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Abstract 

Let 5 be a family of subsets of an n-set, considered as a subposet of the Boolean algebra B.. Adjoin 

a minimum 0 and maximum i if necessary to form @. Let ~(95) denote the value of the Mdbius 

function p(6,i) in &. We compute the maximum value of Ip( as 9 ranges over three types of 

families in B,: lower order ideals, intervals of rank levels, and arbitrary rank-selections. The maxima 

are obtained by taking the lower half, the middle third, and every other rank of B,, respectively. The 

maximum for the first case was previously found by Eckhoff (1980) and Scheid (1979). It allows us to 

answer a question raised by Fiiredi based on his joint work with Chung, Graham and Seymour 

(1988). The third maximum was also previously given by Niven (1968) and de Bruijn (1970). Finally, 

we consider lower order ideal case for the lattice of subspaces of a vector space, the maximum being 

achieved by taking the whole poset. 

1. Introduction 

Let P be a partially ordered set (poset). We will follow Stanley [14] for any poset 

terminology not defined in this paper. Suppose P is bounded, that is, it has a unique 

minimal element d and a unique maximal element 1. If p is the MGbius function of 

P [lo, 143, then we let p(P) stand for the value of ,u(@ 1) in P. We will be interested in 

maximizing 1 p(P) 1 as P runs over certain subposets of a Boolean algebra. 
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The problem of determining the maximum Mijbius function of a set system (a 
subset of a Boolean algebra) seems to be difficult. In the case of a simplicial complex 
(ideal in a Boolean algebra) the extreme configuration is always a rank selection, see 
below. There is some evidence to suspect that the extreme configurations in the case of 
arbitrary set systems are rank selections as well. 

This motivates the study of the Miibius function of a rank selection of a Boolean 
algebra. The principal tool there is a formula which expresses the Miibius function in 
terms of certain sets of permutations (Proposition 1.1). This allows us to give 
combinatorial proofs, and to solve the corresponding maximization problems 
completely (Theorem 1.2). 

Given nonnegative integers n, k and 1, we let 

[n]={l,2,...,n} and [k,1]={k,k+l,..., I}. 

In particular, these sets are empty if n =0 or k> 1, respectively. Let B, denote the 
Boolean algebra of all subsets of [n] under the partial order of inclusion. Given any 
family of subsets F s B,, we let 

~=&J{(8}u{[n]}, 

that is, we add 0 = 8 and i = [n] to 9 if necessary. Now & is a bounded poset and we 
define the Aciiibius function of B by 

/@q=/@). 

If P is a bounded poset, with minimal element d and maximal element f, then we let 

P= P\{oI, 111 

where the backslash denotes set difference. We will be concerned with the Mlibius 
function of families 9 which are lower order ideals in that they satisfy 

To describe our other two types of families, we need a little more notation. 
The poset B, is ranked with the rank of any SE B, being rk S = ( S (, where (a ( denotes 

cardinality. Thus the possible ranks of a set other than d and 1 are in [n- 11. 
If 9 c B, and R E [n - 11, then we will consider the corresponding rank-selected 

subposet 

F(R)={SeP: rkSER). 

In particular, the i-th rank level of 9 is given by 

F(i)=F({i})=(AEF: (Al=i}, 

and for intervals we use the shorthand 

F[k]=F([k]) and F[k,1]=9([k,l]). 
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The Mobius function of rank-selected subposets of B, can be described [14, 

pp. 131-1321 in terms of descents of permutations. If rc =a1 a2 .+. a, is a permutation of 

[n], then its descent set is the subset of [n- l] defined by 

D(7C)={i: Ui>ai+r}. 

Now, given R z [n- 11, we let 

@JR)={~=aI~~~a,: D(x)=R} 

and 

B,(R)=l%(R)I. 

The following result is well known [14, Corollary 3.12.21. 

Proposition 1.1. If R E [n - l] then 

AB,(R))=(- I)‘“‘-‘P.(R). 

For LB,, and /I,, we will use the same shorthand in the interval case, e.g., 

~rdCkl)=~“Ckl 

and similarly for [k, I]. Also the n-th Euler number [14, pp. 148-1491 is defined as 

E,=8.(1,3,5, . ..) 

and so counts permutations of the form a, > u2 < u3 > ... which are called alternating. 

These numbers (E0,E,,E2 ,... )=(1,1,1,2,5,16,61,... ) have the generating function 

c E,,$=tanx+secx. 
n. 

!I30 

We are now in a position to state our main theorem. In it, L . J and r . 1 stand for the 

floor (round down) and ceiling (round up) functions, respectively. 

Theorem 1.2. Suppose F E &. 

(1) If _+- is a lower order ideal, then 

with equality if and only if 

s=B,,[k] with k=[yj or k=[ql. 

(2) If 9 = B,( R) where R E [n - l] is an arbitrary rank-selection of B,, then 

IP(=WIGE~. 
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with equality if and only $ 

R={l,2,3 ,... > or R={2,4,6 ,... }. 

(3) Zf F = B,( R) where R = [k, l] is an interval of ranks, then 

BnCS,2j-l]=B,,[4+l,~] for n=O (mod3), 

for n-k1 (mod3) 

with equality if and only $R is one of the intervals mentioned in the previous equations. 

Part 1 of this theorem can be interpreted as giving the maximum absolute value of 

the Euler characteristic of a subcomplex of the (n - 1)-simplex. It has been discovered 

independently by Eckhoff [S, Hilfssltze 2 und 31, and Scheid [l, p. 1801. In fact, 

Eckhoff solves the problem even with a restriction on the maximum size of a set in 9. 

A stronger result, bounding the sum of the Betti-numbers, was obtained by Bjiirner 

and Kalai [S, Theorem 1.4, and note added in proof]. Noga Alon has also come up 

with a proof similar to ours [4]. 

In Section 2, after giving our very simple proof, we use the result to answer 

a question of Fi.iredi [9] based on his joint work with Chung, Graham and 

Seymour [7]. Section 3 treats arbitrary rank-selections. This case has also been done 

independently by Niven [11] and de Bruijn [6]. Section 4 deals with interval rank- 

selections. This result is new, to our knowledge. Next, we consider lower order ideals 

in the lattice of subspaces of a vector space, Section 5, and show that ,U is maximized 

by taking the whole poset (another original result). Finally, we end with some 

comments and open problems. 

2. Lower order ideals 

First we will need to review some general results about Mobius functions. If P is 

a bounded poset, then let 

ci=ci(P)= the number of chains of length i in P 

where a chain of length i is a totally ordered subset with i+ 1 elements. It is well 

known [13, Proposition 63 and [14, Proposition 3.8.51 that 

~(P)=-l+cl--ci+c~-c~+... (1) 

(It is in this sense that ,D can be interpreted as a reduced Euler characteristic.) We can 

use this equation to get Lemma 2.1, our primary tool for this section. Its systematic 

use for maximizing the Mobius function of posets was demonstrated before in [15, 

Proofs of Theorems 2.5, 3.21. In what follows, max P denotes the set of maximal 

elements of the poset P. 
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Lemma 2.1 [14, Lemma 3.14.41. Let P be a bounded poset. If x@ then 

~(p)=~(p\x)+~(6,x)~(x,~). 

In particular, if T c max p then 

P(P)=P(P\T)- 1 ,464 
XET 

(2) 

Proof. To prove the first equation, merely note that the right-hand side counts the 

chains in p according to whether x is not in the chain (the first term) or x is in the 

chain (the second term). The second equation follows by repeated application of the 

first, and the fact that ~(x, I)= - 1 if XET. 0 

As a corollary, we get the following useful result. 

Lemma 2.2. If R E [n - l] and k = max R then 

/4&(R))=A&(R\k))- ;: ABdR\k)). 0 
Thus for kE[n- l] we haoe 

, 

in particular 

P(BJ=(- 1)“. (5) 

Proof. The first equation follows immediately from taking T= B,(k) in Lemma 2.1. 

The second can be proved using the first by induction on k, and the third is a special 

case of the second. (These two equations also follow from Proposition 1.1.) 0 

We need one last lemma about the shadow of a subset S of rank r of B,, which is 

defined to be 

d(S)={BEB,(r-1): BEA for some AES}. 

This result follows from Sperner’s lemma [2, Lemma 2.1.1 and Corollary 2.1.23 except 

in the case where S is contained in one of two ranks of B, having equal size. Since this 

case requires a proof which can also be used to show the whole lemma, we have 

included a complete demonstration. We thank Dennis Stanton for pointing out that 

edge-counting arguments could be used. 

Lemma 2.3. Zf S E B,(r) where r> n/2 then 1 A( 3 1 SI with equality only when n is 
odd and S = B,( (n + 1)/2). 
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Proof. Consider the bipartite graph, G formed in the Hasse diagram of B, by S and 

A(S). Since every vertex AES has degree I, the graph has a total of r ISI edges. Also, 

every vertex BE A(S) has degree at most n-y + 1 in G for an edge count of at most 

(n--r+ 1)l A(S Thus when r>(n+ 1)/2, the lemma follows. 

The same reasoning works if II is odd and r = (n + 1)/2 as long as some vertex in A (S) 

does not have degree (n + 1)/2. If every BE A(S) has this degree, then in B,, vertices of 

A(S) are only adjacent to vertices of S (and, of course, vice versa). Thus having 

S c B,(r) (strict containment) would contradict, e.g., shellability of B, [3]. 0 

We are now ready to prove part 1 of Theorem 1.2. Let 9 c l?n be an ideal with 

maximum 1 p( 9) I. Also, let k be the maximum size of a set in 8. We will compare 

p(F) with p(Y[k- 1)) and p(F[k-21). Applying equation (2) to P=@ and using 

(5), we obtain 

~(~[k-1])=~(9)+(-l)k19(k)l. (6) 

Now applying (2) again to the p( 5 [k - 11) term in previous equation, we get 

~(9[k-2])=~(9)-(-l)k(19(k-1)I-IP(k)l). (7) 

Note that since P is an ideal, F(k- 1) contains the shadow AF(k), and thus 

(Y(k-l)I-(AB(k)l>O. If k>rn/21, then from Lemma 2.3 we know that the 

shadow of 9(k) has size larger than that of 9(k) itself. Thus I 9( k - 1) I - I 9(k) I > 0 

and so one of equations (6), (7) implies that I p(9) I is not maximum. Hence k <[n/21. 

In fact, we claim that k d Ln/2j. This is immediate if n is even. If n is odd, then we 

must rule out the possibility that k =r n/2 1= (n + 1)/2. But in that case there are two 

options. Either 9(k) c B,(k) and the argument above applies. Or g = B, [ k] and so, 

by equation (4) 

which is not optimal. 

We have shown that if g is lower order ideal whose Mobius function is maximum 

in absolute value, then 

k=max{IAI:AE9}< t 
11 

Using a completely analogous argument, we see that 

I=min{ 1Bl: BE&,\~}> 

From the definitions k > I- 1. Because of the bounds on these two quantities, we see 

that k = I - 1 or 1. If n is odd, then this implies that k = l- 1 = (n - 1)/2. So, in this case, 
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and we are done. For even n, we have 

Now applying equation (6) with k=n/2, we obtain 

Furthermore, letting P= B,[ n/2] and T= B,(n/2)\9(n/2) in Lemma 2.1, we get 

‘p(F)-(- 1) ‘12!Bn( ;)\F( ;)I. 

This implies that either F( n/2) =@ or B,( n/2) = F(n/2). Thus we have 

5 = (B, [ n/2 - 11) or Y = B,[ n/2], and we are done with part 1 of Theorem 1.2. 0 

The same proof technique also yields Eckhoff’s theorem [S] in the case of an upper 

bound for k=max{lAI: AEF}. 

We can immediately obtain an asymptotic estimate for max 1 p( 9) 1. Let f(n), g(n) 

be two functions of the integer variable II. We write f(n) = O( g( n)) if there are positive 

constants c,d such that 

for all large n. A routine application of Stirlings formula yields the following result. 

Proposition 2.4. Let fo( n) d enote the maximum value of 1 p(F)\ as 9 varies over all 

lower order ideals of B,. Then 

fo(n) = W/A). 

It is also easy to obtain sharp upper bounds for the Mobius function itself (as 

opposed to its absolute value). Using the same techniques, but paying attention to the 

sign of 11, the following result can be derived. Its proof, being similar to what we have 

done, is omitted. An analogous statement can be made for lower bounds. 

Corollary 2.5. If 9 is an ideal in B,, then we have the following sharp bounds. 

for nrO,2,3 (mod4), 

for n- 1 (mod 4). 

The maximum is only achieved when F = B,( [ k]), where k can be determined from 

part 1 of Theorem 1.2 and equation (4) in the first case. In the second case 

n+l n-3 
k=2 or ~ 

2 . 
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Finally, we come to an application related to the work of Chung, Fiiredi, Graham 

and Seymour [7]. For an arbitrary 9 c B,, they had defined 

f(F)= 1 l- c l+ 1 l-... 
A,EF, A,,A,eF, Ai,AjvA,~fl, 
IA,I=n IA,uAjl=n IA,uA,uA,f=n 

and Fiiredi [9] asked for upper bounds of f( 9). Observations (i), (ii) and (iv) of their 

paper show that 

if ~EF-, 

:(min(F;Cn])) otherwise, 

where min(F) is the set of minimal sets in 9. This reduces the problem to the case 

where min 9 = 9, i.e. B is an anti-chain (or clutter) in &. Now by Rota’s Cross-cut 

Theorem [13, Theorem 31 [14, Corollary 3.9.41, we obtain 

j-(F)= 1 (-1)1”1-‘= -p(PT) 
SrF, 

US=Cnl 

where F t is the upper order ideal generated by F, defined by 

9’={ AE&: A 2 B for some BEB}. 

Since dualizing does not change the Miibius function, the minimum version of 

Corollary 2.5 implies 

for n -0, 1,2 (mod 4), 

for nr3 (mod4). 

and these bounds are sharp. 

3. Arbitrary rank-selections 

Our major tool in this section and the next will be Proposition 1.1. Niven [11] 

was the first to show that the maximum size of a descent class is obtained by using 

the alternating permutations. He used an injection which differs from ours. It is 

slightly more complicated than our map (9), but the proof that it has the desired 

properties is somewhat easier. Later, de Bruijn [6] gave a very simple algorithmic 

demonstration. 

We begin with some basic results about permutations. Give A E [n], we write 

A={a,,a2, . ..) uk} < if A is listed in increasing order: a, < a2 < ... < uk. If Ui~A then 

define the A-complement of Ui to be 
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In other words, A-complementation is the permutation 

given by 

ak Uk_l ..’ al. 

301 

whose two-line form is 

(8) 

Complementation can be used to prove the following easy but useful lemma. 

Lemma 3.1 ([II]). Suppose R={ri,...,rk) c[n-11. 

(1) Zf R’=[n-l]\R, then P,(R’)=P,(R). 
(2) If R”={n-rl, . . . . n-r,}, then fln( R”) = /?,( R). 

Proof. Both of these can be seen bijectively. For the first part, use the function 

f: B,,( R’)-+B?,,( R) defined by 

f (%a2 ... un)=u;4a$ . ..a. 

where A= [n]. For the second, define g:&?‘,(R”)+B’,(R) by 

g(alaz . . . a,)=a;;La;_, . . . a:. 0 

We will need to know how complementation behaves if we add an element to 

our set. 

Lemma 3.2. Consider A={al,...,ak}, and jix UiEA, letting m=min{ai,af} and 
M=max{ai,at}. Pick u+A and let B=Au(a}. 

(1) If ~<m then ak_i<af<ak_i+l and aBBM. 
(2) Zf m<a<M then UB=Uk_i+l and m<aB<M. 

(3) Zf a>M then ak_i+l <af<a,_i+z and aB<m. 

Proof. All parts of this lemma follows easily from a case-by-case consideration of 

what happens when the element a is inserted in the diagram (8) for the A-complement 

to obtain the one for the B-complement. Right-hand portions of both rows are shifted 

to the right one place. Since 

a; must be one of the values a k _. a _. ,, k , + 1, ak _ i + 2 or a. A more detailed analysis yields 

the inequalities for a;. The ones for uB are obtained by similar considerations. 0 

The situation if we subtract an element is even simpler, so we will merely state the 

result. 
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Lemma 3.3. Consider A={aI ,..., uk}< and $X uiEz4, letting m =min{ ai, u!}, 

M=max{ui,u:}. Pick UEA and let B=A\{u). 

(1) If U<Wl then UB=Uk_i+2. 

(2) If m<u<M then uF=uk_i+l. 
(3) If u>M then ug=u,_i. 

If u=m then the first case continues to hold $ Ui= M. If a= M then the third case 

continues to hold ly ui=m. 

We are finally ready to begin the proof of Theorem 1.2, part 2. A double ascent at 
koccursinn=u,~~~u,ifuk<u,+,<u,+2. Double descents are defined analogously. If 
R is a rank-selection with a double ascent, then it suffices to find a proper injective 
function (i.e., not also surjective) 

f:g’n(R)-%(R+) 

where R ’ has one fewer double ascents than R and the number of double descents 
stays the same. Because of part 1 of Lemma 3.1, we do not need another case with 
the roles of ascents and descents interchanged. By the same token, we can assume 
that the permutations ES~,,(R) alternate (starting with either an ascent or a descent) 
until they reach their first double ascent at index k. That is to say we have the 
following picture. 

n= . . . yqp.J . . . 
uk-4 uk-2 uk 

We will construct o = bI ... b, =f(z) so that c looks as follows. 

bk-4 bk-2 bk b k+2 

o= .*. . . . 

That is to say R+=([k]\R)u(R\[k+ 11). 
It will be convenient to introduce one last bit of notation. Let n = a, ... a, and 

consider a fixed index k. If 1 <i < k then let a? denote the complement in the set 
K={Cq, . ..) uk}. Similarly, for 1 <i< k+ 1 we write a?+ ’ for the complement using 
K+l=(al,...,a&+l}. Now definef(u,..-u,,)=b,...b, where 

bi= a’ 
{ 

for l<i<k if $>&+l, 

ur’l for l<i<k+l otherwise. 
(9) 

and ai = bi for all other indices i. We must first check that f is well defined, which 
amOUntS to showing that bk+ 1 < bk+ 2, But in the first case of (9) we have 
bk+I=uk+I<uk+2=bk+2. In the second case we have assumed af<a&+r and we 
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always have ak < uk + 1, so the third case of Lemma 3.2 applies with A = {al, . . . , ak } 

and a=ak+r. Thus 

We now need to prove that f is injective. But complementing in the first k elements 

of a permutation is an involution (as is complementation in the first k+ 1). Thus we 

need only show that there is some way of distinguishing the images of permutations 

belonging to the first and second cases of (9) so that we know which involution to 

apply. The following Lemma fulfills this need. 

Lemma 3.4. Suppose that f ( a 1 . . . a,)=bl~~~b,.Thena~>ak+lifandonlyifb~<bk+I. 

Proof. Of course, in bf the complement is with respect to { bI, . . . , bk}. For the forward 

direction, note that bk = a: and the set K is the same for both the a’s and b’s. Thus 

b[=Uk<Uk+1=bk+1. 
For the other direction, assume a:<~+~. We first claim that 

b k+l <ak. 

Note that since complementation is order reversing, we have 

(10) 

b k+l =&,‘<a,K+l. (11) 

If ,;+I < &, then the claim follows immediately. Otherwise, we have a:+r >ak. Thus 

aII: >ak since this is true in all three cases of Lemma 3.3. Combining this with the 

overall assumption for this direction we obtain 

So Lemma 3.2, part 3, applies to yield a :z: < uk. This, along with the equality in (1 l), 

establishes the claim. 

Now to finish the proof of our lemma. Note that bk+ 1 < bk and, from (lo), 

bk+IQak=bf+‘. Thus bk+l<miIl{bk, bf+l } and b,, 1 # bk. Finally, part 1 of 

Lemma 3.3 gives us bf>bF+‘>,b,+,. 0 

We now have that the function f is an injection. To show it is strict, we must find 

a=bI...b,EB,,(R+) which is not an image off: But ifbk=3, bk+l=l and b,+,=2 

thenbkK>3>bk+1 and b:Z,‘>3bb k + 2. Thus neither involution applied to r~ gives an 

element of g,,(R). This finishes the proof of Theorem 1.2, part 2. 0 

4. Interval rank-selections 

We will first show that if we fix the length of the interval of descent, then one obtains 

the maximum number of permutations when the interval is centered. In fact we will 
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prove a little more. A sequence sl, s2, . .., s, is called symmetric if s~=s”_~+ I for all k. 
A sequence is called unimodal if there is an index m such that 

It is strictly unimodal if all the preceding inequalities are strict, the only possible 
exception being that a,,, = a,,, + 1. 

Also, if x=a1a2 ... a, is any strictly increasing (respectively strictly decreasing) 
sequence and a@c is an integer then we let it denote the sequence obtained by inserting 
a in the unique slot of rt such that the sequence still increases (respectively decreases). 
Similarly, let A denote the sequence obtained by removing an element aEx while 
keeping the sequence monotone. Although the notation makes no mention of the 
element a, it will always be clear from context, what integer is meant. 

Proposition 4.1. For fixed n>raO, the sequence 

PnC1,1+rl,PnC2,2+rl,...,BnCn-r-1,n-11 

is symmetric and strictly unimodal. Thus its only maxima are at 

for nrr (mod 2), 

Proof. As far as symmetry, this is just a special case of the second part of Lemma 3.1. 
Thus for strict unimodality, it suffices to show that 

n-r 
j,[i-l,i-l+r]<Pn[i,i+r] for i< - 

i J 2 (12) 

Construct a bipartite graph, G, as follows. The two vertex sets will be Vi =B,,[i- 1, 
i-l+r] and V,=B,,[i,i+r]. Given ET/,, we draw an edge to every OEV, that can 
be obtained in the following manner. Write 

n=al<...<ai_1>...>ai+,<...<a,=7C1~2~3 

where n, =al..-ai_i, n2=ai...ai+,, and 713=ai+,+,.,.a,. Pick any aEn and form the 
permutation 

fJ=?C~??T2B3. 

Notice that we have OE@,,[ i, i+r] since 

maXit~>Ui_~>Ui=IllaX7T~ and min7232ai+r+1>ai+r=minz2. (13) 

For example, if 

7r=3 6 8 4 1 2 5 7 9EBB,[3,4] 
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then the OE$?~[~, 51 adjacent to n are 

O: 236841579 

356841279 

367841259 

368941257. 

Since there are n-i-r choices for aEz3, every vertex rt E VI has degree n - i - r. 
However, each CJE V, is adjacent to at most i = ( itI 1 elements of VI. This is because the 
crucial inequalities in (13) may not continue to hold if one attempts to invert the 
process of passing from rc to B. In fact, if the first element of r~ is a 1, then it is 
impossible to change the l’s position and obtain a permutation in gn [ i - 1, i - 1 + r]. 
Thus there are some vertices in V, of degree smaller than i. Since i < n - i - r for the 
range of i under consideration, equation (12) is proved and this finishes the proof of 
the lemma. 0 

Now we need to show that among all centered intervals, the one which contains the 
middle third of ranks results in the most permutations. This will finish our proof of 
Theorem 1.2, part 3. 

Proposition 4.2. For jixed n > 0, the sequence 

is strictly unimodal with its unique maximum at 

In considering the sequence of 

there are four possibilities. They depend on the parity n - i and whether we are before 
or after the maximum. 

Let us consider the case where i_=n (mod2) and we are before the maximum. In 
other words, we wish to prove that 

(14) 
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Again, we form a bipartite graph with V, and V, corresponding to the permutations 

counted by the left and right sides of (14). If XCE Vi then write 

where nl =uI ... u(,_i-2)/2, 7tz=a(,-i,/2 ..’ U(n+i+2)/2, and rt3=U(n+i+4)/2 ... u,. Pick 

any u~rc~ and form the permutation 

Notice that we have OE V2 since 

max721~U(,_i_2),2<U(n_i)i2=maxit, 

and 

mln~3=a(,+i+4),2>a(n+i+2,j2~mlnic2. 

Since u~rci is arbitrary, every ~CCE V, has degree I xl I= (n - i- 2)/2. Every (TE V, has 

degree at most Ifi2 I- 1 = i+ 1. (We must leave q-i),2 in C2.). However the above steps 

will not always be reversible. For example, if min 7r3 = 2 then this forces min ?c2 = 1. But 

the 1 cannot be moved into it, and still obtain a rr in Vi. So some vertices in V, have 

degree smaller than i+ 1. From our assumption in (14), we have id(n- 5)/3 which 

implies i + 1 <(n - i- 2)/2. Thus 1 IfI ) < ( V2 1 and we are done with this case. 

For the other cases, one moves elements of x1 or 7c3 (depending on the parity of 

n-i) either into or out of rc2 (depending on whether you are before or after the 

maximum). The proofs are similar and so we omit them. 0 

To find asymptotic estimates for this maximum, we will need a couple of lemmas. 

Lemma 4.3. For all 1 d i < j < n we have 

B,Ci,jl=Pn-~Ci,jl+B,-,Ci-l,j-ll+Pn-~Ci,j-ll. 

Proof. If 7c=u1 ... un~9?,,[i,j] then either ui=n or u,=n. Thus deleting the n from 

rc gives us a bijection 

~‘,[i,j]-~~_l[i,j]u~~_l[i-l,j-l]u~’,_l[i,j-l]. 

(Having ui=n gives rise to two of the three cases depending on the relative sizes of 

ai-1 and Ui+l.) 0 

The next result applies to any rank selection. It follows as an immediate corollary of 

Lemma 2.2 and Proposition 1.1. However, we choose to give a combinatorial proof. 

Lemma 4.4. If R G [n - l] and k = max R then 

Pn(R)=PdR\k) ; -Bn(R\k). 0 
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Proof. The term /&(R\k) (B) counts all permutations rc=ur .‘. a, constructed in the 

following way. From [n], pick the k elements to use as aI ... ak. Next arrange these 

elements so that they have descent set R \k. Finally, put the remaining n-k elements 

in increasing order as ak + 1 ... a,. Clearly such permutations are also counted by 

j?,,(R)+/?,(R\k) depending on whether we have &>@+l or &<a,+,. 0 

Next we derive asymptotic bounds on our maximum. 

Proposition 4.5. Let ft (n) denote the maximum value of j?,,(R) where R is an interval of 

ranks then 

fr(n)=0(3”/n). 

Proof. By Theorem 1.2, part 3 and Lemma 4.3 we see that ft(n) is strictly increasing. 

Because of this and the fact that 

3 “+‘/(n+l) 

3”/n 

is bounded, it suffices to prove the proposition for n = 0 (mod 3). If R is chosen so that 

fr(n)= p,,(R), then by maximality of /In(R) and Lemma 4.4 

; h(R\k) ( 2) QB,(R)6MR\k) 0 ; . 

Taking R = [n/3 + 1, 2n/3], we have 

This completes the proof of the proposition. 0 

We can also characterize the maximum of the Mobius function itself rather than 

just its absolute value. 

Corollary 4.6. If n E + 2,3 (mod 6), then the maximum value for ,n(B,( R)), where R is 
an interval of ranks, is given by Theorem 1.2, part 3. Otherwise we have the following 
maxima. 

i 

B~C~Si,L~J-11=B~C~S1+1,L~Jl for n=-1 (mod6), 

< p,[s,+q=~, [s+ 1,+- l] for n%O (mod6), 

PnC~S1-i,L~~]=Bn[~S1,L~~+l] for n=l (mod6). 

with equality if and only if R is one of the intervals mentioned in the previous equations. 



308 B.E. Sagan et al. 

Proof. The only interesting cases are when the maximum of Theorem 1.2 is at 

a negative value of p, that is, when n -0, f 1 (mod 6). In these instances, all of the rank 

intervals having the same length as the one which maximizes 1 p 1 also have negative 

Mobius functions. Thus, by Propositions 4.1 and 4.2, the largest value of p must occur 

at the center of a sequence of rank intervals which is either one larger or one smaller 

than the one for maximizing 1~1. Demonstrating which of the two choices is correct 

uses the same ideas as in the proofs of the previously cited propositions, thus we omit 

the details. 0 

A similar result exists for the minimum value of p. The reader should have no 

trouble filling in the particulars. 

5. The lattice of subspaces 

Let us consider the q-analog of B,, L,, which is the lattice of all subspaces of an 

n-dimensional vector space V over the Galois field with q elements (ordered by 

inclusion). It is a ranked poset with rk W=dim W for W< I/. We will use the same 

techniques as in Section 2 to find the maximum value of ) ,u 1 as 9 ranges over all lower 

order ideals of L,. Because of the similarity, we will only sketch the proofs, adapting 

our previous notation to this case. However, because of the appearance of extra 

powers of q, the answer will change radically. In fact, we will see that the maximum is 

achieved by taking the whole poset. 

Of course, Lemma 2.1 continues to hold, so we can use it to prove the q-analog of 

Lemma 2.2. To state this result, we need the q-binomial coefficients (or Gaussian 

polynomials) 

4 
n-i+1 -1 

qi-l * 

If dim V= II then [;I counts the number of W< V with dim W= k. Now for our first 

q-lemma. 

Lemma 5.1. Zf R s [n - l] and k=max R then 

Thus for kc[n - l] we have 

p(LJk])=(-i)““q(‘:I) 
n-l [ 1 k , 

in particular 

p(L,)=(-l)“q(? 

(16) 

(17) 
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Now if r is a given rank, we need a result about the dual shadow of S G L,(r) which is 

defined as 

V(S)={BEL,(r+l): B2A for some AES}. 

Edge-counting yields the following analog of Lemma 2.3. Notice that because of the 

extra power of q, there is no restriction on the rank size. 

Lemma 5.2. ZfSzL,(r) for any rE[n--11, then q’j V(S)l>lS(. 

Finally, we can prove our main result about L,. 

Proposition 5.3. If 9 _C E,,(q) is a lower order ideal then 

with equality if and only if 9 = &, . 

Proof. Let 9 be a lower order ideal with maximum I pi, and consider 

F-“= { w: WEL,\P-). 

If 

l=min{dim IV WEF’}, 

then define two new families 

9?=FuFc(l)~ 

and 

P=~uUC(l+l). 

Now use (2) and (17) applied first to $9 and then to A?. Thus we obtain the q-analog 

of (6): 

p(9)=p(P)+(- l)‘q(:)lP(l)l > 

and of (7): 

These two equations, together with Lemma 5.2 show that ( p(S) I will not be max- 

imum unless L,[n-21 C 6. 
To show that L,(n- 1) z 9 as well, we use (2) and (17) one last time to get 

p(~)=(-l)“-‘q(“3 
n-l 

[ 1 n-2 
_(_l)“-iq(“Z1) O- Ik(n-111. 

The extremal values of the left side of this expression obviously occur for the cases 

9( n - 1) = 8 or 9( n - 1) = L,(n - 1). It is easy to check that the latter gives a larger 

value than the former, so we are done with the proof. 0 
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6. Comments and questions 

Although equation (4) gives a nice formula for p( B,[ k]), there does not seem to be 

correspondingly simple one for p(B,[k,l]). By iterating (3) together with (4) and 

dualization, one can obtain 

p(B,[k,l,)= -1,i (-1)’ 
j=k 

(18) 

However, there seems little hope for a simpler expression. Using (18), one sees that 

asymptotically (n growing, with k, 1 fixed) 

(-l)‘-k 1-l 
p(&CS WIr 

A) k-1 ‘I’ 

It should also be possible to give proofs of Propositions 4.1 and 4.2 based on equation 

(4), but we have been unable to do so. There is an inductive proof utilizing Lemma 4.3, 

but we have chosen the combinatorial route as more illuminating. There is also 

a determinantal formula for the size, fi,,( R), of a descent class [14, p. 691. However, we 

do not see how to use it to give alternative demonstrations of our results. 

In all cases except that of an arbitrary rank-selection, we were able to also find the 

maximum positive value of the Mabius function. It is clear from what we have done in 

Section 3 that whenever p and ( ,u 1 have different maxima, then the former is achieved 

using a set of permutations with exactly one double ascent (or, what comes to the 

same thing, exactly one double descent). Numerical evidence suggests that it is best to 

use permutations where the double ascent is as centered as possible, but we have no 

proof that this always works. 

It is easy to show that constants c and d for the 0 estimate in Proposition 2.4 can be 

taken to be 

C=&- E and d=- 
&+& 

for any small E. What can be said about the best possible constants for 

Proposition 4.5? 

We could consider other natural families B E B,. For example what if 9 ranges 

over all lattices or over all subsets of B,? There is some evidence to suggest that the 

maxima in these two cases are the same as in the cases of an interval rank-selection 

and an arbitrary rank-selection, respectively. It would be good to have methods to 

show that the extremal configurations have to be very symmetric (rank selections) in 

these cases. 

In this paper, we have studied the maximum Miibius function in B, as a function 

of n. If one takes into account 19 1, the results obtained are quite different, see 

[lo, 151. 
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Finally, we could consider other pose&. We have already shown how our lower 

order ideal methods apply to the lattice of subspaces, L,. For rank-selections, there is 

a q-analog of our fundamental tool, Proposition 1.1 [14, Theorem 3.12.31. It is 

obtained by q-counting the permutations in 9#‘,( R) using the inversion statistic. 

Readdy [12] has recently shown that the maxima in both the arbitrary and interval 

rank-selection cases is still obtained by taking the whole lattice. She also has related 

results for the poset of faces of an n-dimensional cube. 
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