Errata for
"Combinatorics: The Art of Counting"
(Revised September 1, 2023)
In the list that follows p / l (respectively, $\mathrm{p} / / \mathrm{l}$) refers to the lth line from the top (respectively, bottom) of page p , ignoring figures. Also, $A \longleftarrow B$ means A is to be replaced by B.
$3 / / 17$ set of tiles \longleftarrow sequence of tiles
$3 / / 10 \mathcal{T}_{0} \longleftarrow \# \mathcal{T}_{0}$
$3 / / 9 \mathcal{T}_{1} \longleftarrow \# \mathcal{T}_{1}$
17
22/9-10 Let i be the smallest such index and let j be the first index after i where repetition occurs. \longleftarrow Let j be the smallest index such that v_{j} equals an earlier vertex in the sequence and let v_{i} be that earlier vertex.
$28 / / 2 \operatorname{std} \sigma \longleftarrow \operatorname{std} \sigma^{\prime}$
$37 / 16-17$ bijection, that is, when $n=k \longleftarrow$ bijective and $n=k$ are positive integers
49/6 Rogers-Remanujan \longleftarrow Rogers-Ramanujan
$47 / / 11$ andis \longleftarrow is
59/8 Gessle \longleftarrow Gessel
61, two lines above Proposition 2.6.1: matrix $C(G) \longleftarrow$ matrix $C=C(G)$
69/2 Gessle \longleftarrow Gessel
$79 / 13$ We induct on k where the case $k=0$ is left to the reader. If $k>0 \longleftarrow$ We do a double induction on k, l where the cases $k=0$ and $l=0$ are left to the reader. When $k, l>0$
$82 / 18$ the that range \longleftarrow that the range
$84 / 15$ for any $n \longleftarrow$ for $n=1$
$85 / 9 n>N \longleftarrow k>N$
100/16 to the enumerating \longleftarrow to enumerating
102//17 A $6 \supseteq B \longleftarrow A \nsupseteq B$
104/11 Exercise 14(b) of Chapter $1 \longleftarrow$ Exercise 19(b) of Chapter 2
$104 / 14 \phi^{-1}\left(O^{\prime}\right)=1 \longleftarrow \# \phi^{-1}\left(O^{\prime}\right)=1$
$104 / 15 \phi^{-1}\left(O^{\prime}\right)=2 \longleftarrow \# \phi^{-1}\left(O^{\prime}\right)=2$
$104 / 17 \phi^{-1}\left(O^{\prime}\right)=2 \longleftarrow \# \phi^{-1}\left(O^{\prime}\right)=2$
$104 / 21 \phi^{-1}\left(O^{\prime}\right)=2 \longleftarrow \# \phi^{-1}\left(O^{\prime}\right)=2$
109//4 Use part (b) \longleftarrow Use parts (a) and (b)
110//6 two way \longleftarrow two ways
$113 / / 15 b>\min B_{j} \longleftarrow b>\min B_{i+1}$
114/1-9 Throughout this exercise, one should use the inversion statistic, inv, rather than the major index, maj.
$120 / / 15 \pi_{k} \longleftarrow \pi_{k+1}$
$120 / / 14 k$ is odd $\longleftarrow k$ is even
$120 / / 10 k$ is odd $\longleftarrow k$ is even
$120 / / 9$ even $k \longleftarrow$ odd k
$136 / 14$ show that \longleftarrow show that, for $n \geq 1$,

```
\(136 / 16\) show that \(\longleftarrow\) show that, for \(n \geq 0\),
143//5 upper-order ideals \(\longleftarrow\) Upper-order ideals
\(145 / 13 X / Y \longleftarrow Y / X\) (in two places)
150/10 finite \(\longleftarrow\) finite, nonempty
\(151 / 10 z, y, z \longleftarrow x, y, z\)
172/2 right-hand \(\longleftarrow\) bottom
\(173 / 14 y \in I(x) \longleftarrow y \in I(X)\)
\(173 / 16 I(X) \rightarrow(X) \longleftarrow I(X) \rightarrow I(X)\)
\(177 / / 812(\mathrm{c}) \longleftarrow 12(\mathrm{a})\)
\(180 \& \mathrm{ff}\) Use \(f_{\phi}\) for \(F_{\phi}\) so there can be no confusion with the factorial function of \(P\).
\(182 / / 20 s \in \mathbb{C} \longleftarrow s\) is an integer greater than 1
182//18 Add at the end of the sentence: for \(s\) with real part greater than 1.
\(192 / / 17\) function \(\longleftarrow\) which is an analytic continuation of the series definition of \(\zeta(s)\)
\(184 / / 3\) a poset \(P \longleftarrow\) a finite poset \(P\)
190//2 \#O \(|\# X \longleftarrow \# \mathcal{O}| \# G\)
\(193 / / 54^{2} \longleftarrow 2^{4}\)
197//2 we say \(\longleftarrow\) we saw
199/2 \(\binom{X}{k}^{g} \longleftarrow \#\binom{X}{k}^{g}\)
205/5 since cycles commute \(\longleftarrow\) since disjoint cycles commute
214//4 polynomials \(\longleftarrow\) polynomials with nonnegative coefficients
\(222 / 13 \sum_{l(\lambda)=n} \longleftarrow \sum_{\ell(\lambda)=n}\)
224//10 Gessle \(\longleftarrow\) Gessel
\(227 / 14\) Gessle \(\longleftarrow\) Gessel
228//7 Gessle \(\longleftarrow\) Gessel
\(231 / 14\) to be replace \(\longleftarrow\) to be replaced
\(231 / 17\) to be replace \(c^{\prime}:=c \longleftarrow c:=c^{\prime}\)
\(237 / / 1 x^{\operatorname{des} \pi} \longleftarrow x^{\text {des } \pi}+1\)
238/13 Note \(\longleftarrow\) Recall that linear extensions were defined in Section 5.5. Note
240/7 (7.23) yields. \(\longleftarrow\) (7.23) yields
\(242 / 5 r_{\pi_{k}} \longleftarrow r_{\pi_{k}}\left(P_{k-1}\right)\)
\(245 / 16 P_{k-1} \longleftarrow P_{k-1}\), assuming \(j \geq 2\). When \(j=1\), a similar proof will work
244//14 st \(U \longleftarrow \operatorname{sh} U\)
\(268 / / 177 M_{121} \longleftarrow M_{121}\)
269//10 impose by \(\alpha \longleftarrow\) imposed by \(\alpha\)
\(278 / 7 \sigma \in \mathfrak{S}_{n}(\Pi) \longleftarrow \sigma \in \operatorname{Av}_{n}(\Pi)\)
\(278 / / 14 \sigma \in \mathfrak{S}_{n}(\Pi) \longleftarrow \sigma \in \operatorname{Av}_{n}(\Pi)\)
```

Thanks to Eli Bagno, David Garber, Cullen Haselby, Shalom Eliahou, John Lentfer, Tamsen McGinley, Astrid Olave-Herrera, Nick Ovenhouse, Ankit Sahu, Jenny Zhan, and Philip B. Zhang for catching some of these errors.

