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AN F-SPACE WITH TRIVIAL DUAL AND
NON-TRIVIAL COMPACT ENDOMORPHISMS

BY
N. J. KALTON AND J. H. SHAPIRO'

ABSTRACT

We give an example of an F-space which has non-trivial compact endomorph-
isms, but does not have any non-trivial continuous linear functionals.

1. Imtreduction

The object of this paper is to give an example of an F-space (complete,
metrizable linear topological space) which has non-trivial compact endomorph-
istns but does not have non-trivial continuous linear functionals. An additional
curious property of this space is that its algebra of continuous endomorphisms
is not transitive; that is, there exist non-zero vectors f and g in the space such
that no continuous endomorphism takes f to g.

In the opposite direction, D. Pallaschke [6] and P. Turpin {9] have recently
shown that certain F-spaces of measurable functions already known to have
trivial duals, in particular the spaces Lp([(),ll for 0< p <1, have no non-
trivial compact endomorphisms.

Our example is constructed from the classical Hardy space H” of analytic
functions (0< p < 1), and relies heavily on the existence of certain rather
explicitly determined proper, closed, weakly dense subspaces recently disco-
vered by P. L. Duren, B. W. Romberg, and A. L. Shields {2]. The necessary
background material is outlined in the next section, after which the example is
constructed.

We wish to thank Professor A. PeYczynski for posing to us the question of
whether such F-spaces could exist. In addition we are indebted to Professors
David A. Gregory and Peter D. Tavlor for a number of valuable conversations.
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2. Preliminaries on H”

A good reference for the material in this section is Duren’s book [1],
especially chapters 2 and 7. In what follows, A denotes the open unit disc in the
complex plane. For 0 < p < = the Hardy space H" s the collection of functions
f analytic in A for which

; i e - 1p
Hﬂlﬂ = sup [5‘7;' L ]f(?‘é" )] d!} < oo,

A=Er<l

H" is a linear space over the complex numbers, and if 1= p < then -, is a
norm which makes it into a Banach space. For 0 < p < 1, the case of interest to
us, the p-homogeneous functional | - [} is subadditive and induces a translation-
invariant metric

dif.g)=If-gl

on H” which makes it into an F-space {1. p. 37, corollary 2].
When 0 < p < 1 the functional ||-{l; is not homogeneous, and the topology it
induces on H? is not locaily convex [5]. We will nevertheless refer to ||+ as the

norm on H°, and call the corresponding topology the norm topology. Note
that the positive multiples of the unit ball

{feHd: |flo=n

form a local base for the norm topology: and therefore a subset B of H” is
(topologically) bounded if and only if it is norm bounded:

sup{[f[;: f€B}<ee.

ProrosiTION 2.1.  Every bounded subset of H” is a normal family (0 <p <),

Proor. We have the estimate
lfH =27 fla -1z (2€8)
for f € H” (1, p. 36}, so if B is a bounded subset of H", then the members of B

are bounded uniformly on compact subsets of A. It follows that B is a normal
family {7, theorem 14.6, p. 272].
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Let x denote the restriction to H” of the topology of uniform convergence
on compact subsets of A. It is well known that « is locally convex and
metrizable.

Prorosrmion 2.2.  The closed unit ball of H” is k-compact (0 <p <o),

Proor. Since k is metrizable it is enough to show that each sequence in the
closed unit ball I/ of H” has a subsequence x -convergent to an element of U.
Suppose (f.) is a sequence in U, Since U is a normal family (Proposition 2.1)
there is subsequence (f.) and an analytic function f on A such that f=
k —lim f,. For 0=r <1 the sequence (f,) converges to f uniformly on the
circle |z |=r, hence

I [ . .1 0 .
E;L H(re")[Pdt zttm% f | (re') |7 dt =1,

from which it follows that [[f||, =1. Thus f € U and the proof is complete.
One of the most important facts about H” spaces is that foreach f in H" the
radial limit

f*(e")= lim f(re")

R

exists for almost every real ¢ {1, theorem 2.2, p. 17], and moreover

1 " ity ip
(2.h Il =§L [f*(e™)" dt

[1, theorem 2.6, p. 21]. A function g analytic in A is called an inner function if
[gl|=1on A, and g*(e”) =1 a.e. It follows from Eq. (2.1) that for g inner the
multiplication map f-+gf is an isometry on H?, so its range gH" is a closed
subspace. H, moreover, g is non-trivial (i.e. g# 1), then the Canonical
Factorization Theorem [1, theorem 2.8, p. 24] shows that gH” is a proper
subspace of H”. We can now state a result of Duren, Romberg, and Shields
which provides the key to our example.

THEOREM 2.3. [2,theorem 13, p. 53]. There exists a non-trivial inner function
q such that qH? is dense in weak topology of H” for 0<<p < 1.
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We remark that every non-locally convex F-space has a closed subspace that
is not weakly closed. By [2, theorems 16 and 17, p. 59] an equivalent assertion is
that the extension form of the Hahn-Banach theorem fails in every non-locally
convex F-space; and Kalton [3, corollary 5.3] has recently proved this latter
assertion. We do not know if every non-locally convex F-space must have a
proper, closed, weakly dense subspace. According to Theorem 2.3, such
subspaces exist in H” (0 < p < 1). They have also been found in certain other
F-spaces of analytic functions, as well as in {* (0<p <1) (8].

3. The example

Suppose E and F are linear topological spaces. A linear transformation
T:E—F is said to be compact (or completely continuous) if there is a
neighborhood of 0 in E whose image under T is compact in F. It is easy to see
that every compact linear transformation is continuous, and that the composi-
tion of a compact and a continuous linear transformation (in either order) is
again compact.

The collection of continuous linear functionals on E is called the dual of E,
denoted by E’. If E’ = {0} we say F has trivial dual. An endomorphism of E is
a linear transformation of E into itself. We now state our main result.

Tueorem 3.1.  There is an F-space with trivial dual which has non-trivial
compact endomorphisms.

The proof will require some preliminaries. In particular we need a certain
topology on H” intermediate between « (the topology of uniform convergence
on compact subsets of A) and the norm topology. This topology, denoted by B,
is the strongest topology on H" that agrees with « on every norm bounded
subset. 1t is easy to see that such a topology exists: we simply declare a set to
be B-open (respectively B-closed) if its intersection with every bounded set B
is relatively «-open (respectively x-closed) in B. It is easy to see that these
“B-open” sets actually satisfy the axioms for a topology. Since a subset of H”
is bounded if and only if it is norm bounded, if we wish to decide whether a set
is B-open or B-closed, then we need only consider its intersection with every
positive (or even positive integer) multiple of the closed unit ball.

Since B is stronger than the Hausdorff topology . it is itself Hausdorf.
Since the closed unit ball of H” is «-compact (Proposition 2.1), it 1s also
B-compact. Finally, 8 is weaker than the-norm topology of H', since it is
weaker on bounded sets. To summarize:
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ProrosiTion 3.2. B is a Hausdorff topology on H” intermediate between «
and the norm topology. The closed unit ball of H” is B-compact (0 < p <o),

1t will be important for us to known that f is actually a vector topology —a
fact we have not assumed in advance. We give a proof modelied after that of
the Banach-Dieudonné theorem [4, sec. 2.2, pp. 211-212].

ProrosiTioN 3.3. R is a vector topology.

Proor. For brevity we will refer to a « -closed « -neighborhood of zero as an
admissible neighborhood. We denote the closed unit ball of H” by U. It is easy
to check that the collection of all sets of the form

Ga.1) m (paU + V.)

where {(p.) is a real sequence with 0=p,-»>x=, and {(V.) is a sequence of
admissible neighborhoods. is a local base for a vector topology 8’ on H” (in
fact, it follows from the work of Wiweger[10, sec. 2.3, p. 52],that 8’ 1s the
strongest vector topology on H” agreeing with « on bounded sets). We are
going to show that 8' = §.

To see that B’ = B, suppose B is a bounded subset of H”, so B C kU for
some k > 0. Suppose N is a 8’-neighborhood of zero of the form (3.1). Then
whenever p, = k we have

p.U+ V., 2kUDB,
S0
BNN=Bn N (pU+V,)=BNW

Pk

where
W= M (p.U+ Vo)

pa=k
is a k -neighborhood of zero. Thus B’ agrees with k¥ on bounded sets, so 8’ = .
In the other direction, suppose A is a 3-open set containing the origin. We
claim that there exists a sequence { V) of admisible neighborhoods such that

for each integer n = 1:

n

(3.2) aUnN ) [(k—NHU+ Vi]C A

k=1

Then the 8'-neighborhood of zero
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6{w_nu+w1

will be contained in A, completing the proof.
We obtain the sequence ( Vi) by induction. Since g = k on U we know there
is an admissible neighborhood V,; such that

UNV,CUNACA,

and this is just inequality (3.2) for n = 1. So suppose Vi, -, V, are admissible
neighborhoods satisfying (3.2). We want to find V.., so that V,,---.V,..; also
satisfy (3.2). Suppose we cannot; that is, suppose

(3.3) m+DUN (A [(k=DU +VilNaU + VINA# ¢

for each admissible neighborhood V (here A denotes the complement of A in
H"). Since A is B-open and (r + DU is B-compact, the set (n + DU N A‘ s
B-compact, hence «-compact. It follows from the x-compactness of U that
«lU + V is k -closed for every admissible neighborhood V. Thus the left side of
(3.3) is, for each admissible V, a non-void «-closed subset of the x-compact
space (n + 1)U. It follows easily from (3.3) that the family of all these left sides
has the finite intersection property, and hence a common point: that is,

(3.4) (n+hU A () Ik=DU+V,10 0 U+ VINAT# S,

where V ranges over all admissible neighborhoods. Now the x-compactness of
nU guarantees that Ny (nU + V)= nU {4; theorem 5.2 (v), p. 35], so (3.4)
reduces to

nun;ﬁuk—nu+vuﬂA‘#¢

which contradicts (3.2). This completes the proof.
We note in passing that this proof uses only the fact that H” is a Hausdorff
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locally bounded linear topological space, and « is a Hausdorff vector topology
for which each norm bounded set is relatively compact. That is, we have really
proved:

PrOPOSITION 3.3'.  Suppose E is a Hausdorff locally bounded linear topolog -
ical space and x is a Hausdorff vector topology on E for which each norm
bounded subset of E is relatively compact. Then the strongest topology that
agrees with k on each norm bounded set is actually a vector topology.

Finally we need to know that certain norm-closed subspaces of H" are also
B-closed.

ProrosiTiON 3.4.  For every inner function q the subspace qH" is B-closed in
H?.

Proor. Let U denote the closed unit ball of H". It is enough to show that
U N gH* is k-closed in H”. So suppose (f.) isasequencein U N gH", f& H”,
and f = k — lim f,. Now there exists a sequence (h,) in H® such that f, = gh,
for each n; and since

Tl =Hfull, =1

we have (h,) C U. Since U is k-compact (Proposition 2.1) there is a subsequ-
ence (h,) which is x-convergent to some h in U. Consequently

gh =k ~limgh,, = k ~limf,, = f,

so f&€ U N gH”, and the proof is complete.

ProoF OF THeoreM 3.1. Fix 0<p < 1. By Theorem 2.3 we can choose a
non-trivial inner function g such that the (proper) closed subspace gH” is
weakly dense. Let Ex denote the quotient linear topological space H"/qH",
where H* has its norm topology. Since gH? is norm closed in H", Ey is
Hausdorff: in fact it is complete and metrizable. Since gH" is weakly dense in
H?, the quotient space En has trivial dual {2, corollary 1, p. 53]

Let E; denote the quotient linear topological space H”/qH", where H” has
the B-topology. Es is Hausdorff since gH” is B-closed (Proposition 3.4). Now
Ex and E, are the same linear space H” /gH"®, but with different topologies. Itis
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not difficult to see that the topology of E, is weaker than that of E, since the
3 -topology is weaker on H” than the norm topology. In particular the identity
map jug: Ex— Es is continuous, and Eg also has trivial dual.

Let U denote the closed unit ball of H” and let = denote the quotient map
taking H” onto H” /[gH”. Then = is continuous when viewed as a map of H" in
its norm topology onto E., and also when viewed as a map of H” in the
B-topology onto E,. In addition, V = w(U) is the closed unit bail of En. and it
is a compact subset of E. since U is B-compact in H”. Thus the identity map
jng 1 Ex — Ej takes the closed unit ball of En onto a compact subset of E,, and
is therefore a compact linear transformation.

Now any vector topology can be represented as the least upper bound of a
family of pseudo-metric topologies [4. section 6, problem C, p. 51-521. In
particular there is a pseudo-metric d on E, that induces a (not necessarily
Hausdorff) vector topology weaker than g, yet different from the indiscrete
topology. Let E, denote E; equipped with this new topology: then the identity
map jpa: Es —> Ea is continuous. Let F denote the closure of {0}in E,. Then F is
a proper, closed subspace of E.: and it is not difficult to see that the guotient
space E./F is a non-trivial, metrizable linear topological space.

Since the quotient map p: E.-— E./F is continuous, 50 is its composition
with je«. Recall that the identity map jaxs:Enx— Ey is compact; thus the
composition S = pojsa°jnp IS a non-trivial compact linear map taking Ex
onto the (necessarily incomplete) linear metric space Eu/F. Let Eu be the
completion of E,/F. Then E. is an F-space. and 5 can be regarded as a
non-trivial compact linear transformation from En into Ewn. Let E = Ex®Ey
and define T: E—~=FE by

Tix,y)=(0,5x) (x &€ En, ¥y & Eun).

Then E is an F-space since Ex and Ey are, and T is a non-trivial compact
endomorphism of E.

It remains to show that E has non-trivial dual. We have already observed
that Ex has trivial dual, as does E,. Since E, is just E; in a weaker topology, it
too has trivial dual, as does its quotient E,/F. Thus Eu, which is the completion
of E./F also has trivial dual, hence so does E = Ey @®Ewx. This completes the
proof.

The space E that we have constructed has a further curious property. A linear
topological space is said to be transitive if for each pair f, g of non-zero vectors
there is a continuous endomorphism of the space which takes f to g. For
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example, it is easy to see that any linear topological space whose dual separates
points is transitive; while the direct sum of a space with trivial dual and its
scalar field is not transitive. Pelczynski has observed that a transitive linear
topological space with non-trivial compact endomorphisms must also have
non-trivial dual. This result is stated and proved in [6, theorem 1.2, p. 125} for
real scalars. The essential feature of the proof is an application of the Riesz
theory of compact operators, which holds as well for complex scalars [4,
chapter 5, problems A and B, pp. 206-207).So Pekczynski’s result and its proof
as given in [6] hold in the complex case, and we obtain from it and Theorem 3.1
the following:

CoroLLary. There exists a non-transitive F-space with trivial dual.

We note in closing that the space E constructed in Theorem 3.1 can be
chosen to be locally bounded. To see this, let us fix 0 <p < I and revert to the
notation used in the proof of Theorem 3.1. Since the topology 8 on H? has a
local base of absolutely p-convex sets, so does the quotient space E, (a subset
S of a real or complex linear space is absolutely p-convex if ax + by € S
whenever x,y €5 and |a |* + b | = 1). The “Minkowski functional” (cf. [4, p.
153} of such a neighborhood is subadditive and absolutely p-homogeneous, and
one of these functionals can be used to induce the pseudo-metric d. It follows
quickly that the metric on E, is also induced by a subadditive, p- homogeneous
functional, hence E, is locally bounded. Now Ex is locally bounded by the
definition of the quotient metric, hence so is the direct sum E = Exy@®Ew, and
our assertion is proved.

Added December 2, 1974. After this paper was submitted P. Turpin pointed
out to us that Proposition 3.3 is a special case of a result of 1.. Waelbroeck
(Topological  vector Spaces and Algebras, Springer Lecture Notes in
Mathematics, No 230, Proposition 6.2, p. 48).
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