EXTENSION OF LINEAR FUNCTIONALS ON F-SPACES WITH
BASES

By Jozu H. Srariro

1. Introduction. A linear topological space iz said to have the Hahn-Banach
Extension Property (HBEP) if every continuous linear functional on a closed
subspace has a continuous linear extension to the whole space. Duren, Romberg,
and Shields {4, §7] give an example, due to A, Shuchat, of a non-locally convex
gpace with the HBEP; and ask if this can happen in a non-locally convex
F-space. Here we show that the answer is negative for F-spaces with a basis.
For this class of spaces, then, the HBEP and local convexity are equivalent,
The proof is in §3, with the necessary background material oceupying §2.

2. Background material. An F-space iz a complete linear metric space
over the real or complex field. If F is an F-space, there is a complete trans-
lation invariant metric d in F for whieh the functional ||z|} = d{z, 0) is an
F-norm, that is:

(a) z]l 2 Oforallzin E, and |lz}] = 0l z = 0,
(b) [l + wil < =il + Hull,

{¢) [lexll < llz|| whenever ja| < 1,

{d) lim,-.. ||x/n}] = 0 for each z in E,

(e) the metrie d(z, v} = ||z — yl| is complete.
Conversely, if & is a real or complex linear space, and ||-|| is an F-norm on E,
then d{z, ¥) = llz — yl| defines a metric under which E becomes an F-space

{see Kelley-~Namioka [5; 52]). We say two F-norms on E are equivalent if
they induce the same topology on Z.

The interior mapping principle and the principle of uniform boundedness
hold for F-spaces (see Dunford and Schwartz {3, Chapter 11}).

From now on, F denotes an F-space whose topology is induced by an F-norm
{1-1. E'is the (continuous) dual of E. A sequence [¢.}5 in E is called a basis
if to each z = & there corresponds a unique sequence (£.(x}]5 of scalars such
that the series 2 .o, £.(t)e, converges in E to z. The coordinate functionals
£, are clearly linear, and are continucus (see Corollary to Proposition 1), A
sequence (e, in F is called baste if it is a basis for the closed subspace it spans,
The following result is essentially proved by Arsove [1].

Provosrrion 1. Suppose {e)5 s a basis in E. Then
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0<n<m

|zl = sup

defines an F-norm on E equivalent fo [[-]].

Froof. FEquivalence follows from the inlerior mapping prineiple, once we
know that ||-|[, is an F-norm. Clearly ||-i], satisfies (a)~{c). Arsove(l, Theorem

2] shows that it satisfies (e), so it remains to verify {(d). If z e B and ¢ > 0,
we can choose N > 0 such that

E ék(x)eg <C 2/2

k= A
whenever L > M > N. Thus

Z ﬁk(x)ek < ¢/2.

kwmN+1
Since ||- |1, satisfies (¢}, we also have

2 Ele/mel| < e/2,

ko +1
80
N
He/nll: < Elz/n)ew . +e¢2 =12 -
=0
[|-1l is an F-norm, so whenever 0 < L < M £ N and n is sufficiently large,
we have
Af M
Ewm ko £

whereupon

N

> Eulz/ne, 1, < ¢/2,

kw0
and

Ha/nlh < e /7

The new norm has the following useful property:

© |5 ewe

from which it is easy to obtain

CoroLrary 1. If {e,l% 1s a basis for E, then the coordinale functionals are
continuous.

Prorosimion 2. If {e,]5 s a basis for E, {mii., 18 a stricly increasing
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sequence of non-negative integers, {o.}% s a sequence of scalars, and

Tk 44

. fkm Z a,‘eﬂ#{) (k=0|11210“)1

fimng 1
then {f.] is a basic sequence.
Proof. We may suppose ||-|| has property (1). Buppose z is in N, the
closed subspace spanned by {fi}. Then z = lim =z, , where

Tq == kzoﬁmkfk (nmor 1!2! "')s
and for each n, 8..; = 0 except for finitely many k. From (1)
H(ﬁn.k - 5191.*):{3:‘! 5 “xm - In”)

so from the eontinuity of sealar multiplication {8,.:}o., is a Cauchy sequence
k=0,1,2,---). Let

Bk = lim 63.& (k = Or 1) 21 "')'

Tk

Suppose . + 1 < j < neyy . Thenforn 2> 0,
£xa) = EBaifs) = Bunki(fa),

BO
£:(x) = lim &(z,) = BE{f0)-
1t follows that
__Zliff(fﬁ)e; = f .-le Elfoe; = Bife.

Thus for each z ¢ N, insertion of parentheses in the convergent series z ==
Z?_O tAx)e; vields the convergent series x = Zf_g Bifx - This representation
of z is clearly unique, so {f.} is 2 basis for N. /7

We shall need the notion of Mackey fopology. Let X be a real or complex
linear space and ¥ a subspace of its algebraic dual. Then there is a (unique)
strongest loeally convex topology on K for which Y is the {continuous) dual.
This topology is called the M ackey topology of the dual pair (X, ¥), and is denoted
by m{X, Y} I5, §18]. A locally convex topology r is called a Mackey topology
if 7 = m(X, X'), where X' is the rdual of X. Every pseudometrizable locally
convex topology is Mackey [5; 210]. A consequence of this is

Prorosimion 8. Let E be an F-space and let V, denote the convex hull of
{zeE: ||zl <07’} (0 = 1,2, --+). Then {V,]7 is a local base for m(E, E').
Consequently m{E, E') is weaker than the original topology and is pseudomelrizable.

Proof. 1t is easy to check that {V,]5 is a local base for a vector topology =
on & weaker than the original topology 7o . Thus every r-eontinuous linear
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functional is r,-continuous. Suppose A is r-continuous. Then A is bounded
on some neighborhood [z = E: |jz|l < n7'}, and has the same bound on its
convex hull V, . Therefore X is r-continuous. Thus the r-dual of E is E'.
Since r has a countable local base, it is pseudometrizable, hence Mackey. Thus
T = m(E, ). /1!

Tt is easy to see that m(F, E') is metrizable if and only if B’ separates points
of E. In particular this happens when E has a basis, since the coordinate
functionals are continuous and separate points. In the other direction, if
E =170, 1) (0 < p < 1), with

i = [ wara

then the convex hull of {fe E: llf]l < »7'} (n = 1, 2, -+-) is F itself. Thus
m(¥, E) is the indiserete topology, and E' = {0}.
We close thig section with a technical lemma.

Levma 1. Suppose B has a basis {e.} and ||-|| has property (1). Let {V.}
be as in Proposition 3. Then for each n, the Minkowskt functional p. of V. also
has property (1).

Proof. GivenzeE, 0 <k <1, and p = p, we must show that

o3 0e,) < 2@,

I

If @ > p(x) thena’ze ¥V, , s0

N
a-‘:lx = Z }\;.7:.- y

gl
where \; = 0, Y.V A = Land flzl <0 (¢ = 1,2, ---, N). Thus
1 N H
o’ %51‘(3)3:‘ = f:; R;(;Ef{we)e;)'

From (1) we have

I
| Sgzdel] < el <a™ @E=1,2,---,N),
imk
50 @ Z:‘-k tA{x)e; e V.. Therefore

o S tiee,) <« /1

3. The Hahn-Banach Extension Property. In this section we show that
the HBEP fails in every non-locally convex F-space with a basis. We isolate
the crucial element of the proof:

ProposITION 4. Suppose (1.} 15 a basic sequence in E with
pit i Comdhuncun & i a Froyr, “ /Zawn;{? Lean elle, Jiwéfc»wj
%;Mfiw"? 3 ARGetins () Conat - m%; aes
9 els 2o B s o T oaeidy 2
4y g;ﬁ —3 e pu (8,53

1) {@hug}ﬁéﬁw e



EXTENSION OF LINEAR FUKNCTIONS 643
(2) inf fiful} = 6 >0
and
* (3) imf, =0 in m{E, EY.

Then there is a continuous linear functional on the closed linear span of {f,} that
cannot be extended to E.

Proof. Let N be the closed linear span of {f,}. I fe N, thenf = 3 o.(Nf.,
where {¢,} are the coordinate functionals for {f,}.) We elaim that Tim ¢,(f) = 0
(n — ). If not, there is an integer N > 0 and a subsequence {n,} of non- Z4%/¢s{un <o
negative integers such that BBt b -

lewD| >N k=01, --0). ;’f-@-ﬂu% ¥

W Tty c:i, s
Let |- |l; be an F-norm in N equivalent to ||-|| and having property (1) relative | "= et
to the basis {f,}. Then whenevern < n, < m, Tl

m Feo Ul
.! Z%(ﬁfﬁ
1=n

EaSitn

2 H@m(ﬁfﬂt“l

1
2> Nl ls
2 N_l H.fm”l 2 NMI 61 H

where 8, = inf {|f,ll, > 0. This contradicts the convergence of 2, «.(Nf, ,

proving our assertion.
ﬁﬁl D V4 DD - -+ bethe local base for m(E, E’) described in Proposition 3,

and let p. be the Minkowski functional of ¥V, . Then p, < p, € +++, and
limpt(fn) =0 (k = 1!2: “')9
so there is a subsequence {n,} such that
htm pk(fﬂh) = 0.

Choose a sequence of scalars {\,} = I with

(4) Pl # O(pu(fa)) & — =)
Since ¢,(f) — 0 for each fe N,

M) = Zhedd (e

defines a linear functional on N which is continuous b&ﬁhe principle of uniform
boundedness. D't aved  vpr b, Con #5lomal K;Z«‘«:C?

We claim A has no continuous linear extension to E. Tor if X were such an
extension, there would be an integer N > 0 and a constant € > 0 such that

IMz)] < Cpyle)  (zeB).
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But A{.) = A{Jf.) = M\, hence
Al = O(pn{f).

Fork > N, p. > p., hence

P\mi = O(pk(fm)):
which eontradiets (4). /17

TurorEM 1. If E is a non-locally convex F-space with a basis, then E does
not have the HBEP,

Proof. Let {e.] be the basis and suppose ||-{| obeys (1). In view of Propo-
gition 3 m, = m(E, E') is strictly weaker than the original topology r on Z.
We will show that there is a sequence {3,} of scalars such that | D 5., 86,1
is m-Cauchy but not r-Cauchy. Temporarily granting this, we find an in-
ereasing sequence {n;} of non-negative integers such that

nk +1

fo= 20 Ber  (k=0,1,2 )
satisfies {2) and {3) of Proposition 4. {f.} is a basic sequence by Propesition 2,
go it follows from Proposition 3 that its closed linear span has a continuous
linear functional that cannot be extended to the whole space.

To finish the proof, suppose no such sequence of scalars exists. We elaim
m is complete. Suppose {z,} is m-Cauchy. Since the coordinate functionals
are m-continuous, there is a sequence {o;] of scalars such that

lim §(z,) = a; G=012--).
Let {p.} be the m-seminorms mentioned in Temma, 1, so each p e {p.} obeys (1).
Consequently
H 1 1
P{Zi oz,-e,-) < p(Zﬁ lo; — E,-l(scn)}ej) + p(Zﬁ £z e,-)
i= iw i
1

< tim p 3 IhGa) - 50le) + 2 T 8i2e,)

e ek

< lim inf p{z, ~ 2. + p(E Er(ﬂln)e;)‘

e

Since x,} is m-Cauchy, the first term on the right can be made small by choosing
n large. Since y, #;(z.)e; is 7-convergent, hence m-convergent, the second
term can be made small for all sufficiently large & and I Therefore
{2 % o ase; ] ism-Cauchy. By the hypothesis of this paragraph it is r-Cauchy,
hence both 7 and m convergent to some z ¢ £, Now

plx — z,) = sup. 73(?;; lo; — E,-(:v,,)}ef)
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< lim sup sup p(Z [Eiwn) —~ Ef(fva)]es)

oD

. < lYimsup p(Xn — 2.,
and it follows that z = m-lim z, . Thus m is complete, and an application
of the interior mapping principle shows that the identity mapping taking
(E, 7) onto (E, m) is a homeomorphism. This contradicts the fact that 7 is
not locally convex. /17
We conjecture that the HBEP fails for every non-locally convex F-space.
In such a space there is always a sequence which tends to 0 in the Mackey
topoiogy but not in the original topology. If it were true that every such
sequence contained a basic subsequence, the conjecture would follow imme-
diately from Proposition 4. The following result has been obtained by Bessaga
and Pelezyhiski [2] for lecally bounded spaces, that is, spaces having a bounded
neighborhood of 0. Such spaces are metrizable, in fact p-normable for some
0 < p <1 (see ).

Prorosrrion 5. Suppose E is a locally bounded F-space with o basis. Let
{£.] be the coordinale functionals for this basis and d the metric in E. If {f.} is
a sequence n ¥ with

inf d(f, ,0) > 0 and lim&(f,) = 0

{2 =20,1,2 ---), then |f.} contains a basic subsequence.
An immediate consequence of Propositions 4 and 5 is

Taporem 2. Suppose E is an F-space embedded in a locally bounded F-
space with a basis. If K is not locally convex, then K does not hove the HBEP,
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