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a b s t r a c t

Suppose the rows of a board are partitioned into sets of m rows
called levels. An m-level rook placement is a subset of the board
where no two squares are in the same columnor the same level.We
construct explicit bijections to prove three theorems about such
placements. We start with two bijections between Ferrers boards
having the same number ofm-level rook placements. The first gen-
eralizes a map by Foata and Schützenberger and our proof applies
to any Ferrers board. This bijection also preserves the m-inversion
number statistic of an m-level rook placement, defined by Briggs
and Remmel. The second generalizes work of Loehr and Remmel.
This construction only works for a special class of Ferrers boards,
but it yields a formula for calculating the rook numbers of these
boards in terms of elementary symmetric functions. Finally we
generalize another result of Loehr and Remmel giving a bijection
between boards with the same hit numbers. The second and third
bijections involve the Involution Principle of Garsia and Milne.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Rook theory is the study of the numbers rk(B), which count the number of ways to place k
non-attacking rooks on a board B. It originated with Kaplansky and Riordan [10] who studied the
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connections between rook placements and elements of the symmetric group Sn. Since then, rook
placements have found many connections to other concepts such as normal orderings [13,12,5].
We will focus on a particular type of board: a Ferrers board is a board where the columns are
bottom justified and their heights form a weakly increasing sequence. Foata and Schützenberger [7]
characterized the equivalence classes of Ferrers boards by a unique increasing representative. They
did so by constructing explicit bijections between rook placements on boards in a class and rook
placements on the unique representative board. The rook polynomial of a board is the generating
function for the numbers rk(B) in the falling factorial basis for the ring of polynomials. The theorem
of Foata and Schützenberger was later proved as an elegant corollary to the Factorization Theorem of
Goldman, Joichi, andWhite [9],which gave a complete factorization of the rook polynomial of a Ferrers
board over the integers. Loehr and Remmel [11] constructed a bijection between rook placements on
rook equivalent Ferrers boards using the Garsia–Milne Involution Principle [8], which also implied
the Factorization Theorem. Later in the paper, they presented a similar bijection for the sets counted
by the hit numbers of rook equivalent Ferrers boards. Briggs and Remmel [4] generalized the notion
of rook placements to m-level rook placements. These correspond to elements of Cm ≀ Sn, the wreath
product of the cyclic group of ordermwith the symmetric group on n elements, in the same way that
traditional rook placements correspond to elements of Sn. Using these placements and the concept of
flag descents developed by Adin, Brenti, and Roichman [1], Briggs and Remmelwere able to generalize
a formula of Frobenius to Cm ≀ Sn.

The purpose of this paper is to generalize the bijection of Foata and Schützenberger and those
of Loehr and Remmel to m-level rook placements. In a previous paper [2], we factored the m-level
rook polynomial of a Ferrers board, and used the factorization to characterize the equivalence classes
of m-level rook equivalent Ferrers boards. This characterization will be used in the current paper to
generate explicit bijections betweenm-level rook placements on two boards in the same equivalence
class. The remainder of this section gives the background terminology necessary to begin this task. In
Section 2 we generalize the bijection used by Foata and Schützenberger. Although this bijection is the
composition of many intermediary bijections, and is therefore not direct, it does provide an explicit
bijection between m-level rook placements on arbitrary m-level rook equivalent Ferrers boards. We
will need this bijection again in Section 5. In Section 3we show that the bijection provided in Section 2
preserves the m-inversion number of an m-level rook placement, as defined by Briggs and Remmel.
In Section 4 we generalize a construction of Loehr and Remmel. In this case the bijection can only
be specified for singleton boards, a subset of all Ferrers boards. However, the construction leads to
an explicit calculation of the m-level rook numbers for such boards using elementary symmetric
functions and Stirling numbers of the second kind. Furthermore, this bijection also preserves the
m-inversion number of m-level rook placements. In Section 5, we generalize a second bijection of
Loehr and Remmel, and in doing so prove that any twom-level rook equivalent Ferrers boards have the
same hit numbers. The last two bijections involve the Garsia–Milne Involution Principle [8]. Finally, in
Section 6 we present an open problem about counting the number of Ferrers boards in m-level rook
equivalence classes.

A board is any finite subset of Z+
× Z+ where Z+ is the set of positive integers. Given an integer

partition 0 ≤ b1 ≤ b2 ≤ · · · ≤ bn, the corresponding Ferrers board is

B = {(i, j) ∈ Z+
× Z+

| 1 ≤ i ≤ n and j ≤ bi}.

Usually B is denoted by B = (b1, b2, . . . , bn). Graphically, one represents a Ferrers board as an array of
square cells, where the ith column contains bi cells. See the diagram on the left in Fig. 1 for the board
(1, 1, 3, 4). Throughout, we will use (i, j) to denote the cell in the ith column and jth row of B. Note
that this is neither the English nor the French style of writing Ferrers diagrams, but is the standard
convention in modern rook theory literature. It is useful because we usually consider placing rooks
on the board from left to right, and enumerating the number of such placements is facilitated by our
convention.

For any non-negative integer k, a placement of k rooks on B is a subset of the cells of B of cardinality
kwhich contains no more than one cell from any row or column of B. Graphically, this corresponds to
placing rooks in the cells of B so no two rooks attack each other. See the diagram on the right in Fig. 1
for a placement of three rooks on (1, 1, 3, 4).
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Fig. 1. A Ferrers board B and a placement of three rooks on B.

Henceforthwewill assume thatm is a fixed positive integer.We define ⌈j⌉m to be the leastmultiple
of m greater than or equal to j and call it the m-ceiling of j. Similarly, let ⌊j⌋m be the greatest multiple
of m less than or equal to j, and call this the m-floor of j. Given a positive integer p, let Lp ⊂ Z+

× Z+

be defined by:

Lp = {(i, j) ∈ Z+
× Z+

| ⌈j⌉m = pm}.

Then the pth level of B is B ∩ Lp. Thus, the first level of B consists of the first m rows, the second level
consists of the nextm rows, and so forth. Note that for (i, j) ∈ B, ⌈j⌉m = pm if and only if (i, j) is in the
pth level of B.

For any non-negative integer k, an m-level rook placement of k rooks on B is a subset of cardinality
k of the cells of Bwhich contains no more than one cell from any given level or column of B. See Fig. 2
for three 2-level rook placements where thickened lines demarcate where levels begin and end; the
numbering of the boards can be ignored for now. Anm-level rook is a rook placed so that it is the only
rook in its level and column. The kth m-level rook number of B is

rk,m(B) = the number ofm-level rook placements of k rooks on B.

Two boards are m-level rook equivalent if their m-level rook numbers are equal for all k. Note that
m-level rook placements are always rook placements. Furthermore, when m = 1 rook placements
and m-level rook placements are equivalent.

The ith column of B terminates in level p if p is the largest integer such that the ith column has non-
empty intersection with Lp. A singleton board is any Ferrers board such that, for each positive integer
p, the set of all columns bi terminating in level p contains at most one i such that bi ≢ 0 mod m. The
Ferrers board on the left in Fig. 2 is not a singleton board, as two different columns terminate in the
second level without having 2 cells in that level, while the Ferrers boards in the middle and on the
right are singleton boards.

2. Rook equivalence and bijections

2.1. Reduction to singleton boards

In order to produce bijections betweenm-level rook placements on Ferrers boards, it is convenient
to restrict our attention to singleton boards. In order to do this we prove the following two lemmas.
First we show that for every Ferrers board there is a unique singleton board which has the same
number of cells at each level. Then we prove that there is a bijection between the rook placements
on a Ferrers board and those on the singleton board guaranteed in the first lemma. These lemmas
together imply that every Ferrers board ism-level rook equivalent to a singleton board and that there
is an explicit bijection between the corresponding rook placements.

Lemma 1. Given a Ferrers board B, there exists a unique singleton board BS which has the same number
of cells at each level as B.

Proof. Let B have lp cells in the pth level. In order for BS to be a singleton board with lp cells in the pth
level, the cells of the pth level must be arranged uniquely as follows. If lp = cm + r with 0 ≤ r < m,
then level p of BS must have one column with r cells followed on the right by c columns with a fullm
cells in the level. This is because a singleton board may have at most one column which intersects a
given level non-trivially in fewer thanm cells. Thus BS must be unique if it exists.
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Fig. 2. On the left, a placement of two 2-level rooks on B. In the middle, the corresponding placement from Lemma 3 of two
2-level rooks on singleton board BS . On the right, the placement on l(BS) from Lemma 5.

In order to show that BS exists, we shall construct it. Arrange each level as specified above and line
up the furthest right column in each level to create the furthest right column of BS . This yields a Ferrers
board because every column which has any cells in the pth level of B must have a full m cells in the
(p−1)st level of B. Thus the total number of columns in the pth level of BS will be less than or equal to
the number of columns in the (p − 1)st level of BS containing m cells at that level. Hence a singleton
board BS exists and is unique. �

Ignoring the rook placement, Fig. 2 shows a board B and its corresponding board BS . Sincewe know
that an arbitrary Ferrers board B has the same number of cells at each level as a unique singleton board
BS , we wish to provide an explicit bijection between rook placements on the two boards. In order to
do so we require the following numbering on a Ferrers board.

Definition 2. A level numbering of board B assigns a number to each cell of B in the following way.
Proceeding level by level in B, number the cells in the level by numbering each column from bottom
to top, starting with the rightmost column andworking left. In each level begin the numbering with 1.

Fig. 2 presents two examples of this numbering, on the left and middle boards, and also illustrates
the bijection of the next lemma.

Lemma 3. Given a Ferrers board B, there is an explicit bijection between m-level rook placements of k
rooks on B and m-level rook placements of k rooks on BS , where BS is as constructed in Lemma 1.

Proof. Give both B and BS a level numbering as shown in Fig. 2. Since both boards have the same
number of cells in each level, corresponding levels will each be numbered with the same set of
numbers. Given anym-level rook placement on B, place rooks on BS initially so that each rook occupies
the same numbered cell in the same level as it does in B. This may not provide an m-level rook
placement on BS since two rooks could end up in the same column, so we will modify it as follows.

Notice that if a rook in column i and level p of B is not in the same cell in BS , then column i must
be to the left of a column of B that intersects Lp in less than m cells. Furthermore, if the rook ends
up in column i′ in BS , then all columns in the interval [i, i′] have a full m cells in levels below p in B.
Thus, if any of the rooks that move create a column with two or more rooks, there will be exactly two
rooks in the column and the upper rookwill havemovedwhile the lower rook remained stationary. To
rectify the situation, whenever a rook is moved from column i in B to column i′ in BS , move all other
rooks in columns in the interval (i, i′] one column to the left, preserving their row. This is possible
since, in both B and BS , these columns must contain m cells in all levels lower than the upper rook
in order for the upper rook to have been in that column in B. Rearranging the rooks at each level in
this fashion provides a function fromm-level rook placements on B tom-level rook placements on BS .
Fig. 2 illustrates this map on a rook placement, including moving a lower rook one column to the left.

To see that this is a bijection, use the level numbering to produce a set of rooks on B from those
on BS . All the rooks will return to their initial positions once the appropriate right shift is applied.



K. Barrese et al. / European Journal of Combinatorics 57 (2016) 13–35 17

Similarly one can show that applying the map first to BS and then to B is the identity. Thus we have a
bijection betweenm-level rook placements on B andm-level rook placements on BS . �

Lemmas 1 and 3 guarantee that every Ferrers board ism-level rook equivalent to a singleton board.
Additionally, there is an explicit bijection between m-level rook placements on the two boards. This
permits us to restrict our attention to singleton boards henceforth.

2.2. The l-operator

Transposition of boards plays a central role in the Foata–Schützenberger construction of bijections
between rook-equivalent Ferrers boards whenm = 1. Wewill need a generalization of this operation
for arbitrarym and this is given in the next definition.

Definition 4. Given a Ferrers board B, the l-operator applied to B is defined as follows. If t is the largest
index of a non-empty level of B and the number of cells in the pth level of B is lp, then

l(B) = (lt , lt−1, . . . , l1).

Fig. 2 contains an example board BS as well as l(BS). The fact that l(B) is a Ferrers board comes from
the proof of Lemma 1. In particular, if B is a Ferrers board then its pth level must fit above its (p− 1)st
level which implies

⌊lp⌋m ≤ ⌊lp−1⌋m,

with strict inequality if lp ≢ 0 mod m. It follows that l(B) is a weakly increasing sequence and so l(B)
is a Ferrers board and, because of the strict inequality for non-multiples ofm, a singleton board.

To see that the l-operator is a generalization of transposition, note that if m = 1 then the levels of
B are individual rows and these become the columns of l(B). Furthermore, when restricted to the set
of singleton boards the l-operator is an involution. This is shown in Proposition 7.4 of [2]. Thus, the
l-operator is a surjection from the set of Ferrers boards onto the set of singleton boardswith B = l(l(B))
when B is singleton.

Anotherway to see the connection between the l-operator and transposition is as follows. Consider
a Ferrers board B for arbitrarym and replace each set of boxes in a given column and level by a single
box to obtain a board for m = 1. Now transpose the resulting diagram. Finally, replace each box by a
column of boxes with the same number of elements as the column which was originally replaced by
that box. The result will be l(B).

We now provide a bijection between m-level rook placements on B and m-level rook placements
on l(B) to generalize the well-known bijection for transposition.

Lemma 5. Given a singleton board B and a non-negative integer k, there is an explicit bijection between
m-level rook placements of k rooks on B and m-level rook placements of k rooks on l(B).

Proof. Give B a level numbering, then number the columns of l(B) from bottom to top beginning with
the number 1 in each column. Note that in this case the numbering of a level of B will consist of the
same set of numbers as the numbering of the corresponding column of l(B). Assume that B has t non-
empty levels. For a given m-level rook placement of k rooks on B, place rooks on l(B) in the following
way. If a rook was in the cell numbered n of level p in B, then place a rook in the cell numbered n in
column t − p + 1 in l(B). See Fig. 2 for an example of this map for a 2-level placement.

We must show that this gives a valid m-level rook placement on l(B). If two rooks end up in the
same column of l(B) they must have originated in the same level of B, contradicting having anm-level
rook placement on B. Similarly, if two rooks end up in the same level of l(B), then they must have
originated in the same column of B, since B is a singleton board.

The inverse of this map acts as follows. If a rook is in the cell numbered a of column t − p + 1 in
l(B) then it is placed in the cell numbered a in level p of B. The proof that this gives a rook placement
is similar to the one in the previous paragraph and so is omitted. �

Note that Lemmas 3 and 5 combine to provide an explicit bijection between m-level rook
placements on any Ferrers board B and on its m-transpose, l(B) = l(BS).
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Fig. 3. The dashed line goes through the cells counted by the 2-arm length of the fourth column and first level, and the shaded
cells are counted by the corresponding 2-leg length.

Fig. 4. On the left, B3,2 is shaded within B = (1, 4, 4, 5). Notice that l3,2 is not permissible for B since ⌊armlm(4, 2)⌋m <

leglm(3, 2), which means l3,2(B) will not be a singleton board. On the right the shaded cells in l(B3,2) illustrate this; in this case
l3,2(B) is not even a Ferrers board.

2.3. The local l-operator

For any set S, let #S be the cardinality of S. Given a column i and a level p define the m-arm length
of column i, level p by

armlm(i, p) = #{(i, j′) ∈ B | (i, j′) is strictly above level p}.

In Fig. 3 the cells counted by the 2-arm length of column 4, level 1 have a dashed line through them.
(Reflecting our boards to put them in English notation will result in the arm being the usual set of
squares whenm = 1.)We let armlm(i, p) = ∞ if the number of columns in B is less than i, for reasons
detailed in Lemma 7.

Similarly, define them-leg length of column i, level p to be

leglm(i, p) = #{(i′, j′) ∈ B | (i′, j′) is in level p and i′ < i}.

The cells counted by the 2-leg length of column 4, level 1 are shaded in Fig. 3. As before, this is
equivalent to the usual notion of leg length in the m = 1 case. We also let leglm(i, 0) = ∞ by
convention.

Since the l operation generalizes the transposition of a Ferrers board, one would expect that some
sort of local l operation would be the appropriate generalization of the local transposition introduced
by Foata and Schützenberger. This is indeed the case, and we define the local l operation as follows.

Given a Ferrers board Bwith non-empty intersection of the ith column and pth level, let Bi,p denote
the subboard of B consisting of all cells in or above the pth level and in or to the left of the ith column:
see Figs. 4 and 5 for examples. Note that if B is a singleton board, then Bi,p is also, because the set of
rows in level p′ of Bi,p will be the same as the set of rows in level p+ p′

− 1 of B. If B is a Ferrers board
then the local l operation at (i, p) is the result of applying the l operator to the subboard Bi,p and leaving
the rest of B fixed. We will denote the resulting board by li,p(B).

As defined above li,p(B) may not be a Ferrers board, let alone a singleton board. We now develop a
pair of conditions to determine if li,p(B) will be a singleton board.

Definition 6. The operation li,p is permissible for a singleton board B if

armlm(i, p) ≤ ⌊leglm(i, p − 1)⌋m and leglm(i, p) ≤ ⌊armlm(i + 1, p)⌋m.
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Fig. 5. On the left, B4,2 is shaded. Here l4,2 is permissible for B and l4,2(B) is shown on the right.

See Fig. 4 for an example of a local l-operation not permissible for the given board, and Fig. 5 for a
local l-operation which is permissible.

Lemma 7. Let a singleton Ferrers board B have a non-empty intersection of the ith column and pth level.
Then li,p is permissible for B if and only if li,p(B) is a singleton Ferrers board.

Proof. If column i, level p in B contains fewer than m cells, then li,p(B) = B since B is singleton, and
there is nothing to prove. Henceforth, assume that column i, level p in B contains m cells. We know
that B, Bi,p, and l(Bi,p) are all singleton Ferrers boards. It follows that li,p(B) will be a singleton Ferrers
board if and only if these three conditions hold for the board li,p(B).

(a) The lowest row of level p is weakly shorter than the highest row of level p − 1;
(b) column i is weakly shorter than column i + 1; and
(c) if columns i and i + 1 terminate at the same level, then the height of column i + 1 is a multiple

ofm.

Condition (c) is needed to ensure li,p(B) will be singleton.
To determine when these conditions hold, first note that applying li,p to B exchanges armlm(i, p)

and leglm(i, p). Because B is singleton, the top row of level p − 1 in B (and in li,p(B)) extends left of
column i by ⌊leglm(i, p − 1)⌋m/m cells. On the other hand, the new bottom row of level p in li,p(B)
extends left of column i by ⌈armlm(i, p)⌉m/m cells. Thus, condition (a) holds if and only if

⌈armlm(i, p)⌉m ≤ ⌊leglm(i, p − 1)⌋m.

Since both sides are multiples of m, this inequality is equivalent to armlm(i, p) ≤ ⌊leglm(i, p − 1)⌋m,
which is the first condition in the definition of permissibility.

Now consider the heights of columns i and i+1 in li,p(B). Both column i and column i+1 have a full
m cells in level p. So, in both B and li,p(B), column i + 1 extends above level p by armlm(i + 1, p) cells.
On the other hand, the new column i in li,p(B) extends above level p by leglm(i, p) cells. So condition
(b) will hold if and only if

leglm(i, p) ≤ armlm(i + 1, p).

Todealwith condition (c), consider two cases. First suppose that armlm(i+1, p) is amultiple ofm. Then
condition (c)must hold, andhere condition (b)will hold if and only if leglm(i, p) ≤ ⌊armlm(i + 1, p)⌋m.
Now suppose that armlm(i+1, p) is not amultiple ofm. Given that condition (b) holds, the new board
li,p(B) will be singleton if and only if the strengthened inequality leglm(i, p) ≤ ⌊armlm(i + 1, p)⌋m is
true. Thus, this last inequality is equivalent to the truth of (b) and (c) in all cases. �
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2.4. The local l-operation on an m-level rook placement

Since there is a bijection between rook placements on B and l(B) when B is singleton, it stands to
reason that it would generalize to a bijection between rook placements on B and li,p(B). The following
lemma makes this precise.

Lemma 8. For a singleton board B, suppose li,p is permissible for B. Then there is an explicit bijection
between m-level rook placements of k rooks on B and m-level rook placements of k rooks on li,p(B).

Proof. Use the bijection induced by the l operation in Lemma 5 on the subboard transposed by li,p,
not moving the rooks on the part of board B which is fixed. However, this may cause a rook in the
transposed subboard to occupy the same column or level of li,p(B) as one of the rooks which was
fixed. We deal with this possibility next.

In order for two rooks to end up in the same column, there must be rooks placed on B beneath
Bi,p, so we can assume p > 1 without losing generality. Consider the set of columns of B which do
not contain rooks in Bi,p, and the set of columns of li,p(B) which do not contain rooks in l(Bi,p). By our
assumption on p, these two sets have the same cardinality and so we can put a canonical bijection
on them by pairing the leftmost columns in each set and moving to the right. If there is a rook lower
than level p in one of these columns of B, use this bijection on the columns to move it to the cell in
the same row of the corresponding column of li,p(B). After doing so, there must be at most one rook in
each column of li,p(B). For example, in Fig. 5 the rook in (3, 2) is in the second column from the left of
Bwhich does not contain a rook in B4,2. Thus it moves to column 2, which is the second column from
the left of l4,2(B) that does not contain a rook in l(B4,2).

If two rooks end up in the same level we treat them similarly wherewe can assume, without loss of
generality, that the ith column is not the rightmost column of B. There is a canonical bijection between
the levels of Bwhich do not contain rooks in Bi,p and those of li,p(B) that do not contain rooks in l(Bi,p).
Adjust the levels of all rooks to the right of column i using this bijection, fixing the column of the rook
that moves. Furthermore, fix the height of the rook that moves within the level, that is, if the rook was
in cell (x, y), move the rook to cell (x, y′) in the appropriate level with y ≡ y′( mod m). Note that
since B and li,p(B) are singleton boards, columns to the right of column i will contain a full m cells at
any level which contained a rook in the subboard Bi,p or l(Bi,p).

To see that this is a bijection, we construct its inverse. Recall that the l operator is an involution
on singleton boards. Thus, since Bi,p is a singleton subboard, li,p(li,p(B)) = B. Similarly, applying the
bijection from Lemma 5 and then its inverse returns the original placement of rooks on Bi,p. All that
remains to check is that any rooks moved outside of Bi,p return to their original cells. Since the rooks
return to their original placement on Bi,p, the set of columns that gain a rook in l(Bi,p) after the first
application of l will be the same set as those that lose a rook in Bi,p after the second application of
l. Thus the bijection on the columns induced by the first application of l will be the inverse of the
bijection induced by the second application, and any rook required to move in li,p(B) will move back
in li,p(li,p(B)). A similar argument holds for levels, noting that li,p(B) being singleton ensures that any
level which gains a rook in l(Bi,p) after applying l contains a fullm cells in every column to the right of
column i. Thus this yields a bijection between rook placements on B and li,p(B). Fig. 5 illustrates this
bijection. �

2.5. Bijections with m-increasing boards

Foata and Schützenberger proved there is a unique Ferrers board in every rook equivalence class
whose column lengths are strictly increasing and used this board as a target for their bijections. To
accomplish the same thing, we need the following definition and theorem.

Definition 9. A Ferrers board B = (b1, b2, . . . , bn) is called m-increasing if bi+1 ≥ bi + m for all
1 ≤ i ≤ n − 1.

Notice that whenm = 1 increasing and m-increasing are equivalent.
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Theorem 10 (Theorem 4.5 [2]). Every Ferrers board is m-level rook equivalent to a unique m-increasing
board.

We are now almost ready to prove the main result of this section, Theorem 12. However, to do so
wemust put an order on Ferrers boards. Oncewe have established this order, wewill be able to give an
explicit bijection betweenm-level rook placements on an arbitrary Ferrers board B and on anm-level
rook equivalent Ferrers board which is greater than B in this order, if such a board exists. Additionally,
the set of all Ferrers boards equivalent to B will have a unique maximum element under this order,
namely them-increasing board guaranteed by the previous theorem.

To define this order, if B = (b1, . . . , bn) then consider the reversal of B, Br
= (bn, . . . , b1). Now let

B < B′ if Br is lexicographically smaller than (B′)r . It is important to note that when applying Lemma 3
we will always have

BS ≥ B (2.1)

since in BS all the cells in each level are as far to the right as possible.

Lemma 11. Given a singleton board B containing a column i and a level p with the property that

armlm(i, p) < leglm(i, p), (2.2)

there is a singleton board B′
= li′,p(B) with i′ ≥ i and B′ > B.

Furthermore, if B is not m-increasing then a column i and level p satisfying Eq. (2.2)must exist.

Proof. To prove the first statement, let i′ ≥ i be the maximum index such that armlm(i′, p) <
leglm(i′, p). Note that by our convention on armlm, we must have that i′ is at most the number of
columns of B. We claim that it suffices to show that li′,p is permissible for B. This is because if li′,p is
permissible for B, then the resulting board B′ must satisfy B′ > B. Indeed, li′,p(B) increases the length
of column i′ by leglm(i′, p)−armlm(i′, p), whichmust be greater than 0, and column i′ is the rightmost
column of B affected by li′,p. Thus B′ > B.

If li′,p is not permissible for B, then we claim that we have armlm(i′ +1, p) < leglm(i′ +1, p) which
will contradict the maximality of i′ and complete this part of the proof. Note that

armlm(i′, p) < leglm(i′, p) ≤ ⌊leglm(i′, p − 1)⌋m.

So li′,p not being permissible for B implies that ⌊armlm(i′ + 1, p)⌋m < leglm(i′, p) = leglm(i′+1, p)−m
since B is singleton and, because leglm(i′, p) is positive, i′ cannot be the leftmost column terminating
in level p. This implies the desired contradiction that armlm(i′ + 1, p) < leglm(i′ + 1, p).

To prove the second statement of the theorem, note that if B is not m-increasing there are two
possible cases: either there are two adjacent columns i − 1, i of B which terminate at the same level,
or column i − 1 terminates in level p and B has exactly r1 cells in the pth level of column i − 1 and
exactly r2 cells in the (p + 1)st level of column i where r1 > r2 > 0.

Case 1: Let columns i − 1 and i both terminate at level p. Then armlm(i, p) = 0, by the assumption
that column i terminates at level p, but leglm(i, p) ≥ 1 since column i − 1 also terminates at the pth
level. Thus armlm(i, p) < leglm(i, p) as desired.

Case 2: By assumption armlm(i, p) = r2 < r1 ≤ leglm(i, p) which completes the proof. �

We are now in a position to prove our main theorem of this section.

Theorem 12. Given any two m-level rook equivalent Ferrers boards, there is an explicit bijection between
m-level rook placements of k rooks on them.

Proof. Given any Ferrers board B, let Bm be the unique m-increasing board in the m-level rook
equivalence class of B guaranteed by Theorem 10. It suffices to show that there is an explicit bijection
between the m-level rook placements of k rooks on B and those on Bm. This is trivial if B = Bm so
assume B ≠ Bm. By Lemma 3, we have an explicit bijection between the placements on B and those on
BS where BS ≥ B by Eq. (2.1). If BS = Bm thenwe are done. Otherwise, apply the local l operator defined
in Lemma 11 which will give B′

= li,p(BS) with B′ > BS and, by Lemma 8, another explicit bijection
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a b c d

Fig. 6. (a) A 2-level rook placement on a Ferrers board. (b) The placement on the singleton board obtained after applying
Lemma 3. (c) The placement obtained after applying Lemma 8 using l4,3 . (d) The placement obtained on a 2-increasing board
after applying Lemma 8 again using l2,1 .

between rook placements. We now repeat this process if necessary. Since there are only finitely many
boards in an m-level rook equivalence class and the lexicographic order increases at each stage, we
must eventually terminate. And, by Lemma 11 again, terminationmust occur at Bm. Composing all the
bijections finishes the proof. �

See Fig. 6 for a short example of this process.

3. q-analogues

Briggs and Remmel [4] defined p, q-analogues of the m-level rook numbers, denoted rk,m(B; p, q),
by assigning amonomial in p and q to eachm-level rook placement of k rooks on B. Briggs and Remmel
proved a factorization formula involving rk,m(B; p, q) for singleton boards, which was generalized to
all Ferrers boards by the present authors [2, Thm. 3.3]. In this section, we show that the bijections
given earlier in this paper preserve the q-power assigned to a rook placement. This leads to bijective
proofs that two m-level rook equivalent boards have the same rook polynomials rk,m(B; 1, q) for all
k. Our bijections do not preserve the p-power, however, and we leave it as an open problem to give a
bijective treatment of the full p, q-analogue ofm-level rook numbers.

3.1. Definition of the q-weight

To begin, we recall that the q-weight assigned to an m-level rook placement π on a board B is the
m-inversion number of π . Them-inversion number, denoted invm(π), counts cells c in B satisfying the
following conditions:

1. The cell c does not contain a rook.
2. There is no rook above c in the same column.
3. There is no rook to the left of c in the same level.

For example, the 3-level rook placement shown in Fig. 7 has anm-inversion number of 19; the cells
contributing to them-inversion number are marked by stars.

To motivate why this statistic is called the m-inversion number, consider the case where m = 1.
Thus the 1-inversion number counts the number of cells which do not contain a rook and are neither
below nor to the right of a rook. If B is an n by n board and σ is an element of Sn, the symmetric
group on the elements {1, 2, . . . , n}, then we can associate with σ a placement of n rooks on B, π ,
by the convention that there is a rook in column i and row n + 1 − p if and only if σi = p. In this
case inv1(π) = inv(σ ) where inv(σ ) is the standard inversion number of a permutation, counting
the number of pairs of indices (a, b) with the property that a < b but σ(a) > σ(b).

Define rk,m(B; q) by

rk,m(B; q) =


π

qinvm(π) (3.1)
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Fig. 7. A placement, π , with inv3(π) = 19.

where π ranges over all m-level rook placements of k rooks on B. Define boards B and B′ to be
m-level q-rook equivalent if rk,m(B; q) = rk,m(B′

; q) for all nonnegative integers k.Wewill give bijective
proofs of them-level q-rook equivalence of various boards, by showing that the bijections given earlier
preserve the q-power.

Wewill need two formulas for them-inversion number of anm-level rook placementπ , onewhich
adds the contributions of each level, and another which sums over the contributions of each column.
The first formula uses the numbering of cells in each level from Definition 2. For each level p such
that π has a rook R in level p, let hp(π) count the cells in level p with a higher number than the cell
containing R. Also let NWp(π) be the number of rooks in π northwest of R, that is, rooks in a higher
level and earlier column than R. For each level p containing no rook, let hp(π) be the total number
of cells in this level, and let NWp(π) be the number of rooks in higher levels than p. Note that the
definition for a level containing no rooks can be considered as a limiting case of the one for a level
containing a rook by letting the rookmove to the right until it exits the board. So in our proofs wewill
only consider the first case as the second one will automatically follow using this procedure. Define,
using ‘‘h’’ for ‘‘horizontal’’,

hinvp(π) = hp(π) − m · NWp(π). (3.2)

It is routine to check that for any board B, invm(π) =


p≥1 hinvp(π). In particular, if a column has
fewer than m cells in level p, there can be no rook weakly west of this column in a higher level. Thus
each rook counted by NWp(π) removes a full m cells from the cells that would have contributed
to invm(π) in level p. In the example in Fig. 7, hinv1(π) = 6, hinv2(π) = 7, hinv3(π) = 6, and
hinv4(π) = 0.

The second formula for invm(π) classifies cells based on their columns. For each column i such that
π has a rook R in column i, let h′

i(π) count the cells in column i above R, and let NW′

i(π) be the number
of rooks in π northwest of R. For each column i containing no rook, let h′

i(π) be the total number of
cells in this column, and let NW′

i(π) be the number of rooks in earlier columns than i. Again, the second
case is a limiting instance of the first where now the rook moves down until it is off the board. Define,
using ‘‘v’’ for ‘‘vertical’’,

vinvi(π) = h′

i(π) − m · NW′

i(π). (3.3)

One may check that for any rook placement π on a singleton board B, invm(π) =


i≥1 vinvi(π).
The singleton condition ensures that any rook counted by NW′

i(π) must remove a full m cells from
the cells that would have contributed to invm(π) in column i. In the example from Fig. 7, it happens
that invm(π) = 19 is not the sum of the entries in (vinv1(π), . . . , vinv8(π)) = (2, 3, 1, 1, 4, 5, 0, 1)
because B is not a singleton board and the rook to the northwest of the rook in the rightmost column
only cancels one cell in the rightmost column, rather than a full 3.
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Fig. 8. On the left, a placement π with inv3π = 6 on a Ferrers board. On the right, the corresponding placement on BS .

3.2. Mapping placements on B to placements on BS

We now prove that the bijection in Lemma 3, mapping m-level rook placements on an arbitrary
board B tom-level rook placements on the singleton board BS , preserves them-inversion number. See
Fig. 8 for an example in the casem = 3.

Lemma 13. If π is a rook placement on a Ferrers board B that maps to the rook placement πS on BS when
we apply the bijection in Lemma 3, then invm(π) = invm(πS).

Proof. We use (3.2) to show that hinvp(πS) = hinvp(π) for each level p. Let π ′ be the placement
created from π in the first stage of the map, in which all rooks remain in their original numbered
cell in their level. By definition of the level numbering, hp(π

′) = hp(π) for all p. Consider a rook that
moves from column i to column i′ > i in the first stage, and a level p below that rook that has a rook in
the interval (i, i′]. In such a level, NWp(π

′) = NWp(π)−1, so hinvm(π ′) = hinvm(π)+m. The second
stage corrects for this increase by moving the rook in level p one column to the left, which decreases
hp by m. The net effect is that hinvp(πS) = hinvp(π) and hence invm(πS) = invm(π), as needed. �

3.3. Analysis of the l-operator

Let B be a singleton board. We now show that the bijection from Lemma 5, which maps anm-level
rook placement π on B to anm-level rook placement l(π) on l(B), preserves them-inversion number.

Lemma 14. If π is an m-level rook placement on a singleton board B, then invm(π) = invm(l(π)).

Proof. The level numbering of B and the column numbering of l(B) induce a bijection between the
squares of B and the squares of l(B). It is easy to see from the definitions that a square of B contributes
to invm(π) if and only if the corresponding square of l(B) contributes to invm(l(π)). So the lemma is
proved. �

The example in Fig. 9 illustrates the ideas in this proof in a case wherem = 2; note that the starred
cells in each level of the original placement become starred cells in each column of the newplacement.

3.4. The local l-operator

Next we show that the bijection in Lemma 8 preserves them-inversion number.
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Fig. 9. On the left, a 2-level placement with a 2-inversion number of 7 on a singleton board. On the right, the corresponding
placement after applying the l-operator to the board on the left.

Fig. 10. On the left, a placement with a 2-inversion number of 12 on a singleton board. On the right, the corresponding
placement after applying the local l-operator l4,2 to the board on the left.

Lemma 15. Given an m-level rook placement π on a singleton board B, a column i, and a level p such that
li,p is permissible for B, let π ′ denote the corresponding placement on li,p(B) as described in Lemma 8. Then
invm(π) = invm(π ′).

Proof. Wehave already shown in Section 3.3 that the contribution to them-inversion number coming
from the cells in Bi,p and l(Bi,p) is the same. We show that the adjustments made below Bi,p do not
affect them-inversion number, as follows. By the construction of the bijection in Lemma 8, every rook
beneath Bi,p is adjusted horizontally until there are as many columns to the left of it in li,p(B) that
do not contain rooks in l(Bi,p) as there were before applying the l-operator. Since the relative order
of rooks in levels beneath level p is preserved, each level beneath level p will have the same number
of cells counted by them-inversion number before and after the adjustment. An analogous argument
shows that the level adjustments to the right of Bi,p do not change them-inversion number, since after
the adjustment each rook to the right of Bi,p will have the same number of levels which get counted
for the m-inversion number above it in li,p(B) as it does in B. �

See Fig. 10 for an example with m = 2. Note that the rook in (4, 2) on the left moves to (3, 2)
keeping one column with no higher rook to the left of it, so the first level contributes 2 to the
m-inversion number in both placements. Also consider the rook in (5, 5) on the left which moves
to (5, 3) maintaining its position in the bottom row of its level. Even though there are more rooks to
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the northwest of it in the right-hand diagram, the number of levels above it that do not contain rooks
to the left of it is unchanged, so the fifth column contributes 3 to them-inversion number.

Theorem 16. If B and B′ are m-level rook equivalent Ferrers boards, then rk,m(B; q) = rk,m(B′
; q).

Proof. We can compose all the bijections, as in the proof of Theorem 12, to obtain an m-inversion-
preserving bijection between m-level rook placements of k rooks on B and B′. By the definition of
rk,m(B; q) in Section 3.1, this shows that rk,m(B; q) = rk,m(B′

; q). �

4. A second bijection onm-level rook placements

Our next two main results will require the Garsia–Milne Involution Principle. First, we will use
the Involution Principle to construct another explicit bijection between two arbitrary m-level rook
placements of k rooks on m-level rook equivalent singleton boards.

Theorem 17 (Garsia–Milne Involution Principle [8]). Consider a triple (S, T , I)where S is a signed set, I is
a sign-reversing involution on S, and the set T of fixed points of I is required to be a subset of the positive
part S+ of S. Let (S ′, T ′, I ′) be defined similarly. Then, given an explicit sign-preserving bijection f from S
to S ′, one can construct an explicit bijection between T and T ′.

The way that Garsia and Milne define the explicit bijection is as follows. Start with an element
t ∈ T ⊆ S+. If f (t) ∉ T ′, then apply (f ◦ I ◦ f −1

◦ I ′) to f (t). This takes f (t) ∈ S ′+ to S ′−, then to
S−, then to S+, and finally back to S ′+. Iterating this procedure must ultimately yield an element of T ′

which is considered the image of t under the desired bijection.

4.1. A Garsia–Milne bijection for rook placements

We will use the Involution Principle to construct a bijection between m-level rook placements
on two m-level rook equivalent singleton boards. We must first construct a signed set and a sign-
reversing involution so that the m-level rook placements are the fixed points under the involution.
We do this as follows.

Given two Ferrers boards, B and B′, we shall say B fits inside B′ if juxtaposing the two boards with
their lower right cells in the same position makes the cells of B a subset of the cells of B′. Fig. 11 shows
that the thick bordered B = (2, 3) fits inside B′

= (0, 2, 4, 6). The shading and rook placement may
be ignored for now. Let ∆n,m denote the triangular Ferrers board (0,m, 2m, . . . , (n − 1)m). Given a
singleton board B, fix N large enough that B fits inside ∆N,m. If B has fewer than N columns, expand B
on the left with columns of height zero so B = (b0, b1, . . . , bN−1) has the same number of columns as
∆N,m. Fix a non-negative integer k with k < N and let the integer i vary over 0 ≤ i ≤ k. Then S will
consist of all configurations C constructed as follows. Take ∆N,m with B fitting inside and place white
rooks W in i cells of ∆N,m that are outside of B so that no two white rooks are in the same column.
Next, place k − i black rooks R forming an m-level rook placement on the subboard ∆N−i,m which is
located in the columns of ∆N,m which do not contain a white rook. We will call this the inset ∆N−i,m
board. Note that the columns of the inset ∆N−i,m may not be contiguous.

See the top left board of Fig. 11 for an example of such an object C where m = 2. The singleton
board B = (0, 0, 2, 3) fits inside ∆4,2. Here k = 3 < 4 and there is i = 1 white rook on the board
∆4,2 \ B and k − i = 2 black rooks on the board ∆3,2 which is represented by the gray shaded cells
inside ∆4,2. The rooks on ∆3,2 form a 2-level rook placement, but there is both a black rook and a
white rook in the second level of ∆4,2.

Note that each column of ∆N,m may contain at most one white rook or black rook. On the other
hand, a level of∆N,m will contain at most one black rook, but may contain any number of white rooks.
Further, define the sign of such a placement to be (−1)i. The sign of the placement on the top left in
Fig. 11 is −1.

To define I on an element C ∈ S, if all rooks of C are in B, and therefore black, then C is a fixed point.
Otherwise, examine the columns of C from left to right until coming to a column with a rook outside
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Fig. 11. On the top left, an element in S with sign −1. On the top right, the image under I which has sign +1. Beneath each
board is its image under f .

of B. If that column contains a black rook, change the rook to a white rook, increase i by one, andmove
every black rook above and to the right of the cell containing the newwhite rook downm cells. If that
column contains a white rook, change it to a black rook, decrease i by one, and move every black rook
to the right and at the same level or higher as the new rook upm cells. The placement on the top right
in Fig. 11 illustrates what happens to the board on the left under I . Similarly, I takes the placement on
the right to the placement on the left.

Wemust show that I(C)will be an element of S. Clearly each columnhas atmost one rook.We claim
that each level will still contain atmost one black rook. First, suppose that a black rook is added. In this
case all black rooks at its level or above to the right of the new rook move up one level. Furthermore,
there can be no black rooks at the same level or higher to the left of the new black rook. This is because
the new black rook was a white rook which, by definition, was above board B. Since B is a singleton
board, no columns of B to the left of the white rook in question will terminate in the level of the white
rook. Thus if there were a black rook at the same level or higher to the left, it too would be outside of
board B, which contradicts the white rook being the leftmost rook outside of board B. Thus the black
rooks still form anm-level placement when a black rook is added. The proof that this also holds when
a black rook becomes white is similar.

We must also check that the black rooks continue to fit on the new insert board. When a black
rook is added, the black rooks must be placed on a board ∆N−i+1,m where the column in which the
new black rook is placed is added to the columns in the initial inset ∆N−i,m. Since there are no white
rooks to the left of the new black rook, there will be no omitted columns to the left of the column
containing the new black rook, thus all cells of that column will be in the inset ∆N−i+1,m and the new
rook must be inside ∆N−i+1,m. This means that all the columns to the right of the new black rook that
do not contain a white rook will contain m more squares in the inset ∆N−i+1,m than they did in the
inset ∆N−i,m. Thus moving black rooks to the right of the new black rook up m cells will keep them
within the new∆N−i+1,m. Similarly, changing a black rook to awhite rookwill decrease the number of
cells in the columns of∆N−i−1,m to the right of the newwhite rook bym, but all black rooks to the right
of the newwhite rook and at a higher level than it aremoved downm cells, so theywill be in∆N−i−1,m
because they were in ∆N−i,m originally. Finally, if there are any black rooks below the level of the new
white rook but to its right, they will remain in ∆N−i−1,m because the first column in ∆N−i−1,m to the
right of the new white rook must go up to at least the level of the new white rook since previously it
was a black rook contained in ∆N−i,m.
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By construction, I is an involution. The fixed set of I will be denoted T . It is the set of all
configurations which only have rooks on the subboard B and, by definition, these rooksmust be black.
As such, T is equal to the set ofm-level rook placements of k rooks on B. Furthermore, if a board is not
in T , then I either increases or decreases the number of white rooks on the board by one. Either way
I will change the sign of the board. And if a board is in T , then it has positive sign.

Given a singleton board B′, define N ′, S ′, T ′, and I ′ similarly for B′ contained in ∆N ′,m. Without a
loss of generality, assume N = N ′. Let B′

= (b′

0, b
′

1, . . . , b
′

N−1). If B and B′ arem-level rook equivalent
singleton boardswe canuse I and I ′ to construct an explicit bijection betweenm-level rook placements
of k rooks on B and m-level rook placements of k rooks on B′. We do this by constructing a sign-
preserving bijection between S and S ′. We will need the following characterization of when two
singleton boards arem-level rook equivalent.

The root vector of B is
ζm = (−b0,m − b1, . . . , (N − 1)m − bN−1).

The following result of Briggs and Remmel determines when two singleton boards are m-level rook
equivalent simply by considering their root vectors.

Theorem 18 (Briggs–Remmel [4]). If B = (b1, . . . , bN) is a singleton board then
N

k=0

rk,m(B)x↓N−k,m =

N
i=1

(x + bi − (i − 1)m)

where x↓k,m = x(x − m)(x − 2m) . . . (x − (k − 1)m).

Note that the indexing of the columns of B in the theorem begins at 1, rather than 0, simply to be
consistent with the original statement of the theorem.

Since the root vector contains exactly the roots of the rook polynomial, we see that two singleton
boards arem-level rook equivalent if and only if they have the same root vector, up to rearrangement,
for a sufficiently large N . We are now ready to apply the Garsia–Milne Involution Principle.

Theorem 19. Let B and B′ be m-level rook equivalent singleton boards. Then there exists an explicit
Garsia–Milne bijection between m-level rook placements of k rooks on B and m-level rook placements
of k rooks on B′.

Proof. By Theorem 17 and what we have already established, it suffices to find a sign-preserving
bijection f : S → S ′. We construct f as follows.

For clarity of notation, let B be placed in ∆N,m and B′ be placed in a copy ∆′

N,m of ∆N,m. Notice that
the kth element of the root vector of B, km − bk, is the number of cells in the kth column of ∆N,m
which lie outside of board B. Since B and B′ are m-level rook equivalent, the root vector for B′ is a
rearrangement of the root vector for B. Therefore there is a length-preserving bijection between the
columns of the set difference ∆N,m \ B and the columns of ∆′

N,m \ B′ which takes the leftmost column
of a given length in ∆N,m \ B to the leftmost column with that length in ∆′

N,m \ B′ and so forth. This
bijection induces a bijection on the placement of the white rooks. If a white rook appears in the jth
cell above B, place a white rook in the jth cell above B′ in the associated column.

Once all thewhite rooks are placed, create a copy of∆′

N−i,m inside of∆′

N,m using the columnswhich
do not contain a white rook. Place the black rooks on the board in relation to the ∆′

N−i,m subboard
exactly as they are placed on the original board in relation to the original ∆N−i,m subboard. Each
placement on the bottom of Fig. 11 is the image under f of the corresponding placement on the top
where B = (0, 0, 2, 3) and B′

= (0, 0, 1, 4). Notice that in the top left board, the white rook is at the
top of the second column from the left which has two cells above B. In the board on the bottom left
the white rook is still at the top of the second column from the left which has two cells above B′.

Under this map the white rooks must be placed inside ∆′

N,m but outside B′, and the black rooks
are placed inside ∆′

N−i,m, so f maps S to S ′. Further this map preserves the number of white rooks
placed on the board, so it is sign preserving. Therefore wemay conclude from the Involution Principle
that there is an explicit bijection between m-level rook placements of k rooks on B and m-level rook
placements of k rooks on B′. �
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Fig. 12. The placement corresponding to partition {1, 4}, {2, 3, 5}, {6}.

To obtain a consequence of this construction, we will need some background on symmetric
functions and Stirling numbers. For d ≤ n both non-negative integers, let ed(x1, x2, . . . , xn) denote
the elementary symmetric function of degree d in n variables, that is,

ed(x1, x2, . . . , xn) =


1≤i1<i2<···<id≤n

xi1xi2 . . . xid . (4.1)

Let S(n, d) denote a Stirling number of the second kind. Recall that S(n, d) can be defined as the number
of ways to partition a set of n elements into d subsets called blocks.

Further, note that S(n, d) counts the number of rook placements of n−d rooks on∆n,1. To see this,
number the rows of ∆n,1 from 1 to n − 1 from bottom to top. Then number the columns, including
the column of height zero, from 1 to n left to right. Given a partition of {1, . . . , n} into d blocks, order
the elements of each block increasingly. Now, if i and j are adjacent within a block then place a rook
in row i column j. See Fig. 12 for the rook placement corresponding to {1, 4}, {2, 3, 5}, {6}. Thus the
number ofm-level rook placements of n − d rooks on ∆n,m ismn−dS(n, d). The extramn−d counts the
number of ways of choosing a placement for each of the n − d rooks in them cells of a level.

It is interesting to note that the construction of I yields the following theorem giving an explicit
calculation for the m-level rook numbers of a singleton Ferrers board B.

Theorem 20. For any singleton board B = (b0, b1, . . . , bN−1) fitting inside ∆N,m,

rk,m(B) =

k
i=0

(−1)imk−iS(N − i,N − k)ei(−b0,m − b1, . . . , (N − 1)m − bN−1).

Proof. Since the fixed points of the involution I are counted by rk,m(B), it suffices to show that the sum
counts all elements of the set S by sign. First note that the number of ways of putting iwhite rooks in
i different columns of ∆N,m outside of B is ei(−b0,m − b1, . . . , (N − 1)m − bN−1). Furthermore the
number ofm-level rook placements of k− i rooks on ∆N−i,m ismk−iS(N − i,N − k). Putting these two
counts together with the appropriate sign gives the sum as desired. �

Note that this theorem implies the previously noted result that if two boards have the same root
vector then they arem-level rook equivalent.

4.2. Preservation of invm

We finish this section by showing that the bijections of the previous subsection preserve the
m-inversion numbers ofm-level rook placements. Given a singleton board B, consider a configuration
C in the set S consisting of i white rooks in different columns of ∆N,m \ B, together with an m-level
placement π of k− i black rooks on the inset board∆N−i,m. Let the augmentedm-inversion number of
C , denoted ainvm(C), be the m-inversion number of π , as in Section 2, calculated relative to the inset
board ∆N−i,m, plus the number of cells which lie in a column above a white rook. For example, the
2-level configurations in Fig. 13 both have augmentedm-inversion number 15.

Lemma 21. If C ∈ S, then ainvm(C) = ainvm(I(C)) where I is the map from Section 4.1.
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Fig. 13. On the left, an element of S with augmented 2-inversion number 15 and sign −1. On the right is the image of the left
placement under I , which still has augmented 2-inversion number 15, but has sign +1.

Proof. It suffices to consider the casewhere I changes the leftmost rook outside B fromwhite to black.
In this case, letW0 denote the leftmostwhite rook inC . All squares in the columnaboveW0 contributed
to ainvm(C) since theywere above awhite rook. These squaresmust still contribute to the augmented
m-inversion number of I(C) because, as proved earlier, there can be no black rook northwest of these
squares. Next consider a column containing a black rook R in C . If R is to the left of W0, the cells in
this column contributing to the augmented m-inversion number are the same in C and I(C). If R is to
the right of W0 in a lower level, the new inset board ∆N−i+1,m will have m more cells above R in its
column. But, m of those cells are located in the same level as the new black rook where W0 was, so
that the contribution of this column to ainvm(C) is the same as to ainvm(I(C)). If R is to the right ofW0
at the same or higher level, R will move up m cells, but the new inset board ∆N−i+1,m will also have
m new cells in this column. A similar analysis shows that a column of the inset board containing no
rook makes the same contribution to the augmented m-inversion number in C and I(C). Finally, any
column which does not intersect the inset board ∆N−i+1,m contributes the same amount to ainvm(C)
and ainvm(I(C)) because none of the other white rooks have changed location. �

Nextwe show that the sign-preserving bijection f : S → S ′ from the proof of Theorem19preserves
the augmentedm-inversion number.

Lemma 22. If C ∈ S and f (C) ∈ S ′, then ainvm(C) = ainvm(f (C)) where f is the map from Section 4.1.

Proof. Since f sends the placement of black rooks on the inset board∆N−i,m to the identical placement
of black rooks on the inset board∆′

N−i,m, the contribution to the augmentedm-inversion number from
the black rooks is the same in C and f (C). By the way f moves the white rooks, the total number of
cells above the white rooks in C and f (C) also agrees. Thus ainvm(C) = ainvm(f (C)), as desired. �

Theorem 23. The explicit bijection produced by Theorem 19 preserves the m-inversion number of the
board.

Proof. From the previous two lemmas, we see that the Garsia–Milne Involution Principle provides
a bijection g between the fixed point sets T and T ′, which preserves the augmented m-inversion
number. Recall that a configuration C ∈ T or C ′

= g(C) ∈ T ′ has no white rooks, and all black rooks
are on the board B, not merely on the larger board ∆N,m which is the inset board when there are no
white rooks. Let π and π ′ be the placements on B and B′, respectively. Note that ainvm(C) is computed
relative to the board ∆N,m, whereas invm(π) is computed relative to the smaller board B. But since
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Fig. 14. The placement on Sq3,2 corresponding to (α1, α2, α1
; (1, 3, 2)).

B is a singleton Ferrers board located in the southeast corner of ∆N,m, every square in ∆N,m \ B will
contribute to ainvm(C). Since #B = #B′, we conclude that

invm(π) = ainvm(C) − #(∆N,m \ B) = ainvm(C ′) − #(∆N,m \ B′) = invm(π ′)

for all C ∈ T . This shows that the bijection g preserves the m-inversion number of m-level rook
placements computed relative to the boards B and B′. �

5. A bijection for hit numbers

Wewill now use the Involution Principle to prove that two boards that arem-level rook equivalent
have the same hit numbers.We beginwith some definitions. As usual, letm be a fixed positive integer.

Let B be a Ferrers board and let the integer N be sufficiently large so that B fits inside a rectangular
board SqN,m with N columns and mN rows. If α is a generator of the cyclic group Cm, then

Cm ≀ SN = {(αs1 , αs2 , . . . , αsN ; σ) | 1 ≤ si ≤ m for each i and σ ∈ SN}.

We associate with ω ∈ Cm ≀ SN a placement on SqN,m by placing a rook in level N + 1 − p and
column i if σ(i) = p. Furthermore, the rook in column i will be j cells from the bottom of the level
if si = j. See Fig. 14 for an example with m = 2 and N = 3, where the placement corresponds to
(α1, α2, α1

; (1, 3, 2)), andσ is in one line notation. LetR(ω)denote the rookplacement corresponding
to ω. Define the kth hit set of B to be

H(m)
k,N (B) = {R(ω) | ω ∈ Cm ≀ SN and #(R(ω) ∩ B) = k}. (5.1)

Also define the kth hit number of B to be

h(m)
k,N = #H(m)

k,N . (5.2)

In order to show that two m-level rook equivalent Ferrers boards have the same hit numbers, we
use Garsia and Milne’s result again. To do so, we must construct a signed set and a sign-reversing
involution which has a set counted by h(m)

k,N as its fixed set. We do this as follows.
Let N be large enough that B fits inside SqN,m and fix a non-negative integer kwith k ≤ N . Then the

set S will consist of all configurations C constructed as follows. Let i vary over all non-negative integers
such that k + i ≤ N . Place k + i non-attacking black,m-level rooks R on the board B if possible. If this
is not possible then there are no elements of S corresponding to this choice of k and i. Furthermore,
circle i of the rooks in the placement. Finally, consider theN−k− i columns andN−k− i levels which
do not contain a black rook as a subboard of shape SqN−k−i,m. As in the previous section, we will call
this the inset SqN−k−i,m board. Place N − k − i non-attacking white m-level rooks, denoted by W , on
the inset SqN−k−i,m. Notice that, ignoring the color of the rooks, this is an m-level rook placement of
N rooks on SqN,m. Thus it corresponds to some element of Cm ≀ SN . Let the sign of a configuration be
(−1)i. See Fig. 15 for two examples of such configurations. Here m = 2 and B = (1, 2, 4) is placed
fitting in Sq3,2. On the left, there are no circled black rooks so i = 0 and the white rooks are placed on
the shaded inset Sq2,2. On the right there is one circled black rook so i = 1 and the white rooks are on
a shaded inset Sq1,2.
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Fig. 15. On the left, an element in S with sign +1. On the right, the image under I which has sign −1.

Fig. 16. On the left, a 2-level placement of white rooks, black rooks, and circled black rooks on (1, 1, 1, 6, 7) inside Sq5,2 . On
the right, the corresponding placement on (3, 5, 8) under the construction in Theorem 24.

In order to produce a sign-reversing involution I on such configurations C , we do the following.
If B contains neither a white rook nor a circled black rook, then C is fixed by I . Otherwise, examine
the columns of B from left to right until the first white rook or circled black rook is found. If the first
rook found is white, exchange it for a circled black rook and increase i by 1. If the first rook found is
a circled black rook, exchange it for a white rook and decrease i by 1. See Fig. 15 for two examples of
such configurationswith k = 1. It is easy to see that I is an involution and reverses signs in its 2-cycles.
Also note that fixed points have no circled black rooks, so i = 0 and the sign of the configuration is
+1. Furthermore, for a fixed point there are no white rooks placed on B, so the m-level placement
intersects B in exactly k black rooks. Thus the fixed points are exactly the elements of H(m)

k,N (B) if one
just ignores the colors of the rooks.

The reader will find an example illustrating the next proof in Fig. 16. This example uses the boards
from the example of Theorem 12 found in Fig. 6.

Theorem 24. Let B and B′ be two m-level rook equivalent Ferrers boards and N be large enough that B
and B′ both fit inside SqN,m. Then for any non-negative integer k ≤ N, there is an explicit bijection between
H(m)

k,N (B) and H(m)
k,N (B′).

Proof. As in the proof of Theorem 19, we use the Garsia–Milne Involution Principle. Construct S for B
placed inside SqN,m and S ′ for B′ placed inside Sq′

N,m. Fromwhatwe have already done, all that remains
is to construct the sign-preserving bijection f : S → S ′.

Consider an element C ∈ S. The black rooks, circled and uncircled, form anm-level rook placement
of k+i rooks on B. Map this to anm-level rook placement of k+i rooks on B′ using the explicit bijection
guaranteed by Theorem 12. Furthermore, add circles to the rooks on B′ in such a way so that if the rth
rook from the right on board B is circled, the rth rook from the right on board B′ is circled. Finally,
place the white rooks on Sq′

N,m by considering the inset Sq′

N−k−i,m of columns and levels containing
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no black rooks. Place the white rooks on this inset board in the exact same arrangement as they are in
on the inset SqN−k−i,m of SqN,m. This is easily seen to be a bijection and so the proof is complete. �

The next corollary follows immediately from the previous theorem.

Corollary 25. Let B and B′ be two m-level rook equivalent Ferrers boards and N be large enough such that
B and B′ both fit inside SqN,m. Then for any non-negative integer k ≤ N, h(m)

k,N (B) = h(m)
k,N (B′).

6. Other results and open problems

6.1. A factorization theorem

The l-operator leads to a second formulation of the factorization theorem for the m-level rook
polynomial of a Ferrers board, originally found in [2]. This theorem generalized Theorem 18 from
singleton boards to all Ferrers boards.

Theorem 26. Let B = (b1, . . . , bn) be a Ferrers board with t non-empty levels, and let l(B) =

(lt , lt−1, . . . , l1) be the singleton board where lp is the number of cells in level p of B, as in Section 2.2.
Then for any N greater than or equal to both n and t

N
k=0

rk,m(B)x↓N−k,m =

N
i=1

(x + lN−i+1 − (i − 1)m),

where lN−i+1 = 0 if N − i + 1 > t.

Proof. Since rk,m(B) = rk,m(l(B)) by Lemma 5, the choice of N ensures that

N
k=0

rk,m(B)x↓N−k,m =

N
k=0

rk,m(l(B))x↓N−k,m.

Since the right hand side of the equation is the m-level rook polynomial of the singleton board l(B),
Theorem 18 implies

N
k=0

rk,m(l(B))x↓N−k,m =

N
i=1

(x + lN−i+1 − (i − 1)m).

Combining these equations yields the desired theorem. �

6.2. Open problems

The characterization of the rook equivalence class of a singleton board in terms of its root vector
in Theorem 18 provides a way to count the number of singleton boards in a given m-level rook
equivalence class as was done in [2]. However, it is an open problem to count the total number
of Ferrers boards in a given m-level rook equivalence class. If C is a singleton board, then perhaps
counting the number of Ferrers boards Bwith l(B) = C would be a good start to this problem, but this
too remains open.

Another open question concerns a p-analogue of the m-level rook numbers. Here, p refers to a
variable and not a level. When the q-analogue was introduced above, it was mentioned that Briggs
and Remmel assigned to each m-level rook placement π a monomial in p and q, where the power of
q turned out to be invm(π). The interpretation of the power of p turns out to be less intuitive. Given a
placement π of k rooks in columns c1, c2, . . . , ck, let β(π) denote the number of cells c satisfying the
following conditions:

1. The cell c is below a cell containing a rook.
2. There is no rook to the left of c in the same level.
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Fig. 17. On the left, a 2-level placement π of one rook on Ferrers board B = (1, 1) with wt2(π) = −2. On the right, l(B) with
wt2(l(π)) = −3. The single cell counted by β(l(π)) is denoted with an asterisk.

Then the power of p associated with placement π , called the p-weight of π , is

wtm(π) = β(π) − m(c1 + c2 + · · · + ck).

For example, the 2-level rook placement on the right in Fig. 17 has β(π) = 1 and c1 = 2 so that
wt2(π) = 1 − 2(2) = −3.

Unfortunately, the bijections on rook placements given in this paper do not preserve the p-weight
of a placement. In fact, the multiset of p-weights associated with twom-level rook equivalent Ferrers
boards may not even be equal. Consider, for example, m = 2 and the boards B = (1, 1) and
l(B) = (0, 2), shown in Fig. 17. Clearly the two boards arem-level rook equivalent, because the board
on the right is obtained by applying the l-operator to the board on the left. On either board, there is one
way to place no rooks and two ways to place one rook. Doing this on B yields p-weights of 0, −2, −4
but on l(B) one obtains 0, −3, −4.

This leads to a few related open questions. Is there another p-analogue ofm-level rook placements
which is preserved by the bijections given in this paper, or by similar bijections? If such a p-analogue
exists, does it have a more ‘‘natural’’ motivation? Also, is there a factorization of the p, q-analogue of
them-level rook polynomial using the new p-analogue, similar to that given in [2]?

Finally there are some open problems related to hit numbers. In [4], Briggs and Remmel defined
the p, q-hit numbers h(m)

n,k (B, p, q) for any singleton board B that fits inside the rectangular board Sqn,m
by

n
k=0

h(m)
k,n (B, p, q)xk

=

n
k=0

rk,m(B, p, q)[m(n − k)]↓n−k,mp
m


(k+1

2 )+k(m−k)
 n

ℓ=n−k+1

(x − qmℓpm(n−ℓ)), (6.1)

where rk,m(B, p, q) is the p, q-rooknumber defined in [4], [n]p,q =
pn−qn

p−q = pn−1
+pn−2q+· · ·+pqn−2

+

qn−1 for any positive integer n, and [mk]↓k,m = [mk]p,q[m(k−1)]p,q · · · [m]p,q. They showed that for all
singleton boards B that fit inside the rectangular board Sqn,m, h(m)

n,k (B, p, q) is always polynomial in p
and q with non-negative integer coefficients. In [3], Briggs gave a combinatorial interpretation of the
h(m)
k,n (B, 1, q) for any singleton Ferrers board B that fits inside the rectangular board Sqn,m as follows:

h(m)
k,n (B, 1, q) =


R(ω)∈H(m)

k,n

qξmB (R(ω)) (6.2)

where ξm
B (R(ω)) can be calculated for any R(ω) as follows,

1. each rook R that does not lie in B cancels all the cells in its column that lie weakly below R and
outside of B plus all the cells in its level which lie strictly to the right of R, and

2. each rook R that lies in B cancels all the cells in its column that either lie weakly below R or outside
of B, and all the cells in its level which lie strictly to the right of R, and

3. ξm
B (R(ω)) is the number of uncanceled cells in Sqn,m.

For example, Fig. 18 shows a case wherem = 3 and n = 4. The placement is an element R(ω) ∈ H(3)
2,4 .

We have put asterisks in all the cells which are canceled, which do not already contain rooks, so that
ξ 3
B (R(ω)) = 9. In the special case m = 1, this statistic corresponds to the statistic for hit numbers on
Ferrers boards due to Dworkin [6].
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Fig. 18. An example on B = (2, 4, 6, 10) with m = 3 and n = 4. The canceled cells which do not contain rooks are marked
with asterisks. Note there are 9 empty cells which are uncanceled, so ξ 3

B (R(ω)) = 9.

Our bijection θ of Theorem 24 between H(m)
k,N (B) and H(m)

k,N (B′) does not send the statistic ξm
B to the

statistic ξm
B′ . That is, it is not always the case that if R(ω) ∈ H(m)

k,N (B), then ξm
B (R(ω)) = ξm

B′ (θ(R(ω))).
Thus we ask whether it is possible to define a natural bijection Γ between H(m)

k,N (B) and H(m)
k,N (B′)

such that ξm
B (R(ω)) = ξm

B′ (Γ (R(ω)))? Also, if we use (6.1) to define h(m)
k,n (B, p, q) for non-singleton

Ferrers boards contained in Sqn,m, can we classify the collection of such boards such that h(m)
k,n (B, p, q)

is always a polynomial in p and qwithnon-negative integer coefficients, orwhenh(m)
k,n (B, 1, q) is always

polynomial in qwith non-negative integer coefficients?
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