

= {𝑓(𝐱) ∈ ℂ[[𝐱]] ∣ 𝑓 is quasisymmetric and homogeneous of degree 𝑛}.
Then the algebra of quasisymmetric functions is

QSym = QSym(𝐱) =⨁
𝑛≥0

QSym𝑛(𝐱).

Note that, as with symmetric functions, sinceQSym is a direct sum the quasisymmetric
power series in it are of bounded degree. Note also that, unlike symmetric functions,
it is not obvious that this is an algebra, i.e., that QSym is closed under multiplication
and not just under taking linear combinations. The proof of this fact will follow from
Theorem 8.3.1. As we will see, bases for QSym are indexed by integer compositions.
We will be interested in two particular bases.

Given a composition 𝛼 = [𝛼1, 𝛼2, . . . , 𝛼𝑙], the associatedmonomial quasisymmetric
function is

𝑀𝛼 = ∑
𝑖1<𝑖1<⋯<𝑖𝑙

𝑥𝛼1
𝑖1 𝑥

𝛼2
𝑖2 ⋯𝑥𝛼𝑙

𝑖𝑙 .

So𝑀𝛼 canbe thought of as the result of quasisymmetrizing themonomial𝑥𝛼1
1 𝑥𝛼2

2 ⋯𝑥𝛼𝑙
𝑙 .

To illustrate,
𝑀[1,3] = 𝑥1𝑥32 + 𝑥1𝑥33 + 𝑥2𝑥33 +⋯ .

We will often drop the square brackets and commas in the subscript of 𝑀𝛼. This
should cause no confusion with partitions because of the use of capital letters for qua-
sisymmetric bases and lowercase ones for symmetric function bases. We will also
use multiplicity notation for 𝛼 where 𝑖𝑚𝑖 denotes a string of 𝑚𝑖 consecutive 𝑖’s. Note
that the quasisymmetric function in (8.1) can be written as the linear combination
𝑓(𝐱) = 5𝑀41−7𝑀121. This can always be done as the𝑀𝛼 are a basis. This proof follows
the same lines as in the demonstration that the𝑚𝜆 form a basis for Sym, Theorem 7.1.1.

Theorem 8.1.1. The𝑀𝛼 as 𝛼 varies over all compositions form a basis for QSym. Con-
sequently, for 𝑛 ≥ 1,

dimQSym𝑛 = 2𝑛−1.

Proof. The dimension statement follows from the basis claim and Theorem 1.7.1. To
prove that the𝑀𝛼 are a basis, note first that they are independent since no two mono-
mial quasisymmetric functions contain the same monomial. To show that they span,
take an 𝑓 ∈ QSym. Consider any term in 𝑓, say 𝑐𝑥𝛼1

𝑖1 𝑥
𝛼2
𝑖2 ⋯𝑥𝛼𝑙

𝑖𝑙 where 𝑖1 < 𝑖2 < ⋯ < 𝑖𝑙
and 𝑐 ∈ ℂ. Then all monomials 𝑥𝛼1

𝑗1 𝑥
𝛼2
𝑗2 ⋯𝑥𝛼𝑙

𝑗𝑙 such that 𝑗1 < 𝑗2 < ⋯ < 𝑗𝑙 appear with
coefficient 𝑐. So 𝑓 − 𝑐𝑀𝛼 is still quasisymmetric and contains no monomials with or-
dered exponent sequence 𝛼. The fact that 𝑓 is of bounded degree implies that repeating
this process a finite number of times will yield zero. Thus 𝑓 is a linear combination of
the𝑀𝛼 which were subtracted. □

There is a nice relationship between the monomial quasisymmetric functions and
their symmetric counterparts. A rearrangement of a partition 𝜆 is a composition 𝛼 ob-
tained by listing the parts of 𝜆 in a particular order. For example, the rearrangements of
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𝜆 = (2, 1, 1) are 𝛼 = [2, 1, 1], 𝛼 = [1, 2, 1], and 𝛼 = [1, 1, 2]. The proof of the following
result is easy and so is left to the reader.

Proposition 8.1.2. For any partition 𝜆
𝑚𝜆 = ∑

𝛼
𝑀𝛼

where the sum is over all rearrangements 𝛼 of 𝜆. □

To describe the other basis for QSym which will interest us, it will be convenient
to remember that there is a simple bijection 𝜙 between subsets 𝑆 ⊆ [𝑛 − 1] and com-
positions 𝛼 ⊧ 𝑛 defined by (1.8). So we will sometimes write 𝑀𝑆 instead of 𝑀𝛼 if
𝜙(𝑆) = 𝛼. Strictly speaking, 𝑀𝑆 is not well-defined since there will be many 𝑛 such
that 𝑆 ⊆ [𝑛 − 1]. But the context will always make it clear which 𝑛 is meant. To il-
lustrate, if 𝑛 = 2 and 𝑆 = {1}, then 𝑀𝑆 = 𝑀[1,1], whereas if 𝑛 = 3 with the same 𝑆,
then 𝑀𝑆 = 𝑀[1,2]. Given 𝑆 = {𝑠1, . . . , 𝑠𝑘} ⊆ [𝑛 − 1], the corresponding fundamental
quasisymmetric function is

𝐹𝑆 = ∑
𝑖1≤𝑖2≤⋯≤𝑖𝑛
𝑖𝑠<𝑖𝑠+1 if 𝑠∈𝑆

𝑥𝑖1𝑥𝑖2 ⋯𝑥𝑖𝑛 .

In words, one sums over all monomials whose indices form a weakly increasing se-
quence with strict increases at the positions indexed by 𝑆. As an example, if 𝑛 = 4 and
𝑆 = {1, 3}, then
(8.2) 𝐹𝑆 = ∑

𝑖<𝑗≤𝑘<𝑙
𝑥𝑖𝑥𝑗𝑥𝑘𝑥𝑙 = 𝑥1𝑥22𝑥3 + 𝑥1𝑥22𝑥4 +⋯+ 𝑥1𝑥2𝑥3𝑥4 + 𝑥1𝑥2𝑥3𝑥5 +⋯ .

We let 𝐹𝛼 = 𝐹𝑆 when 𝜙(𝑆) = 𝛼. So if 𝛼 = [𝛼1, . . . , 𝛼𝑙], then the strict inequalities in
the subscripts for the monomials in 𝐹𝛼must occur at positions indexed by partial sums
𝛼1 +⋯+ 𝛼𝑖 for each 𝑖 < 𝑙. To describe the expansion of the 𝐹𝛼 in terms of the𝑀𝛽 we
will use the partial order in the composition lattice 𝐾𝑛 described at the beginning of
Section 5.1.

Proposition 8.1.3. We have
𝐹𝛼 = ∑

𝛽≤𝛼
𝑀𝛽

where ≤ is the partial order in the composition lattice 𝐾𝑛.

Proof. The power series 𝐹𝛼 is quasisymmetric since the inequalities impose by 𝛼 on a
sequence 𝑖1 ≤ 𝑖2 ≤ ⋯ ≤ 𝑖𝑛 depend only on the positions in the sequence and not on the
actual choice of the 𝑖𝑗 . Furthermore, each monomial appearing in 𝐹𝛼 has coefficient
one. So the same is true of the expansion of 𝐹𝛼 in the 𝑀𝛽 basis. The only thing left
to prove is that 𝑀𝛽 appears in the expansion if and only if 𝛽 ≤ 𝛼. The monomials
occurring in𝐹𝛼 are thosewhich can be expressed as𝑥𝑖1𝑥𝑖2 ⋯𝑥𝑖𝑛 where 𝑖1 ≤ 𝑖2 ≤ ⋯ ≤ 𝑖𝑛
and 𝑖𝑗 < 𝑖𝑗+1 for each 𝑗 which is a partial sum of 𝛼. Collecting together variables
with the same subscripts, these are exactly the monomials which can be written as
𝑥𝛽1𝑗1 𝑥

𝛽2
𝑗2 ⋯𝑥𝛽𝑙𝑗𝑙 where 𝑗1 < 𝑗2 < ⋯ < 𝑗𝑙 and 𝛽 ≤ 𝛼. This observation completes the

proof. □
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270 8. Counting with Quasisymmetric Functions

We can use the previous result to show that the 𝐹𝛼 are a basis forQSym. The proof
is much the same as that of Theorem 7.1.3(a) and so it is left to the reader.

Theorem 8.1.4. The set {𝐹𝛼 ∣ 𝛼 ⊧ 𝑛} is a basis for QSym𝑛. □

8.2. Reverse 𝑃-partitions

Fundamental quasisymmetric functions can be used to count 𝑃-partitions. In fact, they
give a more refined generating function which keeps track of the parts used in the
partitions in the same way that Schur functions and chromatic symmetric functions
do for semistandard Young tableaux and proper colorings, respectively. This permits
us to express a Schur function as a sum over standard Young tableaux and to write
down a rule for the multiplication of fundamental quasisymmetric functions. But to
make the partition conventions align with those for quasisymmetric functions, we will
first define a slight variant of 𝑃-partitions where the inequalities are reversed.

Consider functions 𝑓∶ [𝑛] → ℙ whose range is the positive integers. Say that 𝑓 is
reverse compatible with permutation 𝜋 ∈ 𝔖𝑛 if

RC1 𝑓(𝜋1) ≤ 𝑓(𝜋2) ≤ ⋯ ≤ 𝑓(𝜋𝑛) and
RC2 𝑓(𝜋𝑖) < 𝑓(𝜋𝑖+1) whenever 𝑖 ∈ Des 𝜋.

Note that there is a bijection between the functions 𝑓∶ [𝑛] → ℙ which are reverse
compatiblewith𝜋 and the functions 𝑔∶ [𝑛] → ℕwhich are compatiblewith𝜋’s reverse
complement

(8.3) 𝜋′ = 𝜋′1𝜋′2 . . . 𝜋′𝑛 = 𝑛 + 1 − 𝜋𝑛, 𝑛 + 1 − 𝜋𝑛−1, . . . , 𝑛 + 1 − 𝜋1
where 𝑔(𝜋′𝑖) = 𝑓(𝜋𝑛+1−𝑖) − 1 for all 𝑖 ∈ [𝑛]. So studying reverse compatibility and
compatibility is essentially the same. But, as already mentioned, RC1 and RC2 will
play more nicely with fundamental quasisymmetric functions. Let

ℛ𝐶(𝜋) = {𝑓∶ [𝑛] → ℙ ∣ 𝑓 is reverse compatible with 𝜋}.
The proof of the next result is similar to that of Lemma 7.4.1 and so it is omitted.

Lemma 8.2.1. Every 𝑓∶ [𝑛] → ℙ is reverse compatible with a unique 𝜋 ∈ 𝔖𝑛. Thus

{𝑓 ∣ 𝑓∶ [𝑛] → ℙ} = ⨄
𝜋∈𝔖𝑛

ℛ𝐶(𝜋). □

Tomake a connectionwith quasisymmetric functions, associatewith any𝑓∶ [𝑛] →
ℙ the monomial

𝐱𝑓 = 𝑥𝑓(1)𝑥𝑓(2)⋯𝑥𝑓(𝑛).
Recall that the fundamental quasisymmetric functions can be indexed by subsets 𝑆 ⊆
[𝑛 − 1]. And given a permutation 𝜋 ∈ 𝔖𝑛, we have Des𝜋 ⊆ [𝑛 − 1].

Lemma 8.2.2. For any 𝜋 ∈ 𝔖𝑛 we have

(8.4) ∑
𝑓∈ℛ𝐶(𝜋)

𝐱𝑓 = 𝐹Des𝜋.
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Proof. Since the monomials on both sides of (8.4) all occur with coefficient one, it
suffices to find a bijection between the subscripts which can appear for monomials on
the two sides of the equation. By definition, the subscripts of monomials in 𝐹Des𝜋 are
precisely those of the form 𝑖1 ≤ 𝑖2 ≤ ⋯ ≤ 𝑖𝑛 with 𝑖𝑘 < 𝑖𝑘+1 if 𝑘 ∈ Des𝜋. Associate with
this subscript the function 𝑓∶ [𝑛] → ℙwhere 𝑓(𝜋𝑗) = 𝑖𝑗 for 𝑗 ∈ [𝑛]. We claim that this
is well-defined in that 𝑓 ∈ ℛ𝐶(𝜋). Indeed, the fact that the 𝑖𝑗 are weakly increasing is
condition RC1 and the placement of the strict inequalities agrees with RC2. It is now
an easy matter to construct a well-defined inverse, completing the proof. □

We now bring the 𝑃-partition definitions through the looking glass into the land of
reverse. Given a poset 𝑃 on [𝑛], a reverse 𝑃-partition is a function 𝑓∶ 𝑃 → ℙ satisfying

RPP1 𝑖 ⊴ 𝑗 implies 𝑓(𝑖) ≤ 𝑓(𝑗) and
RPP2 𝑖 ⊴ 𝑗 and 𝑖 > 𝑗 implies 𝑓(𝑖) < 𝑓(𝑗).

We let
RPar 𝑃 = {𝑓∶ 𝑃 → ℙ ∣ 𝑓 is a reverse 𝑃-partition}.

The result below follows from Lemma 8.2.1 in much the same way that Lemma 7.4.3
was derived from Lemma 7.4.1.

Lemma 8.2.3 (Fundamental Lemma of Reverse 𝑃-Partitions). Let 𝑃 be a poset on [𝑛].
Then 𝑓 ∈ RPar 𝑃 if and only if 𝑓 ∈ ℛ𝐶(𝜋) for some 𝜋 ∈ ℒ(𝑃). Thus

RPar 𝑃 = ⨄
𝜋∈ℒ(𝑃)

ℛ𝐶(𝜋). □

To derive a generating function identity we define, for 𝑃 a poset on [𝑛], the gener-
ating function

rpar 𝑃 = rpar(𝑃; 𝐱) = ∑
𝑓∈RPar𝑃

𝐱𝑓.

Now using the previous lemma and (8.4) we obtain the following.

Theorem 8.2.4. For any poset 𝑃 on [𝑛] we have

rpar 𝑃 = ∑
𝜋∈ℒ(𝑃)

𝐹Des𝜋. □

Since every symmetric function is quasisymmetric, one can ask what the expan-
sion of a symmetric function is in one of the bases for QSym. We will now answer this
question for the expansion of the Schur functions in terms of the fundamental qua-
sisymmetrics. To do so we need a notion of descent for standard Young tableaux. If 𝑄
is an SYT, then let

Des𝑄 = {𝑘 ∣ 𝑘 + 1 is in a row below 𝑘 in 𝑄}.

For example, the SYT in Figure 7.1 have descent sets {2, 4}, {2, 3}, {1, 3, 4}, {1, 3}, and
{1, 2, 4}, respectively.
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𝜆 𝑃𝜆

1

2

3

4

5

6

7

8

𝑄 = 1 2 4 8
3 5 7
6

⟷ 𝜋 = 56273148

Figure 8.1. A Young diagram and the associated labeling of 𝑃𝜆, along with an SYT 𝑄
and the associated linear extension

Theorem 8.2.5. For any partition 𝜆 ⊢ 𝑛 we have

𝑠𝜆 = ∑
𝑄∈SYT(𝜆)

𝐹Des𝑄.

Proof. Recall from the end of Section 7.4 that associated with 𝜆 is a poset 𝑃𝜆. We will
turn 𝑃𝜆 into a poset on [𝑛] in such a way that the reverse 𝑃𝜆-partitions are exactly the
semistandard Young tableaux of shape 𝜆. To this end, label the vertices of 𝑃𝜆 corre-
sponding to the last row of 𝜆 = (𝜆1, . . . , 𝜆𝑙) from 1 to 𝜆𝑙 so that the labels increase with
the partial order. Now similarly label the vertices in the penultimate row with 𝜆𝑙 +1 to
𝜆𝑙 + 𝜆𝑙−1, and continue doing so until all of 𝑃𝜆 is labeled. An example is in Figure 8.1.
Using the usual coordinates on 𝜆 to also refer to the corresponding nodes of 𝑃𝜆, we will
let 𝑙(𝑖, 𝑗) be the label of node (𝑖, 𝑗) in 𝑃𝜆. In Figure 8.1, 𝑙(2, 3) = 4.

We claim that rotation by 135∘ is a bijection SSYT(𝜆) → RPar 𝑃𝜆. As with 𝑃-
partitions, it suffices to show that RPP1 and RPP2 hold on covers. Now 𝑇 ∈ SSYT(𝜆)
if and only if 𝑇𝑖,𝑗 ≤ 𝑇𝑖,𝑗+1 and 𝑇𝑖,𝑗 < 𝑇𝑖+1,𝑗 for all cells (𝑖, 𝑗). Since 𝑙(𝑖, 𝑗) < 𝑙(𝑖, 𝑗+1) and
𝑙(𝑖, 𝑗) > 𝑙(𝑖 + 1, 𝑗), these two conditions on 𝑇 become exactly RPP1 and RPP2 for the
associated reverse 𝑃-partition, demonstrating the claim. And from this it follows that

𝑠𝜆 = rpar 𝑃𝜆.

The SYT 𝑄 of shape 𝜆 are in bijection with the 𝜋 ∈ ℒ(𝑃𝜆) by letting 𝜋𝑘 = 𝑙(𝑖, 𝑗)
where 𝑄𝑖,𝑗 = 𝑘. Furthermore, if 𝑄⟷ 𝜋 under this bijection, then Des𝑄 = Des𝜋. To
see this, suppose first that 𝑘 ∈ Des𝑄 where 𝑘 is in cell 𝑐. Then 𝑘 + 1 is in a cell 𝑐′ in a
lower rowof𝑄. It follows that𝜋𝑘 = 𝑙(𝑐) > 𝑙(𝑐′) = 𝜋𝑘+1 because of theway the elements
of 𝑃𝜆 were labeled. Thus 𝑘 ∈ Des𝜋. Showing the reverse inclusion, Des𝜋 ⊆ Des𝑄, is
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similar and so is left as an exercise. Thus if 𝑄⟷ 𝜋, then

𝐹Des𝑄 = 𝐹Des𝜋.

Combining the two previous displayed equations with Theorem 8.2.4 gives

𝑠𝜆 = rpar 𝑃𝜆 = ∑
𝜋∈ℒ(𝑃𝜆)

𝐹Des𝜋 = ∑
𝑄∈SYT(𝜆)

𝐹Des𝑄

which is the desired conclusion. □

We will now show that QSym is an algebra by showing that the product of two
fundamental quasisymmetric functions is a linear combination of quasisymmetrics.
This will give us a second application of Theorem 8.2.4. First note that to apply RPP1
and RPP2 it is not necessary that 𝑃 be a poset on the set [𝑛]: any subset 𝑆 ⊂ ℙ would
do in place of [𝑛]. Think of such a poset as a pair (𝑃, 𝜔) consisting of an underlying
poset 𝑃 and a labeling 𝜔∶ 𝑃 → 𝑆. Two labelings 𝜔∶ 𝑃 → 𝑆 and 𝜔′ ∶ 𝑃 → 𝑆′ satisfying
𝜔(𝑥) < 𝜔(𝑦) if and only if 𝜔′(𝑥) < 𝜔′(𝑦) are said to have the same relative order. In this
case, the monomials 𝐱𝑓 for reverse (𝑃, 𝜔)-partitions are the same as the monomials for
reverse (𝑃, 𝜔′)-partitions. Thus rpar(𝑃, 𝜔) = rpar(𝑃, 𝜔′). Given disjoint posets 𝑃 on a
label set 𝑆 and 𝑄 on a label set 𝑇 where 𝑆 and 𝑇 are disjoint, one gives 𝑃 ⊎ 𝑄 the label
set 𝑆 ⊎ 𝑇 in the obvious way. The next result follows easily from the definitions.

Proposition 8.2.6. If 𝑃,𝑄 are posets on disjoint subsets of ℙ, then

rpar(𝑃 ⊎ 𝑄) = (rpar 𝑃)(rpar𝑄). □

Our final tool involves shuffling sequences of integers. If 𝜎 ∈ 𝑃(𝑈) and 𝜏 ∈ 𝑃(𝑉)
where 𝑈,𝑉 are disjoint, then the associated set of shuffles is

𝜎 ⧢ 𝜏 = {𝜋 ∈ 𝑃(𝑈 ⊎ 𝑉) ∣ 𝜎 and 𝜏 are subwords of 𝜋}.

To illustrate, if 𝜎 = 14 and 𝜏 = 𝟓𝟐, then

𝜎 ⧢ 𝜏 = {14𝟓𝟐, 1𝟓4𝟐, 1𝟓𝟐4, 𝟓14𝟐, 𝟓1𝟐4, 𝟓𝟐14}.

Finally, we note that the definition of a descent set can be extended to any 𝜋 ∈ 𝑃(𝑆)
and that Theorem 8.2.4 continues to hold.

Theorem 8.2.7. If 𝜎 ∈ 𝑃(𝑈) and 𝜏 ∈ 𝑃(𝑉) where 𝑈,𝑉 are disjoint subsets of ℙ, then

𝐹Des𝜍𝐹Des𝜏 = ∑
𝜋∈𝜍⧢𝜏

𝐹Des𝜋.

Proof. Let 𝑃 be the poset on 𝑈 which is a chain labeled from bottom to top by the
elements of 𝜎 read left to right. So ℒ(𝑃) = {𝜎}. Similarly define 𝑄 so that ℒ(𝑄) = {𝜏}.
It follows that ℒ(𝑃 ⊎ 𝑄) = 𝜎 ⧢ 𝜏. Now applying Theorem 8.2.4 and Proposition 8.2.6

𝐹Des𝜍𝐹Des𝜏 = (rpar 𝑃)(rpar𝑄) = rpar(𝑃 ⊎ 𝑄) = ∑
𝜋∈𝜍⧢𝜏

𝐹Des𝜋

as desired. □
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The previous theorem is remarkable for it implies that the multiset {{Des 𝜋 ∣ 𝜋 ∈
𝜎 ⧢ 𝜏}} depends only on the lengths of 𝜎 and 𝜏 and their descent sets. A function on
permutations with this property is called shuffle compatible and this concept has been
studied byGessel and Zhuang [33], Grinberg [36], aswell as Baker-Jarvis and Sagan [4].

8.3. Chain enumeration in posets

As we have just seen, the fundamental quasisymmetric functions give us information
about reverse 𝑃-partitions. It turns out that the monomial quasisymmetric functions
can be used to model chains in posets, as was shown by Ehrenborg [24]. In particular,
we will see how multiplication of the𝑀𝛼 corresponds to taking the product of posets.
A connection will also be made with the binomial posets studied in Section 5.9.

We begin by deriving a formula for the product of two monomial quasisymmet-
ric functions. Recall that 𝛼 is a weak composition if it can include parts equal to
zero. An expansion of a composition 𝛼 is a weak composition �̄� such that remov-
ing the zeros from �̄� one obtains 𝛼. For example, one expansion of 𝛼 = [1, 4, 1] is
�̄� = [0, 0, 1, 4, 0, 1, 0]. If 𝛼, 𝛽, 𝛾 are compositions, then we say 𝛾 is a shuffle sum of the
other two compositions if there are expansions �̄� and ̄𝛽 of 𝛼 and 𝛽, respectively, which
have length ℓ(𝛾) such that 𝛾 = �̄�+ ̄𝛽. Here, addition is componentwise. To illustrate, if
𝛼 = [1, 2] and 𝛽 = [1], then there are two ways of writing 𝛾 = [1, 1, 2] as a shuffle sum
of 𝛼 and 𝛽, namely [1, 0, 2] + [0, 1, 0] and [0, 1, 2] + [1, 0, 0]. The reader can verify that

𝑀[1,2]𝑀[1] = 𝑀[2,2] +𝑀[1,3] + 2𝑀[1,1,2] +𝑀[1,2,1]

where the coefficient 2 of 𝑀[1,1,2] corresponds to these two shuffle sums. The general
result is as follows.

Theorem 8.3.1. We have
𝑀𝛼𝑀𝛽 = ∑

𝛾
𝑐𝛾𝛼,𝛽𝑀𝛾

where 𝑐𝛾𝛼,𝛽 is the number of ways of writing 𝛾 as a shuffle sum of 𝛼 and 𝛽.

Proof. Since𝑀𝛼𝑀𝛽 is quasisymmetric, it suffices to show that for any 𝛾 = [𝛾1, . . . , 𝛾𝑡]
we have 𝑥𝛾11 ⋯𝑥𝛾𝑡𝑡 occurring in the product with coefficient 𝑐𝛾𝛼,𝛽. For any, possibly
weak, composition �̄� = [𝛼1, . . . , 𝛼𝑡] we let 𝐱�̄� = 𝑥�̄�1

1 ⋯𝑥�̄�𝑡
𝑡 . Let ℓ(𝛼) = 𝑟, ℓ(𝛽) = 𝑠, and

ℓ(𝛾) = 𝑡.
Given any shuffle sum 𝛾 = �̄�+ ̄𝛽, we clearly have 𝐱𝛾 = 𝐱�̄�𝐱 ̄𝛽. Conversely, suppose

𝐱𝛾 = (𝑥𝛼1
𝑖1 ⋯𝑥𝛼𝑟

𝑖𝑟 )(𝑥
𝛽1
𝑗1 ⋯𝑥𝛽𝑠𝑗𝑠 ) = 𝑥𝛾1𝑘1 ⋯𝑥𝛾𝑡𝑘𝑡

where 𝑖1 < ⋯ < 𝑖𝑟 and 𝑗1 < ⋯ < 𝑗𝑠. Define an expansion �̄� of 𝛼 of length 𝑡 by putting
𝛼𝑝 in position 𝑖𝑝 of �̄� for 𝑝 ∈ [𝑟] and placing zeros everywhere else. Similarly define
̄𝛽. The previous displayed equation implies that 𝛾 = �̄� + ̄𝛽. It is not hard to see that

the two maps just described are inverses. So we have bijection between shuffle sum
decompositions 𝛾 = �̄� + ̄𝛽 and ways to write 𝐱𝛾 as a product of a monomial from𝑀𝛼
with a monomial from𝑀𝛽. The theorem follows. □
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To make the connection with chain enumeration, let 𝑃 be a finite, ranked, poset
with a 1̂. Recall that in this situation, any interval [𝑥, 𝑦] ⊆ 𝑃 can be considered as a
poset of rank

rk[𝑥, 𝑦] = rk𝑃 𝑦 − rk𝑃 𝑥.
Associate with any chain

(8.5) 𝐶 ∶ 0̂ = 𝑥0 < 𝑥1 < ⋯ < 𝑥𝑘 = 1̂

the composition

(8.6) 𝛼(𝐶) = [rk[𝑥0, 𝑥1], rk[𝑥1, 𝑥2], . . . , rk[𝑥𝑘−1, 𝑥𝑘]].

For example, in 𝐵6 the chain 𝐶 ∶ ∅ < {2, 5} < {1, 2, 4, 5, 6} < [6] has 𝛼(𝐶) = [2, 3, 1].
Also associate with 𝑃 the generating function

𝑀(𝑃) = ∑
𝐶
𝑀𝛼(𝐶)

where the sum is over all chains 𝐶 of the form (8.5). This generating function respects
products of posets.

Theorem 8.3.2. Let 𝑃,𝑄 be finite, ranked posets each having a 1̂. Then

(8.7) 𝑀(𝑃 × 𝑄) = 𝑀(𝑃)𝑀(𝑄).

Proof. By definition, the coefficient of𝑀𝛾 on the left side of (8.7) is the number of 0̂–1̂
chains 𝐶 in 𝑃 × 𝑄 with 𝛼(𝐶) = 𝛾. And by Theorem 8.3.1, the coefficient of𝑀𝛾 on the
right is∑𝐴,𝐵 𝑐

𝛾
𝛼(𝐴),𝛼(𝐵) where the sum is over all 0̂–1̂ chains 𝐴 ⊆ 𝑃 and 𝐵 ⊆ 𝑄. So it

suffices to find a bijection between 0̂–1̂ chains 𝐶 in 𝑃 × 𝑄 and ways of writing 𝛼(𝐶) as
a shuffle sum of 𝛼(𝐴) and 𝛼(𝐵) for 0̂–1̂ chains 𝐴, 𝐵 in 𝑃,𝑄, respectively.

Suppose first that we are given

(8.8) 𝐶 ∶ 0̂ = (𝑥0, 𝑦0) < (𝑥1, 𝑦1) < ⋯ < (𝑥𝑘, 𝑦𝑘) = 1̂.

The projection of 𝐶 onto 𝑃 is the multichain

𝐴 ∶ 0̂ = 𝑥0 ≤ 𝑥1 ≤ ⋯ ≤ 𝑥𝑘 = 1̂.

This multichain has underlying chain 𝐴 obtained by replacing each maximal string of
copies of 𝑥 in𝐴with just 𝑥 itself. Note that the definition in (8.6) can be applied equally
well to multichains, except now the result will be a weak composition. Furthermore
𝛼(𝐴) is an expansion of 𝛼(𝐴). Similarly define the projection 𝐵 of 𝐶 onto 𝑄 with its
underlying chain 𝐵. From Exercise 8(c) in Chapter 5 we know that rk(𝑥, 𝑦) = rk(𝑥) +
rk(𝑦) for all (𝑥, 𝑦) ∈ 𝑃 × 𝑄. It follows that 𝛼(𝐶) = 𝛼(𝐴) + 𝛼(𝐵). This completes the
definition of the bijection in one direction.

Now suppose we are given 0̂–1̂ chains 𝐴 in 𝑃 and 𝐵 in𝑄 such that there are expan-
sions �̄� and ̄𝛽 of 𝛼(𝐴) and 𝛼(𝐵) satisfying 𝛾 = �̄� + ̄𝛽 for some𝑀𝛾 appearing on the left
in (8.7). Then there is a unique multichain 𝐴 whose underlying chain is 𝐴 and whose
composition is 𝛼(𝐴) = �̄�: each 𝑥𝑖 ∈ 𝐴 is replaced by 𝑚𝑖 + 1 copies of itself where 𝑚𝑖
is the number of zeros in �̄� between the elements 𝛼𝑖 and 𝛼𝑖+1 of 𝛼(𝐴). Similarly we
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obtain a multichain 𝐵 from 𝐵 and ̄𝛽. Finally, we construct 𝐶 as in (8.8) where the first
components are 𝐴 and the second 𝐵. Verifying that 𝛼(𝐶) = 𝛼(𝐴) + 𝛼(𝐵) and that this
is the inverse of the map defined in the previous paragraph is left to the reader. □

To end this section, suppose that 𝐼 = [𝑥, 𝑧] is an 𝑛-interval as defined in axiom BP2
of Section 5.9 for a binomial poset 𝑃. The generating function𝑀(𝐼) has a very nice form
in terms of the factorial function 𝐹(𝑛) for 𝑃. Given a composition 𝛼 = [𝛼1, 𝛼2, . . . , 𝛼𝑘] ⊧
𝑛, define

(𝑛𝛼)𝑃
= 𝐹(𝑛)
𝐹(𝛼1)𝐹(𝛼2)⋯𝐹(𝛼𝑘)

.

Note that when 𝑃 = 𝐵∞, then (𝑛𝛼)𝑃 is just a multinomial coefficient as defined in (1.14).

Theorem 8.3.3. Let 𝑃 be a binomial poset and let 𝐼 be an 𝑛-interval in 𝑃. Then

𝑀(𝐼) = ∑
𝛼⊧𝑛

(𝑛𝛼)𝑃
𝑀𝛼.

Proof. Since 𝑃 is binomial, there is no loss of generality in assuming that 𝐼 = [0̂, 𝑧] for
some 𝑧. By definition of𝑀(𝐼), we need to show that the number of chains (8.5) where
1̂ = 𝑧 and 𝛼(𝐶) = 𝛼 is given by (𝑛𝛼)𝑃 . By Lemma 5.9.2,

# of 𝑥1 of rank 𝛼1 in 𝐼 =
𝐹(𝑛)

𝐹(𝛼1)𝐹(𝑛 − 𝛼1)
.

Similarly
# of 𝑥2 of rank 𝛼2 in [𝑥1, 𝑧] =

𝐹(𝑛 − 𝛼1)
𝐹(𝛼2)𝐹(𝑛 − 𝛼1 − 𝛼2)

.

So the number of ways to pick 𝑥1 and 𝑥2 is
𝐹(𝑛)

𝐹(𝛼1)𝐹(𝑛 − 𝛼1)
⋅ 𝐹(𝑛 − 𝛼1)
𝐹(𝛼2)𝐹(𝑛 − 𝛼1 − 𝛼2)

= 𝐹(𝑛)
𝐹(𝛼1)𝐹(𝛼2)𝐹(𝑛 − 𝛼1 − 𝛼2)

.

Continuing in this way, we see that the total count is (𝑛𝛼)𝑃 as desired. □

8.4. Pattern avoidance and quasisymmetric functions

Given a formal power series 𝑓(𝐱) which is a priori a quasisymmetric function, it can
be intriguing to see if it is actually symmetric. And, in that case, one could further ask
whether 𝑓(𝐱) has an expansion with nonnegative coefficients in one of the standard
bases for Sym. In this section we are going to be concerned with Schur nonnegativity,
that is, seeing if 𝑓(𝐱) = ∑𝜆 𝑐𝜆𝑠𝜆 where 𝑐𝜆 ≥ 0 for all 𝜆. Associated with any setΠ ⊆ 𝔖𝑛
of permutations, we can define the quasisymmetric function
(8.9) 𝐹Π = ∑

𝜋∈Π
𝐹Des𝜋 ∈ QSym𝑛 .

It turns out that by taking 𝑆 to be the set of permutations which satisfy certain avoid-
ance conditions, one gets interesting results. These ideas were first investigated by
Hamaker, Pawlowski, and Sagan [42], with further results being obtained by Bloom
and Sagan [17].
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If Π is any set of permutations, then we let
Av𝑛(Π) = {𝜎 ∈ 𝔖𝑛 ∣ 𝜎 avoids every 𝜋 ∈ Π}.

So Av𝑛(Π) = ⋂𝜋∈Π Av𝑛(𝜋). To illustrate, call a permutation 𝜋 ∈ 𝔖𝑛 reverse layered if
it is of the form
(8.10) 𝜋 = 𝑚,𝑚 + 1, . . . , 𝑛, 𝑙, 𝑙 + 1, . . . , 𝑚 − 1, 𝑘, 𝑘 + 1, . . .
for certain 𝑛 ≥ 𝑚 > 𝑙 > 𝑘 > ⋯ > 0. This term is used since the reversal 𝜋𝑟 is of a
form usually called layered. The increasing subsequences𝑚,𝑚 + 1, . . . , 𝑛 and so forth
are called its layers and their lengths are the layer lengths. For example 𝜋 = 789561234
is reverse layered with layers 789, 56, 1234 and corresponding layer lengths 3, 2, 4.

Lemma 8.4.1. We have
Av𝑛(132, 213) = {𝜋 ∈ 𝔖𝑛 ∣ 𝜋 is reverse layered}.

Proof. Note that the reverse layered permutations 𝜋 are exactly the ones such that,
for all 𝑎, 𝑐 ∈ [𝑛], if 𝑎 < 𝑐 and 𝑎 is before 𝑐 in 𝜋, then every element of [𝑎, 𝑐] comes
between 𝑎, 𝑐 in 𝜋. Now 𝜋 contains 132 if and only if 𝜋 contains a subsequence 𝑎𝑐𝑏
with 𝑏 ∈ [𝑎, 𝑐] coming after 𝑐. Similarly 𝜋 containing 213 is equivalent to there being
a 𝑏 ∈ [𝑎, 𝑐] appearing before 𝑎. So 𝜋 avoids both patterns precisely when 𝜋 is reverse
layered. □

To bring in quasisymmetric functions define, for any set Π of permutations, the
pattern quasisymmetric function

𝑄𝑛(Π) = ∑
𝜍∈Av𝑛(Π)

𝐹Des𝜍.

Note that 𝑄𝑛(Π) is a sum of fundamental quasisymmetric functions for permutations
avoiding Π, while 𝐹Π is a sum over the elements of Π itself. There are times when
𝑄𝑛(Π) being symmetric implies that the same is true for 𝑄𝑛(Π′) for certain other Π′,
similar to what happens with Wilf equivalence. Consider the dihedral group 𝐷 of the
square as defined in (1.11). The following lemma is easy to prove and so its demonstra-
tion is left as an exercise.

Lemma 8.4.2. For any 𝑓 ∈ 𝐷, any set of permutationsΠ, and any 𝑛 ≥ 0 we have

𝑓(Av𝑛(Π)) = Av𝑛(𝑓(Π)). □

Recall that if 𝜋 is a permutation, then its complement and reversal (see Exercise 37
of Chapter 1) are denoted 𝜋𝑐 and 𝜋𝑟, respectively.

Proposition 8.4.3. Suppose that 𝑄𝑛(Π) is symmetric and that it has Schur expansion
𝑄𝑛(Π) = ∑

𝜆
𝑐𝜆𝑠𝜆.

(a) We have 𝑄𝑛(Π𝑐) is symmetric and
𝑄𝑛(Π𝑐) = ∑

𝜆
𝑐𝜆𝑠𝜆𝑡 .
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(b) We have 𝑄𝑛(Π𝑟) is symmetric and
𝑄𝑛(Π𝑟) = ∑

𝜆
𝑐𝜆𝑠𝜆𝑡 .

(c) We have 𝑄𝑛(Π𝑐𝑟) is symmetric and
𝑄𝑛(Π𝑐𝑟) = ∑

𝜆
𝑐𝜆𝑠𝜆.

Proof. (a) Applying the definition of𝑄𝑛(Π) and then Theorem 8.2.5 to the hypothesis
we have

(8.11) ∑
𝜍∈𝔖𝑛(Π)

𝐹Des𝜍 = 𝑄𝑛(Π) = ∑
𝜆
𝑐𝜆𝑠𝜆 = ∑

𝜆
𝑐𝜆 ∑

𝑃∈SYT(𝜆)
𝐹Des𝑃 .

In passing from 𝜎 to 𝜎𝑐, every descent is changed into an ascent and vice versa. So we
have

(8.12) Des 𝜎𝑐 = [𝑛 − 1] − Des 𝜎.
Also note that in any SYT 𝑃 with 𝑘 in cell (𝑖, 𝑗) and 𝑘 + 1 in cell (𝑖′, 𝑗′), either we have
𝑖 < 𝑖′ and 𝑗 ≥ 𝑗′ which implies 𝑘 ∈ Des 𝑃, or we have 𝑖 ≥ 𝑖′ and 𝑗 < 𝑗′ which implies
𝑘 ∉ Des 𝑃. It follows that
(8.13) Des 𝑃𝑡 = [𝑛 − 1] − Des 𝑃.
Using Lemma 8.4.2, then equations (8.12), (8.11), and (8.13), and then finally Theo-
rem 8.2.5 in that order yields

𝑄𝑛(Π𝑐) = ∑
𝜍∈𝔖𝑛(Π)

𝐹[𝑛−1]−Des𝜍 = ∑
𝜆
𝑐𝜆 ∑

𝑃∈SYT(𝜆)
𝐹[𝑛−1]−Des𝑃 = ∑

𝜆
𝑐𝜆𝑠𝜆𝑡 .

(b) The proof is similar to part (a) except that one uses Theorem 7.6.3 in place of
equation 8.13. The details are left to the reader.

(c) This is implied by the first two parts and Lemma 8.4.2. □

We will now use our results to prove that two particular Π ⊆ 𝔖3 have 𝑄𝑛(Π) sym-
metric for all 𝑛 and determine its Schur expansion. For a complete list of all such Π,
as well as examples which are not subsets of 𝔖3, see [42]. A partition 𝜆 is a hook if
𝜆 = (𝑎, 1𝑏) for 𝑎 ≥ 1 and 𝑏 ≥ 0. Let

ℋ𝑛 = {𝜆 ⊢ 𝑛 ∣ 𝜆 is a hook}.

Theorem 8.4.4. We have

𝑄𝑛(132, 213) = 𝑄𝑛(231, 312) = ∑
𝜆∈ℋ𝑛

𝑠𝜆.

Proof. Since {231, 312} = {132, 213}𝑐 it suffices, by the previous proposition, to prove
that 𝑄𝑛(132, 213) has the given Schur expansion. First we claim that

𝑄𝑛(132, 213) = ∑
𝑆⊆[𝑛−1]

𝐹𝑆 .
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To prove the claim, it suffices to show that there is a bijection between subsets 𝑆
⊆ [𝑛 − 1] and permutations 𝜎 ∈ Av𝑛(132, 213) such that Des 𝜎 = 𝑆. Recall from
Lemma 8.4.1 that these 𝜎 are exactly the reverse layered permutations. If 𝛼
= [𝛼1, . . . , 𝛼𝑘] is the composition of layer lengths of𝜎, thenDes 𝜎 = 𝑆where 𝑆 = 𝜙−1(𝛼)
and 𝜙 is the bijection (1.8). So it suffices to prove that for any 𝛼 ⊧ 𝑛 there is a unique
𝜎 ∈ Av𝑛(132, 213) having 𝛼 as its composition of layer lengths. But this is clear since
wemust put the 𝛼1 largest elements of [𝑛] in the first layer, the next 𝛼2 largest elements
in the second layer, and so on.

From the previous paragraph, we will be done if we can show that

∑
𝜆∈ℋ𝑛

𝑠𝜆 = ∑
𝑆⊆[𝑛−1]

𝐹𝑆 .

Because of Theorem 8.2.5, it suffices to show that there is a bijection between subsets
𝑆 ⊆ [𝑛 − 1] and hook tableaux 𝐻 such that Des𝐻 = 𝑆. But given any 𝑆′ ⊆ [2, 𝑛], there
is a unique hook tableau 𝐻 whose first column is 𝑆′ ∪ {1}. And Des𝐻 = 𝑆′ − 1, the set
obtained from 𝑆′ by subtracting one from each entry. So the bijection 𝑆′ ↦ 𝑆 = 𝑆′ − 1
completes the proof. □

8.5. The chromatic quasisymmetric function

Chromatic quasisymmetric functions were introduced by Shareshian and Wachs [82]
in part to study the (𝟑+𝟏)-Free Conjecture of Stanley and Stembridge [93]. These qua-
sisymmetric functions refine the chromatic symmetric functions from Section 7.8 and
have many interesting properties, including a connection with Hessenberg varieties
from algebraic geometry. Here, we consider what happens when such a function is
symmetric as well as making a connection with reverse 𝑃-partitions.

Throughout this section, 𝐺 = (𝑉, 𝐸) will be a graph with 𝑉 = [𝑛]. We let

𝒫𝐶(𝐺) = {𝑐∶ 𝑉 → ℙ ∣ 𝑐 is a proper coloring of 𝐺}.

The set of ascents of 𝑐 ∈ 𝒫𝐶(𝐺) is

Asc 𝑐 = {𝑖𝑗 ∈ 𝐸 ∣ 𝑖 < 𝑗 and 𝑐(𝑖) < 𝑐(𝑗)}

with corresponding ascent number asc 𝑐 = #Asc 𝑐. Figure 8.2 displays three proper
colorings of a path with edges 13 and 32. They have Asc 𝑐1 = ∅, Asc 𝑐2 = {13}, and
Asc 𝑐3 = {13, 23} so that asc 𝑐1 = 0, asc 𝑐2 = 1, and asc 𝑐3 = 2, respectively. Given

1 3 2

7 5 7𝑐1 =

1 3 2

4 5 7𝑐2 =

1 3 2

4 5 4𝑐3 =

Figure 8.2. Three proper colorings of a graph with 𝑉 = [3]
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variable set 𝐱 = {𝑥1, 𝑥2, . . . } as well as another parameter 𝑞, define the chromatic qua-
sisymmetric function of 𝐺 to be

𝑋(𝐺; 𝐱, 𝑞) = ∑
𝑐∈𝒫𝐶(𝐺)

𝐱𝑐𝑞asc 𝑐

where 𝐱𝑐 is defined by (7.36). To illustrate with the graph in Figure 8.2, if we consider
the colorings 𝑐 such that 𝑐(1) = 𝑐(2) = 𝑖 and 𝑐(3) = 𝑗 > 𝑖, then each such map
contributes 𝑥2𝑖 𝑥𝑗𝑞2 to the sum for a total of𝑀21𝑞2. If the inequality between 𝑖 and 𝑗 is
reversed, then there are no ascents and the contribution is𝑀12. Similar considerations
apply to the six ways three distinct colors could be assigned to the vertex set, giving a
total of

𝑋(𝐺; 𝐱, 𝑞) = (𝑀12 + 2𝑀13) + (2𝑀13)𝑞 + (𝑀21 + 2𝑀13)𝑞2.
Because of the similarity to our notation𝑋(𝐺; 𝐱) for the chromatic symmetric function,
we will always include the 𝑞 when referring to its quasisymmetric cousin. Also, it will
be convenient to define

𝑋𝑘(𝐺; 𝐱) = ∑
𝑐∈𝒫𝐶(𝐺)
asc 𝑐=𝑘

𝐱𝑐

so that
𝑋(𝐺; 𝐱, 𝑞) = ∑

𝑘≥0
𝑋𝑘(𝐺; 𝐱)𝑞𝑘.

Wefirst show that the chromatic quasisymmetric function lives up to its name and
is a refinement of the chromatic symmetric function.

Proposition 8.5.1. Let 𝐺 be a graph with 𝑉 = [𝑛]. We have:
(a) 𝑋𝑘(𝐺; 𝐱) ∈ QSym𝑛 for all 𝑘 ≥ 0.
(b) 𝑋(𝐺; 𝐱, 𝑞) has degree #𝐸 as a polynomial in 𝑞.
(c) 𝑋(𝐺; 𝐱, 1) = 𝑋(𝐺; 𝐱).

Proof. (a) We have 𝑋𝑘(𝐺, 𝐱) is homogeneous of degree 𝑛 since in 𝐱𝑐 there is a factor 𝑥𝑖
for each vertex 𝑖 ∈ 𝑉 . To show it is quasisymmetric consider a monomial of 𝑋𝑘(𝐺, 𝐱),
say 𝐱𝑐 = 𝑥𝛼1

𝑖1 𝑥
𝛼2
𝑖2 ⋯𝑥𝛼𝑙

𝑖𝑙 with 𝑖1 < 𝑖2 < ⋯ < 𝑖𝑙 which arose from a proper coloring
𝑐∶ 𝑉 → {𝑖1, 𝑖2, . . . , 𝑖𝑙}. Take any other set of positive integers 𝑗1 < 𝑗2 < ⋯ < 𝑗𝑙 and
consider the coloring 𝑐′ = 𝑓 ∘ 𝑐 where 𝑓(𝑖𝑚) = 𝑗𝑚 for all 𝑚. Then 𝑐′ is proper since 𝑓
is a bijection and asc 𝑐′ = asc 𝑐 = 𝑘 since 𝑓 is an increasing function. It follows that
𝑋𝑘(𝐺; 𝐱) contains a corresponding monomial 𝐱𝑐

′ = 𝑥𝛼1
𝑖𝑗 𝑥

𝛼2
𝑖𝑗 ⋯𝑥𝛼𝑙

𝑖𝑗 with 𝑗1 < 𝑗2 < ⋯ <
𝑗𝑙. Thus 𝑋𝑘(𝐺; 𝐱) is quasisymmetric.

(b) Since asc 𝑐 counts a subset of 𝐸 for any coloring 𝑐, we have that the degree of
𝑋(𝐺; 𝐱, 𝑞) is no greater than #𝐸. And the coloring 𝑐(𝑖) = 𝑖 for all 𝑖 ∈ 𝑉 has asc 𝑐 = #𝐸,
so that is the degree.

(c) This follows trivially from the definitions. □

To explore what happens if 𝑋(𝐺; 𝐱, 𝑞) is in fact a symmetric function in 𝐱, we need
to discuss reversal and palindromicity of sequences. Given a sequence 𝑎 ∶ 𝑎0, 𝑎1, . . . ,
𝑎𝑛, its reversal is then 𝑎𝑟 ∶ 𝑎𝑛, 𝑎𝑛−1, . . . , 𝑎0. We say that 𝑎 is palindromic with center 𝑛/2
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if 𝑎 = 𝑎𝑟. For example, the sequence 0, 7, 2, 2, 7, 0 is palindromic with center 5/2. We
also say that the generating function 𝑓(𝑞) = ∑𝑛

𝑖=0 𝑎𝑖𝑞𝑖 has one of these properties if the
corresponding sequence does. So, in our example, 7𝑞+ 2𝑞2 +2𝑞3 +7𝑞4 is palindromic
with center 5/2. Note that if 𝑓(𝑞) is palindromic with center 𝑛/2, then 𝑛 need not be the
degree of 𝑓(𝑞) because of possible initial zeros. Also, since the 𝑎𝑖 may contain other
variables, we sometimes say that 𝑓(𝑞) is palindromic in 𝑞 to be specific. There is a
simple algebraic test for being a palindrome. We leave its proof to the reader.

Lemma 8.5.2. Let 𝑎 ∶ 𝑎0, 𝑎1, . . . , 𝑎𝑛 be a sequence with generating function 𝑓(𝑞).
(a) The generating function for 𝑎𝑟 is 𝑞𝑛𝑓(1/𝑞).
(b) The given sequence is a palindrome with center 𝑛/2 if and only if

𝑓(𝑞) = 𝑞𝑛𝑓(1/𝑞). □

Define an involution 𝜌 on the monomial quasisymmetric functions by letting
𝜌(𝑀𝛼) = 𝑀𝛼𝑟 .

Extend 𝜌 by linearity to QSym[𝑞], the polynomials in 𝑞 whose coefficients are qua-
sisymmetric functions, where powers of 𝑞 are treated as scalars. We will see that this
involution reverses 𝑋(𝐺; 𝐱, 𝑞) as a polynomial in 𝑞. To express the resulting power se-
ries, define the descent set and descent number of a coloring 𝑐 to be

Des 𝑐 = {𝑖𝑗 ∈ 𝐸 ∣ 𝑖 < 𝑗 and 𝑐(𝑖) > 𝑐(𝑗)}
and des 𝑐 = #Des 𝑐, respectively.
Theorem 8.5.3. Let 𝐺 be a graph with 𝑉 = [𝑛] and #𝐸 = 𝑚.

(a) 𝜌(𝑋(𝐺; 𝐱, 𝑞)) = 𝑞𝑚𝑋(𝐺; 𝐱, 𝑞−1).
(b) 𝜌(𝑋(𝐺; 𝐱, 𝑞)) = ∑

𝑐∈𝒫𝐶(𝐺)
𝐱𝑐𝑞des 𝑐.

Proof. (a) For a composition 𝛼 = [𝛼1, . . . , 𝛼𝑙] and 𝑘 ∈ ℕ, the coefficient of 𝑥𝛼1
1 ⋯𝑥𝛼𝑙

𝑙 𝑞𝑘
on the left side of (a) is

[𝑥𝛼1
1 ⋯𝑥𝛼𝑙

𝑙 𝑞𝑘]𝜌(𝑋(𝐺; 𝐱, 𝑞)) = [𝑥𝛼𝑙
1 ⋯𝑥𝛼1

𝑙 𝑞𝑘]𝑋(𝐺; 𝐱, 𝑞)
= #{proper 𝑐 ∣ 𝐱𝑐 = 𝑥𝛼𝑙

1 ⋯𝑥𝛼1
𝑙 and asc 𝑐 = 𝑘}.(8.14)

Similarly
[𝑥𝛼1

1 ⋯𝑥𝛼𝑙
𝑙 𝑞𝑘](𝑞𝑚𝑋(𝐺; 𝐱, 𝑞−1)) = [𝑥𝛼1

1 ⋯𝑥𝛼𝑙
𝑙 𝑞𝑚−𝑘]𝑋(𝐺; 𝐱, 𝑞)

= #{proper 𝑐′ ∣ 𝐱𝑐′ = 𝑥𝛼1
1 ⋯𝑥𝛼𝑙

𝑙 and asc 𝑐′ = 𝑚− 𝑘}.(8.15)
So it suffices to find a bijection between the 𝑐 counted by (8.14) and the 𝑐′ counted
by (8.15).

Define 𝑓∶ [𝑙] → [𝑙] by 𝑓(𝑖) = 𝑙 − 𝑖 + 1 for all 𝑖. Now given 𝑐 as in (8.14), we let
𝑐′ = 𝑓 ∘ 𝑐. We have that 𝑐′ is still proper since 𝑓 is a bijection. If 𝑐 sends 𝛼𝑖 vertices
to color 𝑖, then 𝑐′ sends that many vertices to color 𝑙 − 𝑖 + 1. So their monomials are
related as desired. And since 𝑓 is order reversing, asc 𝑐′ = 𝑚−asc 𝑐. Finally, 𝑓 induces
a bijection on colorings since 𝑐 = 𝑓 ∘ 𝑐′.
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Figure 8.3. A graph and its poset

(b) For any proper coloring we have Des 𝑐 = 𝐸 − Asc 𝑐 and so des 𝑐 = 𝑚 − asc 𝑐. It
follows that

𝑞𝑚𝑋(𝐺; 𝐱, 𝑞−1) = ∑
𝑐∈𝒫𝐶(𝐺)

𝐱𝑐𝑞des 𝑐.

The result now follows from part (a). □

Similarly to QSym[𝑞], define Sym[𝑞] to be the set of polynomials in 𝑞 whose coef-
ficients are symmetric functions. The reader should find it easy to supply the details of
the demonstration of the next result.

Corollary 8.5.4. Let 𝐺 be a graph with 𝑉 = [𝑛] and #𝐸 = 𝑚 such that 𝑋(𝐺; 𝐱, 𝑞) ∈
Sym[𝑞].

(a) 𝑋(𝐺; 𝐱, 𝑞) = ∑
𝑐∈𝒫𝐶(𝐺)

𝐱𝑐𝑞des 𝑐.

(b) 𝑋(𝐺; 𝐱, 𝑞) is palindromic in 𝑞 with center𝑚/2. □

We end by making a connection with reverse 𝑃-partitions. Given any graph 𝐺
with 𝑉 = [𝑛], there is an associated poset 𝑃(𝐺) on [𝑛] defined as follows. Call a path
𝑖1, 𝑖2, . . . , 𝑖𝑙 in 𝐺 decreasing if 𝑖1 > 𝑖2 > ⋯ > 𝑖𝑙. Now define 𝑖 ⊴ 𝑗 in 𝑃(𝐺) if there is a
decreasing path from 𝑖 to 𝑗 in 𝐺. See Figure 8.3 for an example. We must make sure
that 𝑃(𝐺) satisfies the poset axioms.

Lemma 8.5.5. If 𝐺 is a graph with 𝑉 = [𝑛], then 𝑃(𝐺) is a poset on [𝑛].

Proof. We have 𝑖 ⊴ 𝑖 for 𝑖 ∈ [𝑛] because of the path of length zero from 𝑖 to itself
which is decreasing. If 𝑖 ⊴ 𝑗 and 𝑗 ⊴ 𝑖, then the decreasing path from 𝑖 to 𝑗 forces
𝑖 ≥ 𝑗. Similarly 𝑗 ≥ 𝑖 so that 𝑖 = 𝑗. Finally, if 𝑖 ⊴ 𝑗 and 𝑗 ⊴ 𝑘, then consider the
concatenation 𝑃 of the decreasing paths from 𝑖 to 𝑗 and from 𝑗 to 𝑘. Now the vertices
on 𝑃 form a decreasing sequence since the two individual paths are decreasing and the
terminal vertex of the first equals the initial vertex of the second. This also shows that
𝑃 is a path since the decreasing condition makes it impossible to repeat a vertex. So
𝑖 ⊴ 𝑘 which finishes transitivity and the proof. □
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We can now show that the coefficient of 𝑞0 in 𝑋(𝐺; 𝐱, 𝑞) is the quasisymmetric
generating function for reverse 𝑃(𝐺)-partitions.

Theorem 8.5.6. If 𝐺 is a graph with 𝑉 = [𝑛], then
𝑋0(𝐺; 𝐱) = rpar(𝑃(𝐺); 𝐱).

Proof. It suffices to show that any proper coloring of 𝐺 with no ascents is a reverse
𝑃(𝐺)-partition and conversely. So let 𝑐∶ 𝑉 → ℙ be a proper coloring with asc 𝑐 = 0.
Recall that it suffices to prove that RPP1 and RPP2 hold for covers 𝑖 ⊲ 𝑗. But then
𝑖 > 𝑗 must be a decreasing path consisting of a single edge. And since this is a proper
coloring with no ascents, 𝑐(𝑖) < 𝑐(𝑗). So both of the desired conditions hold.

For the other direction, let 𝑓∶ 𝑃(𝐺) → ℙ be a reverse partition. By definition of
𝑃(𝐺), any cover 𝑖 ⊲ 𝑗 comes from an edge 𝑖𝑗 with 𝑖 > 𝑗. By RPP2, we have 𝑓(𝑖) < 𝑓(𝑗).
So 𝑓 is a proper coloring since the second inequality is strict and, by comparing the last
two inequalities, has no ascents. This completes the proof, as well as the book. □

Exercises

(1) Prove thatQSym is an algebra; that is, show it is closed under linear combinations
and products.

(2) Prove Proposition 8.1.2.
(3) (a) Show that𝑀𝛼 is symmetric if and only if 𝛼 = [𝑖𝑚] for some 𝑖, 𝑚. In addition,

show that𝑀[𝑖𝑚] = 𝑚(𝑖𝑚).
(b) Show that 𝐹𝛼 is symmetric if and only if 𝛼 = [𝑛] or 𝛼 = [1𝑛] for some 𝑛. In

addition, show that 𝐹𝑛 = ℎ𝑛 and 𝐹1𝑛 = 𝑒𝑛.
(c) Suppose that 𝛼, 𝛽 ⊧ 𝑛 are distinct compositions where 𝑛 > 3. Show that

𝐹𝛼 + 𝐹𝛽 is symmetric if and only if {𝛼, 𝛽} = {[𝑛], [1𝑛]}.
(4) (a) Show that the𝑀𝛼 can be expressed in terms of the 𝐹𝛼 as

𝑀𝛼 = (−1)ℓ(𝛼) ∑
𝛽≤𝛼

(−1)ℓ(𝛽)𝐹𝛽

where ℓ(⋅) is the length function in two ways: using Theorem 1.3.3(d) and
using Möbius inversion.

(b) Show that part (a) implies Theorem 8.1.4.
(5) Prove Lemma 8.2.1.
(6) Complete the proof of equation (8.4).
(7) (a) Prove that the map between reverse compatible and compatible functions

given in the text is a well-defined bijection and that if 𝑓maps to 𝑔, then |𝑓| =
|𝑔| + 𝑛 where the permutations come from 𝔖𝑛.

(b) Given a poset 𝑃 on [𝑛], find a poset 𝑄 on [𝑛] such that there is a bijection
𝜓∶ RPar 𝑃 → Par𝑄 satisfying |𝑓| = |𝜓(𝑓)| + 𝑛 for all 𝑓 ∈ RPar 𝑃.
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(8) (a) Show that if 𝑄 is the recording tableau for 𝜋 under the Robinson–Schensted
map, then Des𝑄 = Des𝜋.

(b) Show in the proof of Theorem 8.2.5 that Des𝜋 ⊆ Des𝑄.
(9) Prove Lemma 8.2.3.
(10) Prove Theorem 8.2.4.
(11) Prove Proposition 8.2.6.
(12) (a) Show that if 𝜋 ∈ 𝔖𝑛, then we have the principal specialization

𝐹Des𝜋(1, 𝑞, 𝑞2, . . . ) =
𝑞maj𝜋′

(1 − 𝑞)(1 − 𝑞2)⋯ (1 − 𝑞𝑛)
where 𝜋′ is the reverse complement of 𝜋 as given by (8.3)

(b) Use part (a) and Theorem 8.2.4 to rederive equation (7.23).
(13) Prove that if 𝜎 ∈ 𝑃(𝑈) and 𝜏 ∈ 𝑃(𝑉)where𝑈,𝑉 are disjoint and#𝑈 = 𝑚,#𝑉 = 𝑛,

then
∑

𝜋∈𝜍⧢𝜏
𝑞maj𝜋 = 𝑞maj𝜍+maj 𝜏 [ 𝑚 + 𝑛

𝑚 ]
𝑞
.

Conclude that maj is a shuffle compatible function on permutations. Hint: Use
equation (7.23).

(14) Show that the two maps in the proof of Theorem 8.3.1 are inverses.
(15) (a) Let 𝑃 be a finite, ranked poset with a 1̂ having rk 1̂ = 𝑛. Associate with any

chain 𝐶 ∶ 0̂ = 𝑥0 < 𝑥1 < ⋯ < 𝑥𝑘 = 1̂ the set 𝑆(𝐶) = {rk 𝑥1, rk 𝑥2, . . . , rk 𝑥𝑘−1}
⊆ [𝑛 − 1]. Show that 𝜙(𝑆(𝐶)) = 𝛼(𝐶) where 𝜙 is the map in (1.8).

(b) Complete the proof of Theorem 8.3.2.
(16) (a) Show that for the 𝑛-chain we have 𝑀(𝐶𝑛) = ℎ𝑛, the complete homogeneous

symmetric function of degree 𝑛.
(b) Show that if the prime factorization of𝑛 is𝑛 = 𝑝𝜆11 ⋯𝑝𝜆𝑙𝑙 where𝜆 = (𝜆1, . . . , 𝜆𝑙)

is a partition, then for the divisor lattice𝑀(𝐷𝑛) = ℎ𝜆.
(17) Prove that a permutation 𝜋 ∈ 𝔖𝑛 is reverse layered if and only if we have 𝜋𝑖+1 ≤

𝜋𝑖 + 1 for 1 ≤ 𝑖 < 𝑛.
(18) Prove Lemma 8.4.2.
(19) Prove part (b) of Proposition 8.4.3.
(20) Prove that part (c) of Proposition 8.4.3 is implied by parts (a) and (b) and Lemma

8.4.2.
(21) Show that if 𝑖 ∈ [𝑛], then

𝑠(𝑖,1𝑛−𝑖) = ∑
𝑆
𝐹𝑆

where the sum is over 𝑆 ∈ ([𝑛−1]𝑛−𝑖 ).
(22) (a) The Knuth class corresponding to an SYT 𝑃 is the set

𝐾(𝑃) = {𝜋 ∣ 𝜋 RS↦ (𝑃,𝑄) for some SYT 𝑄}.
Prove that if 𝐹Π is as defined in (8.9) and sh 𝑃 = 𝜆, then

𝐹𝐾(𝑃) = 𝑠𝜆.
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(b) The Knuth aggregate corresponding to a partition 𝜆 is the set
𝐾(𝜆) = ⨄

𝑃∈SYT(𝜆)
𝐾(𝑃).

Prove that
𝐹𝐾(𝜆) = 𝑓𝜆𝑠𝜆.

(c) Show that
𝑄𝑛(∅) = ∑

𝜆⊢𝑛
𝑓𝜆𝑠𝜆.

(d) If 𝜄𝑘 = 12 . . . 𝑘, then show
𝑄𝑛(𝜄𝑘) = ∑

𝜆1<𝑘
𝑓𝜆𝑠𝜆.

(e) If 𝛿𝑘 = 𝑘 . . . 21, then show
𝑄𝑛(𝛿𝑘) = ∑

𝜆𝑡1<𝑘
𝑓𝜆𝑠𝜆.

(23) (a) One can define 𝑋(𝐺; 𝐱, 𝑞) for any graph whose vertices are distinct positive
integers just as we did in the case 𝑉 = [𝑛]. With this extended definition,
show that for a disjoint union of graphs we have

𝑋(𝐺 ⊎ 𝐻; 𝐱, 𝑞) = 𝑋(𝐺; 𝐱, 𝑞)𝑋(𝐻; 𝐱, 𝑞).
(b) Show that for the empty graph which has 𝑛 vertices and no edges

𝑋(∅; 𝐱, 𝑞) = 𝑒1𝑛(𝐱).
(c) Show that for the complete graph on 𝑛 vertices

𝑋(𝐾𝑛; 𝐱, 𝑞) = 𝑒𝑛(𝐱)[𝑛]𝑞! .
(24) Prove Lemma 8.5.2.
(25) Prove Corollary 8.5.4.
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Appendix

Introduction to
Representation Theory

This appendix is designed to give just enough information about representation theory
to understand some of the material in the body of the text. As such, most proofs are
omitted. The reader wanting more information is encouraged to consult the texts of
James [45], James and Kerber [46], or Sagan [79].

A.1. Basic notions

Let 𝐺 be a finite group and let 𝑉 be a finite-dimensional vector space over the complex
numbers. We say that 𝑉 is a 𝐺-module or that 𝑉 affords a representation of 𝐺 if there is
an action of 𝐺 on 𝑉 such that each map 𝑔 ∶ 𝑉 → 𝑉 is linear. Since each such function
is bijective, 𝑔 is in fact an element of the general linear group,GL(𝑉), of invertible linear
transformations on 𝑉 . So to say that 𝑉 is a 𝐺-module is equivalent to saying that there
is a homomorphism of groups 𝜌 ∶ 𝐺 → GL(𝑉). We will often write [𝑔] for 𝜌(𝑔). By
definition, 𝑔 → [𝑔] being a homomorphism means

(A.1) [𝑔ℎ] = [𝑔][ℎ]

for all 𝑔, ℎ ∈ 𝐺 where the product on the left is in 𝐺 and on the right we have composi-
tion of linear transformations. The matrix for the linear map [𝑔] in a basis 𝐵 of 𝑉 will
be denoted [𝑔]𝐵, where wemay drop the subscript if the basis is clear from the context.
The dimension of a representation 𝑉 is just the usual vector space dimension dim𝑉 .

Every group 𝐺 has the trivial representation where 𝑉 = ℂ and 𝑔𝑐 = 𝑐 for all 𝑔 ∈ 𝐺
and 𝑐 ∈ ℂ. Equivalently [𝑔] = [1] for all 𝑔 ∈ 𝐺.

For a less trivial example, we can turn any set 𝑋 on which 𝐺 acts into a 𝐺-module
by considering that vector space ℂ𝑋 generated by 𝑋 as defined in (7.32). Indeed, since
𝐺 acts on 𝑋 which is a basis for ℂ𝑋 , the action can be extended to ℂ𝑋 by linearity.
Clearly dimℂ𝑋 = #𝑋 . To be even more concrete, consider the action of 𝔖3 on [3] and

287
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hence on
ℂ[3] = {𝑐1𝟏 + 𝑐2𝟐 + 𝑐3𝟑 ∣ 𝑐1, 𝑐2, 𝑐3 ∈ ℂ}.

Note the distinction between [𝑛] for 𝑛 ∈ ℕ and [𝑔] for 𝑔 ∈ 𝐺. Note also the use
of boldface numbers to denote the corresponding vectors. To find the matrix for the
permutation (1, 3, 2) in the basis 𝑋 = [3] we compute the action on each basis vector

(1, 3, 2)𝟏 = 𝟑, (1, 3, 2)𝟐 = 𝟏, (1, 3, 2)𝟑 = 𝟐.
This corresponds to the matrix

[(1, 3, 2)]𝑋 = [
0 1 0
0 0 1
1 0 0

] .

The reader should find it easy to write out the matrices for the rest of 𝔖3 and verify
that (A.1) holds. If 𝑋 = [𝑛], then the representation of 𝔖𝑛 afforded by ℂ[𝑛] is called
its defining representation. The matrix [𝜋]𝑋 for 𝜋 ∈ 𝔖𝑛 is called its corresponding
permutation matrix. More generally, if 𝐺 acts on 𝑋 , then the 𝐺-module ℂ𝑋 is called a
permutation representation of 𝐺.

We will be particularly concerned with representations of cyclic groups. Suppose
that𝐺 is cyclicwith#𝐺 = 𝑛, and let 𝑔 be a generator of𝐺. Let us find the 1-dimensional
representations of 𝐺. Suppose that we have a homomorphism 𝜌 ∶ 𝐺 → ℂwhich sends
𝑔 to the matrix [𝑐] for some 𝑐 ∈ ℂ. The value of 𝑐 completely determines 𝜌 since 𝑔
generates 𝐺 and, by (A.1),

[𝑔𝑖] = [𝑔]𝑖 = [𝑐]𝑖 = [𝑐𝑖]
for any 𝑖 ≥ 0. Furthermore, since 𝑔𝑛 = 𝑒, we must have [𝑐𝑛] = [1] and so 𝑐must be an
𝑛th root of unity. It is now easy to check that one obtains 𝑛 1-dimensional representa-
tions of 𝐺 by letting 𝜌(𝑔𝑖) = [𝜔𝑖] for each 𝑛th root of unity 𝜔.

Sometimes we have two 𝐺-modules where the action of 𝐺 is essentially the same.
Two 𝐺-modules 𝑉,𝑊 are said to be 𝐺-isomorphic or 𝐺-equivalent, written 𝑉 ≅ 𝑊 , if
there is an isomorphism of vector spaces 𝜙 ∶ 𝑉 → 𝑊 which respects the action of 𝐺 in
that
(A.2) 𝑔𝜙(𝑣) = 𝜙(𝑔𝑣)
for all 𝑔 ∈ 𝐺 and 𝑣 ∈ 𝑉 . Stated in terms of matrices, this definition means that there
are bases 𝐵 for 𝑉 and 𝐶 = 𝜙(𝐵) for𝑊 such that

[𝑔]𝐵 = [𝑔]𝐶
for all 𝑔 ∈ 𝐺. Otherwise 𝑉 and𝑊 are 𝐺-inequivalent. We will drop the “𝐺-” modifier
if the group is clear from the context.

To illustrate, let us revisit the defining representation of𝔖3. Consider the subspace
𝑊 of ℂ[3] generated by the vector 𝟏 + 𝟐 + 𝟑:
(A.3) 𝑊 = ℂ{𝟏 + 𝟐 + 𝟑} = {𝑐(𝟏 + 𝟐 + 𝟑) ∣ 𝑐 ∈ ℂ}.
So for any𝑤 = 𝑐(𝟏+𝟐+𝟑) and 𝜋 ∈ 𝔖3, the fact that 𝜋 is linear and permutes the three
vectors 𝟏, 𝟐, 𝟑 yields

𝜋(𝑤) = 𝜋(𝑐(𝟏 + 𝟐 + 𝟑)) = 𝑐𝜋(𝟏 + 𝟐 + 𝟑) = 𝑐(𝟏 + 𝟐 + 𝟑) = 𝑤.
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It follows that [𝜋] = [1] for all 𝜋 and so 𝑊 is equivalent to the trivial representation
of 𝔖3. More generally, given any permutation representation ℂ𝑋 for a group 𝐺, the
subspace𝑊 = ℂ{𝑤}where𝑤 = ∑𝑥∈𝑋 𝑥 is equivalent to the trivial representation of𝐺.

On the other hand, the 𝑛 representations of a cyclic group𝐺 = ⟨𝑔⟩ of order 𝑛which
we derived above are all inequivalent, for suppose we consider two representations
such that
(A.4) 𝜌(𝑔) = [𝜔] and 𝜌′(𝑔) = [𝜔′]
for two 𝑛th roots of unity 𝜔,𝜔′. Any vector space isomorphism 𝜙 ∶ ℂ → ℂ is multipli-
cation by some 𝑐 ∈ ℂ − {0}. So, considering (A.2) with 𝑣 = 1,

𝑔𝜙(𝑣) = 𝜔′𝜙(𝑣) = 𝜔′(𝑐1) = 𝑐𝜔′

since 𝑔 is acting on the representation 𝜌′ in the range of 𝜙. On the other hand
𝜙(𝑔𝑣) = 𝜙(𝜔𝑣) = 𝑐(𝜔1) = 𝑐𝜔

for now 𝑔 is acting by 𝜌 in the domain of 𝜙. Setting these two evaluations equal forces
𝜔 = 𝜔′.

If 𝑉,𝑊 are 𝐺-modules, then it is easy to see that 𝑉 ⊕𝑊 is also, where the action
is defined by

𝑔(𝑣 + 𝑤) = 𝑔𝑣 + 𝑔𝑤
for 𝑔 ∈ 𝐺, 𝑣 ∈ 𝑉 , 𝑤 ∈ 𝑊 . It turns out that all 𝐺-modules can be constructed this
way from certain building blocks which are called the irreducible modules. If 𝑉 is a𝐺-
module, then a submodule of 𝑉 is a subspace𝑊 ⊆ 𝑉 which is itself a 𝐺-module in that
𝑔𝑤 ∈ 𝑊 for all 𝑔 ∈ 𝐺 and𝑤 ∈ 𝑊 . Any𝐺-module 𝑉 has the trivial submodules consist-
ing of the zero subspace and 𝑉 itself. All other submodules are nontrivial. Note that
the usage of the word “trivial” here is different fromwhat we have defined as the trivial
representation. Any group 𝐺 has a unique trivial representation which has dimension
1. On the other hand, any 𝐺-module 𝑉 has two (not necessarily distinct) submodules
which are considered trivial. Call 𝑉 reducible if it has nontrivial submodules and call
it irreducible otherwise.

Clearly every 1-dimensional𝐺-module is irreducible. On the other hand the defin-
ing module ℂ[𝑛] for 𝔖𝑛 is not irreducible for 𝑛 ≥ 2 because of the submodule
(A.5) 𝑊 = ℂ{𝟏 + 𝟐 +⋯+ 𝐧}.
Of course,𝑊 is irreducible since it has dimension 1. Consider the orthogonal comple-
ment𝑊 ⟂ using the inner product on ℂ[𝑛] given by 𝐢 ⋅ 𝐣 = 𝛿𝑖,𝑗 . Now ℂ[𝑛] = 𝑊 ⊕𝑊 ⟂

as vector spaces. And one can show that𝑊 ⟂ is an irreducible𝔖𝑛-module. It turns out
that one can write any 𝐺-module as a direct sum of irreducibles. We would also like to
know how many irreducible modules a group can have up to isomorphism.
Theorem A.1.1. Let 𝐺 be a finite group and consider the 𝐺-modules which are finite-
dimensional vector spaces over ℂ.

(a) The number of pairwise inequivalent irreducible𝐺-modules is finite and equals
the number of conjugacy classes of 𝐺.

(b) (Maschke’s Theorem) Every 𝐺-module can be written as a direct sum of irre-
ducible 𝐺-modules. □
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We will use the notation

(A.6) 𝑉 ≅⨁
𝑖
𝑚𝑖𝑉 (𝑖)

to indicate that 𝑉 is isomorphic to the direct sum of 𝑚𝑖 copies of 𝑉 (𝑖) as 𝑖 varies. If
𝐺 is a cyclic group of order 𝑛, then, because 𝐺 is abelian, 𝐺 has 𝑛 conjugacy classes
each consisting of a single element. So from part (a) of the previous theorem, we know
that the 𝑛 inequivalent irreducible 1-dimensional representations we have found for𝐺
are a complete list. Also, because of part (b), any representation of 𝐺 can be written
𝑉 = 𝑉 (1) ⊕ ⋯ ⊕ 𝑉 (𝑘) for irreducible submodules 𝑉 (1), . . . , 𝑉 (𝑘) all of dimension 1.
Taking 𝑣𝑖 to be a basis of 𝑉 (𝑖) for 1 ≤ 𝑖 ≤ 𝑘, we see that in the basis 𝐵 = {𝑣1, . . . , 𝑣𝑘} the
matrix [𝑔]𝐵 will be diagonal for any 𝑔 ∈ 𝐺. And because the diagonal elements come
from the 1-dimensional representations we found, they are all 𝑛th roots of unity. We
record this result for future reference.

Corollary A.1.2. If 𝐺 is a cyclic group of order 𝑛 and 𝑉 is a 𝐺-module, then there is
a basis for 𝑉 which simultaneously diagonalizes [𝑔] for all 𝑔 ∈ 𝐺. Furthermore, the
diagonal elements are 𝑛th roots of unity. □

In the symmetric group 𝔖𝑛, a conjugacy class is just all permutations of a given
cycle type 𝜆 ⊢ 𝑛. So the irreducible representations of𝔖𝑛 are also indexed by partitions
of 𝑛. If 𝑉𝜆 is the irreducible module corresponding to 𝜆, then one can show that

(A.7) dim𝑉𝜆 = 𝑓𝜆.

So, for example,𝑉 (𝑛) is the trivial representation and dim𝑉 (𝑛) = 1which is the number
of SYTof shape (𝑛). As another illustration, consider the irreduciblemodule𝑊 ⟂where
𝑊 is the submodule (A.5) of ℂ[𝑛]. Then

dim𝑊 ⟂ = dimℂ[𝑛] − dim𝑊 = 𝑛 − 1.

In fact,𝑊 ⟂ ≅ 𝑉 (𝑛−1,1) and it is easy to see that 𝑓(𝑛−1,1) = 𝑛 − 1.
It would be nice if there was a natural representation of 𝐺 which contained all the

irreducible representations. This is the case for the regular representation. Any group
𝐺 acts on the set 𝑋 = 𝐺 by left multiplication

(A.8) 𝑔(ℎ) = 𝑔ℎ

where on the left we have the action of 𝑔 on ℎ and on the right the product of 𝑔 and ℎ in
the group. The corresponding 𝐺-module ℂ𝐺 is called the (left) regular representation
of 𝐺. To illustrate, consider 𝐺 = 𝔖3 and the ordered basis

𝐵 = {𝐞, (𝟏, 𝟐), (𝟏, 𝟑), (𝟐, 𝟑), (𝟏, 𝟐, 𝟑), (𝟏, 𝟑, 𝟐)}

of the regular representation. For 𝑔 = (1, 3, 2)we have, remembering that we compose
permutations right to left,

(1, 3, 2)𝐞 = (𝟏, 𝟑, 𝟐), (1, 3, 2)(𝟏, 𝟐) = (𝟐, 𝟑), (1, 3, 2)(𝟏, 𝟑) = (𝟏, 𝟐),
(1, 3, 2)(𝟐, 𝟑) = (𝟏, 𝟑), (1, 3, 2)(𝟏, 𝟐, 𝟑) = 𝐞, (1, 3, 2)(𝟏, 𝟑, 𝟐) = (𝟏, 𝟐, 𝟑),
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with corresponding matrix

[(1, 3, 2)]𝐵 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 0 1
1 0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

We point out again (as we did in Chapter 7) that the sum of squares formula in equa-
tion (7.27) is the special case of (A.9) below where 𝐺 = 𝔖𝑛.

TheoremA.1.3. Let𝐺 be a finite group and let 𝑉 (1), . . . , 𝑉 (𝑘) be all its pairwise inequiv-
alent irreducible representations. Then the regular representation satisfies

ℂ𝐺 ≅
𝑘

⨁
𝑖=1

𝑑𝑖𝑉 (𝑖)

where 𝑑𝑖 = dim𝑉 (𝑖) for all 𝑖. In addition

(A.9) #𝐺 =
𝑘
∑
𝑖=1

𝑑2𝑖 .

Proof. For a proof of the first statement, see the demonstration of Proposition 1.10.1
in [79]. The second follows directly from the first by taking dimensions on both sides.

□

It turns out that a lot of information about a representation can be gleaned from
a very simple function. If 𝑉 is a 𝐺-module, then its character is the map 𝜒 ∶ 𝐺 → ℂ
given by

𝜒(𝑔) = tr[𝑔]
where tr is the trace function. Note that since the trace of a linear transformation is
independent of the basis in which it is computed, 𝜒(𝑔) is well-defined. Note also that
for any representation 𝑉 of dimension 𝑑 we must have

𝜒(𝑒) = tr 𝐼𝑑 = 𝑑
where 𝐼𝑑 is the 𝑑 × 𝑑 identity matrix. We also have that 𝜒 is a class function in that
𝜒(𝑔) = 𝜒(ℎ) if 𝑔, ℎ are in the same conjugacy class to 𝐺. This is because we must have
𝑔 = 𝑘ℎ𝑘−1 for some 𝑘 ∈ 𝐺. So, by (A.1) and the fact that the trace is invariant under
conjugation,

𝜒(𝑔) = 𝜒(𝑘ℎ𝑘−1) = tr[𝑘ℎ𝑘−1] = tr([𝑘][ℎ][𝑘]−1) = tr[ℎ] = 𝜒(ℎ).

It is also true that equivalent modules have the same character, for suppose 𝜙 ∶
𝑉 → 𝑊 is an isomorphism of𝐺-modules with characters 𝜒𝑉 and 𝜒𝑊 , respectively. Let
𝐵 and𝐶 = 𝜙(𝐵) be bases for𝑉 and𝑊 and suppose that 𝑇 is thematrix of 𝜙with respect
to the bases 𝐵 and 𝐶. Since (A.2) holds for all ∈ 𝑉 we must have [𝑔]𝐶𝑇 = 𝑇[𝑔]𝐵 for all
𝑔 ∈ 𝐺. Since 𝑇 is invertible we have

𝜒𝑊 (𝑔) = tr[𝑔]𝐶 = tr(𝑇[𝑔]𝐵𝑇−1) = tr[𝑔]𝐵 = 𝜒𝑉 (𝑔).
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Since this holds for all 𝑔 ∈ 𝐺, it follows that 𝜒𝑊 = 𝜒𝑉 . The surprising thing is that the
converse is also true.

Theorem A.1.4. Let 𝑉 and𝑊 be 𝐺-modules with characters 𝜒𝑉 and 𝜒𝑊 , respectively.
We have 𝑉 ≅ 𝑊 if and only if 𝜒𝑉 = 𝜒𝑊 . □

This theorem can provide a quickway of checkingwhether two representations are
equivalent or not. For example, if we are considering a 1-dimensional representation,
then 𝜒(𝑔) is just the single entry of the matrix [𝑔]. So if we have two representations
of a cyclic group as in (A.4) for distinct 𝜔,𝜔′, then we must have 𝜌 and 𝜌′ inequivalent
since 𝜒(𝑔) = 𝜔 ≠ 𝜔′ = 𝜒′(𝑔).

Exercises

(1) Show that 𝑉 is a 𝐺-module if and only if there is a map 𝜌 ∶ 𝐺 → GL(𝑉) which is
a homomorphism of groups.

(2) Show that if 𝐺 = ⟨𝑔⟩ is cyclic of order 𝑛 and 𝜔 is an 𝑛th root of unity, then the map
𝜌 ∶ 𝐺 → GL(ℂ) defined by 𝜌(𝑔𝑖) = [𝜔𝑖] is a well-defined representation of 𝐺.

(3) Let 𝑉,𝑊 be 𝐺-modules. Show that 𝑉,𝑊 are equivalent if and only if they have
bases 𝐵, 𝐶, respectively, such that

[𝑔]𝐵 = [𝑔]𝐶
for all 𝑔 ∈ 𝐺.

(4) Prove that if 𝐺 acts on 𝑋 , then the submodule of ℂ𝑋 defined by 𝑉 = ⟨𝑣⟩ where
𝑣 = ∑𝑥∈𝑋 𝑥 is equivalent to the trivial representation.

(5) Show that if 𝑉,𝑊 are 𝐺-modules, then so is 𝑉 ⊕𝑊 with the action
𝑔(𝑣 + 𝑤) = 𝑔𝑣 + 𝑔𝑤

for 𝑔 ∈ 𝐺, 𝑣 ∈ 𝑉 , 𝑤 ∈ 𝑊 .
(6) (a) Show that if 𝑉 is a𝐺-module, then the zero subspace and 𝑉 itself are submod-

ules.
(b) Consider the submodule𝑊 = ℂ{𝟏+𝟐+𝟑} of the defining representationℂ[𝟑]

of 𝔖3. Show that𝑊 ⟂ is a submodule of ℂ[𝟑] and that it is irreducible.
(7) Show that (A.8) defines a group action.
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Fermat’s Little Theorem, 206
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Wilson, 207

Conjugate
Young diagram, 14

Copy of a permutation, 28
Cycle
decomposition, 11
digraph, 21
graph, 19
permutation, 11

Cyclic sieving phenomenon (CSP), 210, 256

Degree
graph vertex, 20

Deletion-Contraction Lemma, 101
Derangement, 43
Descent, 75
Diagram
Ferrers, 14
Hasse, 140
permutation, 29
Young, see also Young, diagram

Digraph
acyclic, 56
arc, 21
multiple, 22

cycle, 21
functional, 22
in-degree, 21
labeled, 21
loop, 22
orientation, 103
out-degree, 21
path, 21
walk, 21

Dihedral group, 29
Directed Graph, see also Digraph
Distribution, 74
Doubilet, Peter
binomial poset, 178

Dyck path of semilength 𝑛, 26

Ehrenborg, Richard
chains in posts, 274

Euler, Leonhard
Fermat’s Little Theorem, 206
number, 120
partition theorem, 51, 92

Eulerian
generating function, 178
number, 121
polynomial, 122
statistic, 121

Excedance, 122
Exponential Formula, 132

Falling factorial, 4

Fermat, Pierre
Little Theorem, 206

Ferrers diagram, 14
Fibonacci number, 2
Fixed point, 11
Flajolet, Philippe
analytic combinatorics, 81

Foata, Dominique
Mahonian statistic, 76
major index, 76

Forest, 22
Formal power series, 81
algebra, 81
convergence
product, 85
sequence, 83
sum, 84

degree, 219
bounded, 219
homogeneous, 219

minimum degree, 84
quasisymmetric, 267
symmetric, 220

Formula
exponential, 132
Hook, 231

Four Color Theorem, 100
Frame, J. Sutherland
Hook Formula, 230

Functional digraph, 22

Garsia, Adriano
Involution Principle, 49

Garsia–Milne Involution Principle, 49
Gaussian polynomial, 77
Generating function
Eulerian, 178
exponential, 117
method of undetermined coefficients, 99
ordinary, 81
rational, 96
weight, 86

Generating polynomial, 71
Gessel, Ira
lattice paths, 58
quasisymmetric function, 267
shuffle compatibility, 274

Graph
acyclic, 22
bond, 167
bond lattice, 167
broken circuit, 102
chromatic
number, 99
polynomial, 100
quasisymmetric function, 280
symmetric function, 253
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clique, 19
coloring, 99
complete, 19
component, 22
connected, 22
cycle, 19
cycle of length ℓ, 19
digraph, see also Digraph
edge, 18
multiple, 22

endpoints, 19
forest, 22
increasing, 104

Four Color Theorem, 100
labeled, 18
leaf, 23
loop, 22
matrix
adjacency, 60
incidence, 61
Laplacian, 62

no broken circuit (NBC), 102
orientation, 103
path, 19
proper coloring, 99
ascent, 279

subgraph, 19
induced, 166
induced by a coloring, 167
spanning, 59

tree, 22
trivial, 19
unlabeled, 20
generating function, 202

vertex, 18
degree, 20

walk of length ℓ, 19
Grassl, Richard
reverse plane partition, 233

Greene, Curtis
and Schensted’s Theorem, 248
Hook Formula, 231

Grinberg, Darij
shuffle compatibility, 274

Group
dihedral, 29
general linear, 287
order, 210
representation, see also Representation
symmetric, 11

Group action, 189
Burnside’s Lemma, 192
congruence, 205
cycle index
of a group, 197
of an element, 197

cycle indicator, 197

cyclic sieving, 210, 256
fixed point set, 192
induced
on functions, 193
on permutations, 197
on subsets, 197

orbit, 190
weight, 201

Redfield–Pólya Theorem, 201
representation, see also Representation
stabilizer, 191
weight
of an element, 200
of an orbit, 201

Haken, Wolfgang
Four Color Theorem, 100

Hall, Phillip
Möbius function, 175

Hallam, Joshua
increasing spanning forest, 105
quotient poset, 168, 174

Hamaker, Zachary
quasisymmetric pattern avoidance, 276

Handshaking Lemma, 21
Hillman, Abraham
reverse plane partition, 233

In-degree, 21
Increasing forest, 104
Integer partition, 13
containment, 78
distinct parts, 51
hook, 230
hooklength, 230
length, 15
lexicographic order, 222
multiplicity notation, 14
odd parts, 51
part, 13
rectangule, 79
skew, 78

Inversion, 74
Involution, 44
sign reversing, 44

Jacobi, Carl
determinants, 227

James, Gordon
representation theory, 287

Joyal, André
species, 124

Kerber, Adalbert
representation theory, 287

Knuth, Donald
Robinson–Schensted–Knuth algorithm, 244
Schur function, 226
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subspace, 81
Kronecker delta, 7
poset, 159

Labeled structure, 124
disjoint union, 128
equivalence, 128
exponential formula, 132
partition, 131
product, 128
Sum and Product Rules, 129

Lagrange, Joseph
Wilson’s Congruence, 206

Lattice path, 25
Dyck of semilength 𝑛, 26
east step, 26
endpoints, 25
length, 25
north step, 26
northeast, 26
Reflection Principle, 53
step, 26

Leaf, 23
Lemma
Burnside, 192
Deletion-Contraction, 101
handshaking, 21
Lindström–Gessel–Viennot, 58, 59

Length
integer partition, 15
lattice path, 25
permutation, 4

Lindström, Bernt
lattice paths, 58

Lindström–Gessel–Viennot Lemma, 58, 59
Linear recursion with constant coefficients, 97
Littlewood, John
Cauchy Identity, 242

Log-concave sequence, 55
Lucas, Édouard
congruence, 207

Macdonald, Ian
symmetric function, 219

MacMahon, Percy
major index, 76

Major index, 76
Martin, Jeremy
increasing spanning forest, 105

Matrix-Tree Theorem, 63
Mertens, Franz
conjecture, 183
function, 183

Milne, Stephen
Involution Principle, 49

Multiset, 8
cardinality, 8

on a set, 9

Nijenhuis, Albert
Hook Formula, 231

No broken circuit (NBC), 102
Number
Bell, 10
Catalan, 26
derangement, 43
Euler, 120
Eulerian, 121
Fibonacci, 2
Kostka, 225
Stirling of the first kind (signed), 13
Stirling of the first kind (signless), 12
Stirling of the second kind, 10

O’Connor, Edmund
Wilson’s Congruence, 206

Odlyzko, Andrew
Mertens Conjecture, 183

Operator
definite summation, 162
down, 249
forward difference, 162
up, 249

Order isomorphic permutations, 29
Orientation, 103
Out-degree, 21

Part
composition, 16
integer partition, 13

Partition
integer, see also Integer partition
set, see also Set partition

Pascal’s triangle, 7
Path
digraph, 21
graph, 19
lattice, see also Lattice path

Pattern in a permutation, 28
and quasisymmetric functions, 276

Pawlowski, Brendan
quasisymmetric pattern avoidance, 276

Permutation, 4
alternating, 120
ascent, 76
avoid, 28
coexcedance, 123
compatible function, 235
copy, 28
cycle decomposition, 11
cycle of length ℓ, 11
derangement, 43
descent, 75
diagram, 29
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excedance, 122
fixed point, 11
insertion tableau, 242
inversion, 74
involution, 44
Garsia–Milne Principle, 49

length, 4
major index, 76
matrix, 288
of a set, 4
one-line notation, 11
order isomorphic, 29
pattern, 28
recording tableau, 242
representation, 288
reverse compatible function, 270
reverse layered, 277
layer lengths, 277

shuffle, 273
shuffle compatibility, 274
standardization, 28
subsequence
decreasing, 244
increasing, 244

two-line notation, 11
Wilf equivalence, 29
trivial, 30

Petersen, Julius
Fermat’s and Wilson’s congruences, 206

PIE, 42, 162
Pólya, George
group action, 200

Poset
𝑃-partition, 237
Fundamental Lemma, 238

atom, 169
binomial, 178
Boolean algebra, 140
chain, 139, 147
maximal, 147
projection, 275
saturated, 147
underlying, 275

characteristic polynomial, 164
claw, 169
closed interval, 143
coatom, 174
comparable elements, 139
composition
dominance, 31
lattice, 140

covering relation, 140
crosscut, 177
Crosscut Theorem, 177
definition, 139
differential, 251
Dirichlet, 182

disjoint union, 145
distributive laws, 151
divisor lattice, 140
dual, 142
greatest lower bound, 148
Hall’s Theorem, 175
Hasse diagram, 140
incidence algebra, 158
delta function, 159
Möbius function, 157
reduced, 179, 182
zeta function, 159, 182

incomparable elements, 139
isomorphic, 144
isomorphism, 144
join, 149
lattice, 149
bond, 167
distributive, 151
Fundamental Theorem of Finite
Distributive Lattices, 153

join irreducible, 152
least upper bound, 149
linear extension, 160
locally finite, 147
lower bound, 148
lower-order ideal, 143
generated by a set, 143

maximal element, 142
maximum element, 142
meet, 148
minimal element, 142
minimum element, 142
Möbius function
and isomorphism, 155
and products, 155
congruence, 208
difference calculus, 162
inclusion and exclusion, 162
Inversion Theorem, 160
number theory, 163
one variable, 154
two variable, 157

operator
down, 249
up, 249

order complex, 176
order-preserving map, 144
ordinal sum, 146
partition lattice, 140
pattern poset, 140
product, 146
quotient, 169
homogeneous, 170
Rank Condition, 171
Summation Condition, 171
support number, 173
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ranked, 147
corank, 164
rank of a poset, 147
rank of an element, 147
rank set, 147

reverse 𝑃-partition, 271
Fundamental Lemma, 271

subposet, 142
subspace lattice, 140
total order, 139
upper bound, 149
upper-order ideal, 143
generated by a set, 143

Weisner’s Theorem, 176
Whitney numbers
of the first kind, 156
of the second kind, 156

Young’s lattice, 140
Power series, see also Formal power series
Prüfer algorithm, 24
Principle
Inclusion and Exclusion, 42, 162
Reflection, 53

Proof
bijective, 6

Quasisymmetric function, 267
algebra, 268
fundamental, 269
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