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ABSTRAC
We propose a game based on a theorem of Erdos and Szekeres about monotonic
sequences, The outcomes of small-sized games are generated by computer and thep
proved mathematically. The efficiency of the algorithm used is also discussed,

1. Introduction.

A well-known theorem of Erds and Szekeres [2] extends at
once to the following statement:

Theorem ES. Let N and M be non-negative integers. Any se-
quence of at least N M+ 1 distinct integers must contain an increasing
subsequence of length N4+1 or a decreasing subsequence of length

M+1. [

For short proofs of this result see Blackwell [17 and Seidenberg
[8]. The lower bound N M+1 is sharp since there exist sequences of
length NM whose longest increasing subsequence is of length N,
and whose longest decreasing subsequence is of length M, e.g.,

M, M—1,.,1, 2M, 2M—1,...,M+1,...,NM,...,N(M—1)+1._

Recently one of us has been investigating achievement and avoi-
dance games based on theorems [3, 4]. To turn.
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Theorem E S into a game, imagine two players, A and B, who
take turns picking distinct numbers from a finite set, X, of inte-
gers and use them to build a sequence (or permutation) P (1), P (2),
P(3),.... Player A always starts the game and P (1) is his first move,
then' player B chooses P(2), and so on.

In the achievement version of the game, the first player to
create an increasing subsequence of length N+1 or a decreasing sub-
sequence of length M+1 is the winner. In the avoidance game, the
first player to do so loses. Note that in view of Theorem E S we are
guaranteed a winner when |Z|=N M+ 1. Clearly only the cardianality
§ of Z matters, not thetactual numbers in the set, so we will always
take £={1, 2,...,5}.

The following notation will be useful in the sequel. For the
achievement game we set

A if A can force a win
w(N, M, $)<B if B can
0 if neither can.

We assume that both players play rationally, i.e., both A and
B play to maximize their chances of winning. The abbreviation
w (N, M) is used when S=NM+1. The achievement number is

a(N, M)=min{S |w (N, M, §)=0}.

We have already observed that (N, M)SNM+1. If w (N, M, §)=0
we define the move number m (N, M, S) as the smallest number of
moves in which the winner can force the game to a close. In parti-
culat let 7 (N, M) be the move number for the game with
S=NM+1. The corresponding concepts for the avoidance game
will be denoted w(N, M, S), 2(N, M), etc..

We do not have a general strategy for either game, however
with the aid of a computer we have determined the values of the six

functions w, 4, m, w, a, m, for small N and M. Using standard back-
trackking techniques (see, e.g., [7]) we wete able to obtain complete
results through NM4-1=10, even though the game tree has
O ((NM+1 ) leaves.
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However, employment of tree pruning and a suitable heuristic
improved our run times enough to push the bound up.to N M+1=15.
Although these devices reduce the exponent of growth, the tree
size remains exponential in NM+1. Hence it is not expected that
much larger games will be tractable.

In Section 2 we provide a rigorous analysis of the small achieve-
ment games. Section 3 is concerned with the statistics for the avoi-
dance game. Finally in Section 4 e provide a comparison between the
various tree search techniques used and conclude with some open
questions,

2. The achicvement game.

Table 1 lists the values of w(N, M), a(N, M) and (N, M)
that we have obtained; three dots indicate the continuation of a
general pattern. First some trivial observations

(1) w(N, M, S)=w(M, N S).
For all § we have

(2) w(0, M, $)=A,
and,

(3) a(0, M)=m (0, M, 5)=1.

Table 1 — ACHIEVEMENT GAMES.

w (N, M) a (N, M)+m (N, M)
M N\ M
N\ 0 1 2 3 4 N\O 1 2 3 4
0jjA A A A A., ¢ | 1 1 1 1.
1A B A B A.. 1 1 2 3 4 5.
214 A A A A.. 2 |1 3 5 5 7
314 B A A 4 3111 4 5 2 11
4 /1A A A A ? 4 1 5 7 11 ?
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We will now derive some simple results that will verify the
rest of the entires in Table 1.

A i Mis even

(4) wL M)=3 5t Mis odd.
() m(l, \y=M+1.
6) a(1, M)=M+1.

For §=a(1, M) we have

w(l, M, S)=w (1, M)
(7) g

m(l, M, §)=m (1, M).

Proof of (4)-(7). Clearly A must first play the largest number,
M+1, otherwise he will lose on the next move. For the same reasos
B must now play M, and so forth until a decreasing sequence is
completed giving us (4) and (5). Since this is the only possible stra-
tegy, equations (6} and (7) follow as well. [

(8) If w(N, M, S)=B then w(N+1, M, S+1)=
=w(N, M+1, §+1)=A.

Proof. For the game with parameters (N+1, M, S+ 1) player
A can begin by playing the smallest integer, 1. This will result in 1

game of type (N, M ,5) with the roles of A and B reversed. The
other case is similar. [

Equation (8) will helps us to determine the winner for the
case N=2.

(9) w(2, M)=A for all M.

M+2  for all odd M=3,
(10) a(2, M)=
. M+3  for all even N=2,
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For §=4(2, M) we have

w2, M, §)=A,
m(2, M, S)=a(2, M).

(11)

Proof of (9)-(11). First consider equation (9). When M is odd
this follows from (4} and (8).

When M is even, A begins by playing 2. If B does not play
1 or 2M+1 then A will win on his next move. But if B plays 1
then A can play 2 M+1 (and vice-versa) which reduces the game
to one of type (1, M—1) with the roles of A and B interchanged.
Hence A must win by (4) and the fact that M—1 is odd,

To verify (10), note that the strategy above will guarantee a
win for A after at most M+2 moves for odd M or at most M+ 3
moves for even M. Now a(2, M)=a(1, M)=M+1 and if A can
win then (2, M) must be odd. Hence if M is odd then a(2, M)y=
=M+2. If, on the other hand, M is even we have

a(2, M\)=M+1 or M+3,

But B can prevent A from winning in M+1 moves by playing 1 at
some point. So in this case 2 (2, M)=M+3. It also follows that the
move number is equal to the achievement number whenever
§=a(2, M). []

We next derive results for N=M=3,
(12) w(3, 3)=4,
(13) a(3, 3)=9
For §=a (3, 3) we have
(14) m (3, 3, §)=9,
(15) w(3, 3, 8)=A4,
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Proof of (12)-(15). A beings by playing 5. If B responds with
6 then A follows with 4 and vice versa. This creates both an increa.
sing and a decreasing sequence of length two which constitutes a
double threat: if B now plays anything except the largest or smallest
number then he will create an increasing or decreasing sequence of
length three which can be completed by A on the very next move.
Hence both players must now adopt the strategy of playing the
largest or smallest of the remaining numbers which will force a win
for A after six more moves. If B plays P(2)»4 or 6 then A can
create a similar double threat by choosing any P (3) which is bet-
ween 5 and P(2). This proves (12) and the fact that a(3, 3)=<9.

To finish the proof of (13) we need to show that a(3, 3)=8.
This is a tedious exercise that we leave to the reader. Cleatly the
same strategy will work for any $=9 (A4 picks P(1)=[8/2] and
continues as before). Hence (14) and (15) follow. [

As the entries for N=3, M=4 in Table 1 are verified by techni-
ques similar to those used above for the case N=M=3, we omit
the details.

3. The avoidance game

Table 2 contains computer generated statistics about the avoi-
dance game. It is much more difficult to analyze than the achieve-
ment games. We only have total information for two trivial cases:

g (0, M, S)=B,
(16)

(0, M)=m (0, M, S)=1,
and for $=2=a (1, M),

w(l, M, §)=A4,
(17) %

%(12 M, 5=2. [
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Table 2 — AVOIDANCE GAMES.

e

w (N, M):

A A A A A A A...

B
B
B

A

B

A A A

A A A A

m (N, M):

a(N, M)

12

10

10

12
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For N=2 we can only offer the conjectures

A if M0 (mod 4);

(18) w(2, M)=
B if M=0 (mod 4);

2M=2[-51 i M%0 (mod 4)
(19) a2, M)=m (2, M)=
3M

1+—2— if M=0 (mod 4)

For N, M=2 the general strategy seems to be the use of a
double threat. The winner constructs both an increasing subsequence

Table 3 — OPENING MOVES OR THE AVOIDANCE GAME.
A WINNING OPENING FOR A.

}f”l 2 3, 4 5 ] 7

b B - AU V| R N UV O S ey
R ~N v b W =
LAY B S
Wi Ny =

-1

LY S B - 8

of length N ending, say, in # and 4 decreasing subsequence of length
M ending, say, in 7 such that either #<m or #>m and all numbers
between # and m have been used. One can also get away with con-
structing one subsequence if it happens to be 1, 2,..N or S,
§—1,..,5=M+1. Unfortunately it is hard to convert the above
observations into a precise proof.
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It is unusual that A wins in almost all the known cases where
N, Mz1. In Table 3 we have listed 2 winning opening for A in
each of these games. For the case N=2, M=4 when B wins, we
have listed a winning response to each of A’s openings in Table 3 (*).
Perhaps these will be useful in future attempts to understand this
game.

4. The dgorithm and unsolved problems

The computer program consisted of three almost independent
modules: the tree transverser, which was oblivious to the detailed
semantics of the tree nodes; the problem definition module, which
maintained the data structures implementing the semantics, and
which made available to the tree transverser such operations as Enu-
merate Successors; and the driver, which is not of interest here.
The tree transverser initially performed a depth-first search of the
entire tree, and was then modified to perform forward pruning. The
enumeration of successor nodes was initially done in arbitrary order
and then modified to use the heuristic that, where appropriate, one
should try to force an early conclusion by extending the subsequence
that is nearest to causing termination of the game.

The program was written in IBM Fottran H and ran on an
Amdahl 470v/8, which has an effective memoty access time of 5E-8
sec. In Table 4 we give the number of games played, number of
branches pruned, and the CPU time used for each of the three pro-
grams in the achievement version. Note that even though the algo-
rithm with the heuristic sometimes plays more games than the one
without, it is still faster since the games it plays are shorter (being
forced to an early conclusion). The average tree branching factor for
the full program hovers around 1.85 for the large games. However,
even with this version, the case N=3, M =35, was still incomplete
after two full minutes of CPU time.

(*) A winnng response for B in the game N=2, M=4.

2]l 2 3 4 5 6 7 g o9
31”24477_7666
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Table 4 — PROGRAM STATISTICS FOR THE ACHIEVEMENT GAME.

N M Games Branches CPU time
played pruned {seconds)
Backtracking: 1 1 2 0 1.11E—04
2 1 6 0 273E—04
3 1 18 0 7.97E—04
4 1 50 0 2.23E—03
2 2 100 0 5.26E—03
5 1 130 0 5.89E—03
6 1 322 0 149E—02
3 2 2170 0 1.31E—01
7 1 770 0 3.64E—02
8 1 1794 0 8.72E—02
4 2 50022 0 3.38E+00
9 1 4098 0 2.06E—{01
3 3 598668 0 446E+01
With pruning: 1 1 2 0 1.17E—04
2 1 2 1 1.27E—04
3 1 5 4 3.16E—04
4 1 5 5 3.96E—04
2 2 15 13 1.10E—03
b} 1 10 10 7.39E—04
6 1 10 11 8.81E—04
3 2 110 116 1.00E—02
7 1 17 18 1.40E—03
8 1 17 19 1.72E—03
4 2 668 691 6.80E—02
9 1 26 28 2.36E—03
3 3 1945 2023 2.19E—01
With pruning 1 1 2 0 1.03E—04
and heuristic: 2 1 2 1 1.24E—04
3 1 5 4 2.90E—04
4 1 5 5 3.29E—04
2 2 20 17 1.10E—03
5 1 10 10 6.06E—04
6 1 10 11 6.55E—04
3 2 184 168 1.02E—02
7 1 17 18 1.076—03
8 1 17 19 1.10E—03
4 2 798 821 4,60E—02
9 1 26 28 1.58E—03
3 3 2150 2225 1.24E—01
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One other optimization consideration is the method of keeping
track of the subsequences. For brevity, we discuss only increasing
subsequences; decreasing ones are handled analogously. We maintain
an auxiliary vector UPLEN (I) containing the length of a longest
increasing subsequence terminating at position I. When a new term
P(]) is added to the sequence, UPLEN (J) may be calculated by
comparing P (J) with each P (K), K<J. If implemented in a straight-
forward manner, the number of comparisons required, J—1, has an
upper bound N M. However, one can do much better by observing
that certain of the comparisons render others superfluous. If we pro-
ceed in decreasing order of UPLEN (K) then once we find that
P(])>P(K) we need not compare P(]) to any P (K’) such that
K’<K and UPLEN (K")=UPLEN (K).

A more complete application of this principle requires two more
auxiliary vectors, but the number of comparisons now has an upper
bound of N. Even for a game as small as N=M=3, this technique
saves a factor of 2 in CPU time over the straightforward method
(not recorded in Table 4) despite the need to maintain more complex
data structures. In fact this amounts to an efficient implementation
of an algorithm of Schensted [6] where only the first row of Schen-
sted’s array is kept.

In addition to the obvious problem of giving a complete solu-
tion to either the achievement or avoidance game, there are several
other interesting questions that arise from the cases we have already
studied.

(1) The size of the set, S, appears to be immaterial, i.e., for
all S=a (N, M) we have;

w(N, M, S)=w(N, M) and m(N, M, S)=m (N, M).

Is this true in general? Note that this is not always the case
for other games, e.g., the winner in graphical achievement and avoi-
dance games depends heavily on the board size [5].

(2) It is striking that we always seem to have «(N, M)=
=m (N, M, a(N, M)). Although this is not a suprising conjecture, as
one expects the first non-draw game to use all the elements in §, a
proof is far from obvious.
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(3) Failing a precise determination of # (N, M) and m (N, M, ),
what bounds can be constructed? Of course we already have

min (N+1, M+1)<a(N, M), m(N, M, HS=NM+1.

(4) The above questions also have obvious counterparts for the
avoidance game.
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