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Abstract : When the mobius function u of a poset P has values +1, 0,
defined by taking P as itg veriex set and the sign of edge ¢ =Xy as u(x,y).
if () can be partitioned into subsets so that every positive edge and ng
the same subset, and the number of such subsets is cither one or two.
specified, S is called clusterable. We charasterize balanced signed poge

~1 only, a signed graph S(P) is
A signed graph § is called balanced
hegative edge juins two vertices in
When the number of subsets is not
ts and discuss clusterable ones,

1. Introduction : There are a number of graphs that have been associated with a par-

tially ordered set. The most famous of these is the Hasse diagram but recently other interes-
ting graphs related to partial orders have been studied, for example, the upper bound, lower
bound, and double bound graphs of McMorris and Zaslavsky (1984) We will define and inves-

tigate a new graph which is related to the m&bius function of g partially ordered set. 1In
order to do s0, we need some deﬁnitions.

4 graph G consists of a finite set of points ¥(G) called vertices together with a preg-
cribed set of (unordered) pairs of points E(G) called edges. By coavention | P(G) l=p and
| £(G) |=q. A signed graph Sisa graph together with a function f; EG)»{+1,—1}, 1. e,
cach edge is considered positive or negative. We can also consider a signed graph as a
complete graph K, (where every pair of vertices i3 an edge) together with a function

fle) if e e E(G)

g : E(Kp)—>{-+1, 0,—-1} defined by g(e)= { )
0 otherwise

(1)
This viewpoint will be useful later.

Signed triangles were first studied by Heider (1946) in psychology, where 14(5))
represented a set of people with positive and negative edges corresponding to friendly
and unfriendly relations between the pair involved. Signed graphs (with more than three
vertices) were independently discovered in (Harary 1953) and the structure theorems for
“balance™ were derived. Cartwright and Harary (1936) subsequently developed “balance
theory” as a mathematical model for cognitive structures in psychology. Many contriby-
tions ta the theory of signed graphs have since appeared, both in the mathematical and sogial
Qciences [(Harary 1982), (Hage and Harary 1983), (Harary and Lindstrdm 1981), (Zaslavasky
1981)].

*Research supported in part by the National Science Foundation,
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There is another area of mathematics where functions taking the values +1 and 0
often appear. A finite partially ordered. set (poset) P is a finite set together with an
asymmetric, reflexive, transitive partial erder<on its elements. The mdbius function of
P is a map u : P4 P—Z (the integers) defined reeursively for all (x, ) e PX P by

0 if x4y

u(x:J’)={+“f x=y . ()

—ZX #(x, z) otherwise
EEL ]

This is a natural generalization of the mébius function from number theory and has
been used extensively in combinatorics [(Harary and Palmer, 1973), (Rota and Sagan 1980),
(Stanley 1972)]. An introduction to the subject is given by Rota (1964). It turns out
that many posets have mdbius functions that take the values +1 and 0; these will be called
signed posers. Itis our purpose to show that there is a natural correspondence between
signed posets and signed graphs which has many interesting properties.

5. The Correspondence. Given a signed poset P, construct a signed graph S(P) by
letting the vertices of S(P) be the elements of P and by defining the function g of (1} as

0 if x=y !
g(x,y)={ )

u(x, ¥) otherwise

forall x, y € P 3 g(x, x) is set equal to 0 to eliminate loops from S(P). Hence there will be
an edge between distinct vertices x, y in S(P) whenever u(x, y}7#0 in P, and in that case the
sign of the edge will be that of u(x, ¥}, With this definition we see that if M(P) is the matrix
of the m®bius function in the incidence algebra of P and A(SYP)) is the adjacency matrix of
S(P) then

A(S(P))=M(P)+M(P)t —2I e (4)
where # denotes transposition and I is the | P | x| P | identity matrix.

Given x, y in an arbitrary poset P, x covers y if x>y and there is no zeP with
x>z>y. The Hasse diagram of P, H(P), has as vertices the elements of P with an edge from
x down to y whenever x covers y. The Hasse diagrams of several signed posets and the
corresponding signed graphs are shown in Figure 1. The reason for se displaying the graphs
S(P) will be given in the next section. Notice that if xy is an edge in H(p) then xy is a nega-
tive edge in S(P) but not conversely. A criterion for the converse will be given in Theorem 1.

We now substantiate our claim that there are many posets that are signed and hence
can be turned into signed graphs. The simplest nontrivial example occurs when P is totally
ordered, i.e., for allx,ye P either x<y or y<x. In this case Pis called a chain C,
(r=IPi—1) of length r. One can instantly compute its mébius function ;



SIGNED POSETS 5

+1 if x=y
u(x, y) = { —1 if =xcovers y
0 otherwise.

We immediately observe that C, is a signed poset and that H(C,) is isomorphic to —S(C,).

F 123
c b‘N‘ 2 é
b a
a8 S(cy)
u(cal
18
9 6
3 2
1
H(D, o)

Figure 1. Some Hasse diagrams and their signed graphs

Given posets P, 0, the carfesian product PX Q={(x, y) | x ¢ P, y € O} is a poset under
the partial order (x, y)< pxg(th, v) whenever x«pu and y<gv. It is easy to show that
erxo((x; ¥, (2 v))=pp(x, 4) g (3, v) e (B

so any product of signed posets is a signed poset although S(Px Q) is not in general isomor-
phic to the graphical product S(P) x.S(Q) of (Harary 1969, p. 22). In particular, any product
of chains is a signed poset. Furthermore x(x, y) depends only on the interval [x, y] i={z e P |
%<z} ; hence any poset whose intervals are products of chains is a signed poset,

This last category includes a number of important posets :

(1} The boolean algebras, B, consisting of all subsets of an n-element set ordered by
inclusion. Clearly B,=<(C,)"*, and S(B,) can be viewed as a triangulation of the euclidean
n-dimensional cube using the unique diagonal in each face all of whose direction cosines are
non-negative ! If edge e is the diagonal of a face of dimension 4 then the sign of e is (—1)2,

(2) The divisor lattices, Dy, of all divisors of a positive integer # with the parttal

L
order d, <d, whenever d; | d,. If n= iH1 p:"4 is the prime factorization of n, then D=

1]
‘fI C"’i and S(D,) is a triangulation of the ’111 a4 k-cubes contained in a k-rectangle.
-] ]
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(3) Trees which are those posets whose Hasse diagram is a tree in the graph theore-
tical sense. '

Other signed posets include the families of hooklength posets (Sagan 1979), posets asso-
ciated with polynomial sequences of binomial type (Joni, Rota and Sagan 1981), (Sagan 1984)
and posets of Coxeter groups under the Bruhat ordering (Verma 1971). In the next section
we shall characterize those signed posets P whose signed graph is isomorphic to H(P) ifself
and also those posets corresponding to balanced signed graphs.

3. Characterizations.
TueoreM 1. The following are equivalent for any signed poset P

(i) The interval [x.y] is a chain for all x < y in P,
(i) S(P) = —H(P),
(iii) Al the edges of S(P) are negative.

Proof. (i) implies (ii). We have already shown that E(H(P)) C E(S(P)) for any
poset P. If [x,y] isa chain and x does not cover y, then u(x,y)=0 so the only edges in S(P)
are those where x covers y.

(i) implies (iii) at once.

(iii) implies (1). If the interval [x,y] is not a chain, pick a minimal non-empty sub-
interval [u,v] C [x,y] such that [#,u] isn’t a chain. Then there must be # 3 2 chains from
tov. Also all the chains are disjoint except at u and v since [,v] is minimal. Thus we have
(u,v)=n—12>1, a contradiction, 0

Theorem 1 raises the question : Which signed graphs having all negative edges come
from a poset P? As such a graph would be isomorphic to —H{(P), we have the next state-
ment immediately.

COROLLARY 2. Let S be a signed graph with only negative edges. If S=S(P) for some
poset P, then S hds no triangles. 0

Although the condition that S be triangle free is necessary for a negative signed graph to
arise from a poset, it is not sufficient. - The falsity of the converse to Corollary 2 is shown by
the following counterexample, pointed out to us by L. Babai.

Example. If S is a negative signed graph with S=S(P) for some poset P then we can
orient its edges so that (x,y) is an arc whenever y covers x. In view of Theorem 1 (i) and the
asymmefry law for posets, there can be at most one directed path between any two vertices.
However, we will produce a triangle free graph S such that any otientation of the graph
contains the subgraph
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Let » be a positive integer and set [n] i={1,2, ... . 1}. The vertex set of S will be
V=[n] X [5] and the edges will be of the form
(%) (7,i+1) where x,y e[n], i e[5]

and addition is taken mod 5. This graph is called the lexicographic product of C, by K;
and clearly has no triangles.

Orient S arbitrarily. For =12 ..,5 let V;= V x{i} and denote by E; the edges
oriented from ¥, to Visy. We may . assume, possibly after relabeling, that both IE,| and
1Bl > n3/2. For I=L2 ..., 1, let A;=(y ¢ V2 | ((.1), v) is an arc} (see Figure 1a) ; hence

Figure 1

2 14, 1=\E,1>n3/2. . (D
img

Also 18,1 2 n%/2 assures us that there is a w « Vg with at least /2 edg

es directed towards it,
Solet B={ve ¥V, | (v,w) is an arc} (see Figure 1a) ; hence !

| BI > a2, ®

Now assume there is no subgraph of the form
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It follows that for all i

14, N Bl £ 1 v )
since otherwise we can have tbe situation of Figure 1b. Also for all i # j we have

A; N 4;=¢ or A4y U 4=V,

since otherwise the situation of Figure lc appears. However if 4; U Ay==V, for any pair
i,] then (9) implies that | B 1 < 2 which contradicts (8) for n >> 5. But if the 4, are pair-
wise disjoint then
n
Z | A; | € n, which contradicts (7) for n > 2 O
f=1
Among all signed graphs, the family of balanced ones is particularly interesting.
A signed graph S is balanced if ¥(S) can be partitioned into at most two subsets C, and C,
called coalitions such that every positive edge joins two vertices in the same coalition. All
the signed graphs of Figure 1 are balanced except for the one corresponding to Py, -

The posets corresponding to balanced signed graphs can be characterized using a
generalization of the conventional concept of rank. A poset P is ranked if there exists a
partition Pg, Py, .-, Py of P such that the elements of P; are covered only by elements of
Py, If xeP;, we say x has ranki and write r(x)=1. A poset is ranked mod 2 if there
exists a partition P,, P, of P such that the elements of P, are covered only by elements of
P,., where iand i+1 are taken modulo two. If x € P, we say that x has rank { mod 2 and
write rg(x)=i. Clearly if 2 is ranked then P is ranked mod 2 but not conversely.

Tueomem 3. Let P be a signed poset. Then S(P) is balanced if and only if P is ranked
mod 2, and for all x, y ¢ P

p(x,y)==(—-1)"’(x)—r’(y) or 0.

Proof. This equivalence follows easily from the definitions above. O

More generally a signed graph S is clusterable if there is a partition C,, Cy, ... , Cqy of
¥(S) into coalitions such that, again, every positive edge joins two vertices in the same coali-
tion. If n is the smallest number of possible sets in the partition then § is said to have
cluster number n. The corresponding notion for posets, ranked mod #, is defined as expected.
Note that a poset is ranked if and only if it is ranked mod # for all 7. We have the next

observation immediately.
TaroreM 4. If P is a signed poset which is ranked mod n and

41 or O if x, y have the same rank

ﬂ(JC,y)-'={
—1 or 0 if x, y have different ranks
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then S(P) is clusterable with cluster number at most n. 0

Unfortunately the converse is not true. For example, S(P,) is clusterable with cluster
number 3 but Py is not raitked mod n for any n.

4. Open problems. We have constructed a function S from signed posets to signed
graphs. There are many unanswered questions about this map.

(1) What is the image of S(.), i.e., for which signed graphs S do we have S(£)=S for
some poset P? Note that if S is a negative graph which is both triangle-free and balanced
then such a poset clearly exists

{2) For those graphs § in the image of S(.), what is the number of posets P with
S(P)=S87? This is really four questions depending on whether the posets or the graphs are
labeled or unlabeled. It is easy fo see that

(@) if S is anegative signed labeled tree, then the number of labeled posets mapping
to S is 2E AL

(b) if P*is the dual of P then S(P)=S(P*); hence if P = P* then | S(S~1(P) 1 > 2,

(3) The domain of S(.) can be extended to all posets P if we permit the use of signed:
multigraphs (where there can be more than one edge between two vertioes). Hence if
u(x.y)=m then there will be lml edges of the same sign as m between x and y in S(P). All
the questions asked above can now be reformulated in this context,
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