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Abstract. We study the intersection theory of punctured pseudoholomorphic

curves in 4-dimensional symplectic cobordisms. Using the asymptotic results
from [22], we first study the local intersection properties of such curves at the

punctures. We then use this to develop topological controls on the intersection

number of two curves. We also prove an adjunction formula which gives a
topological condition that will guarantee a curve in a given homotopy class is

embedded, extending previous work of Hutchings from [14].

We then turn our attention to curves in the symplectization R×M of a 3-
manifold M admitting a stable Hamiltonian structure. We investigate controls

on intersections of the projections of curves to the 3-manifold, and we present

conditions that will guarantee the projection of a curve to the 3-manifold is
an embedding.

Finally we consider an application concerning pseudoholomorphic curves in
manifolds admitting a certain class of holomorphic open book decomposition,

and an application concerning the existence of generalized pseudoholomorphic

curves, as introduced in [7].
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1. Introduction

In this paper we will study the intersection theory of punctured pseudoholomor-
phic curves which arise in symplectic field theory ([4, 2]). Positivity of intersections
for pseudoholomorphic curves has been an important tool in applications of pseudo-
holomorphic curves to 4-dimensional symplectic topology. First stated by Gromov
in [6], rigorous proofs were subsequently provided by McDuff [17], and Micallef
and White [18]. Put simply, positivity of intersections states that isolated inter-
sections between two curves contribute positively to their intersection number, and
that singular points contribute positively to the self-intersection number of a single
curve. These local statements translate into useful global topological statements for
closed pseudoholomorphic curves. If u : (Σ, j) → (M,J) and v : (Σ′, j′) → (M,J)
are pseudoholomorphic maps with closed connected domains and nonidentical im-
ages, then the intersection number [u] · [v] is always nonnegative and [u] · [v] = 0 if
and only if u and v do not intersect. Moreover, if u : (Σ, j) → (M,J) is a simple
closed pseudoholomorphic map, then u satisfies the inequality

(1.1) [u] · [u] + 〈c1(TM, J), [u]〉+ χ(Σ) ≥ 0

and equality occurs if and only if u is an embedding.
While the local results on the intersections of pseudoholomorphic curves apply

to punctured curves appearing in symplectic field theory, coming up with general-
izations of the global results is subtle due to the fact that the intersection number
is no longer homotopy invariant when the domains of the curves are noncompact.
Indeed, in a pair of smooth homotopies of curves, intersections can escape or appear
at the ends. One way to deal with this issue is to perturb one of the curves being
considered near the ends, and compute the intersection number between one curve
and the perturbation of the second curve. Given a sufficiently precise description
of the asymptotic behavior, it is then possible to compute this intersection number
in terms of the intersection number of the original curves and behavior near the
punctures. This idea was studied by Kriener in [16], where the self-intersection
number of a single embedded half-cylinder asymptotic to a multiply covered or-
bit is considered. These ideas were further pursued by Hutchings in [14] and [15],
which establishes an index inequality for curves in symplectizations. This index
inequality, important for the foundations of embedded contact homology, gives a
topological criterion that will guarantee a curve is embedded and has asymptotic
behavior which satisfies a technical “admissibility” condition.

The goal of the present paper is to further develop some of the techniques used in
[14], and study algebraic controls on intersections and embeddedness of punctured
pseudoholomorphic curves. We first give a complete study of the local “asymptotic
intersection theory,” made possible by the asymptotic descriptions of curves in
[22]. With this in hand, we introduce the notion of the “generalized intersection
number” of two smooth proper maps from punctured Riemann surfaces which are
asymptotic at the punctures to cylinders over periodic orbits. From the results
we prove about asymptotic intersection theory, it will follow that the generalized
intersection number of two distinct pseudoholomorphic maps is always nonnegative,
and is equal to zero if and only if the curves do not intersect and the curves do
not have any tangencies at infinity, where the notion of tangency at infinity can
be made precise in terms of the asymptotic description from [22]. Moreover, we
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state a generalization of the adjunction formula (1.1) in terms of the generalized
intersection number.

Having addressed these things we specialize to the case of a cylindrical cobordism
R×M equipped with an R-invariant almost complex structure. Here we relate the
number of intersections of two curves with the number of intersections of each curve
with the asymptotic limits of the other, and the winding of the curves around their
asymptotic limits. This allows us to state a set of necessary and sufficient conditions
that will guarantee that the projection of the two curves to the 3-manifold M do
not intersect. These same techniques used with adjunction formula for punctured
curves, allows us to give conditions that will guarantee the projection of a curve
to the three manifold is embedded. These results and ideas are useful in the study
of finite energy foliations, as studied in [12]. As an application of these results, we
prove a result about the contact homology of a 3-manifold admitting a special class
of holomorphic open book decompositions.

Finally, we consider so-called generalized pseudoholomorphic curves as intro-
duced in [7]. We show that the generalized intersection product can be used to
develop topological obstructions to the existence of these curves.

Acknowledgements. This paper has its roots in work I began as a graduate
student, and I would like to thank my advisor, Helmut Hofer, for his encouragement
and support.

During the writing of this paper, I have had many in-depth conversations about
this material which have helped to clarify my thinking and have shaped the exposi-
tion here. In particular I would like to thank Barney Bramham, Michael Hutchings,
Al Momin, Eric Schoenfeld, and Chris Wendl for helpful conversations and for their
interest in this work.

2. Background and main results

2.1. Hamiltonian structures. In this section we describe a structure defined on
3-manifolds that is central to all we do here. For further background and examples,
see [2] and [5].

Let M be a compact oriented 3-manifold equipped with a pair H = (λ, ω) where
λ is a 1-form and ω is a 2-form on M . Assume that

(H1) λ ∧ ω is a volume form on M .

Then ω must be rank 2 everywhere, and thus defines a line bundle `ω ⊂ TM by

`ω = ∪p∈M (p, kerωp)

where kerωp is the kernel of the linear map ωp : TMp → T ∗Mp defined by v 7→
ωp(v, ·). The condition (H1) implies that λ is non-zero on `ω, that the hyperplane
distribution defined by

ξH := kerλ

is everywhere transverse to `ω, and that ω is nondegenerate on ξH. If we define a
vector field XH to be the unique section of `ω satisfying λ(XH) = 1, we see that
condition (H1) implies that the pair (λ, ω) determines a splitting

(2.1) TM = (`ω, XH)⊕ (ξH, ω)

of the tangent space of M into a framed line bundle (`ω, XH) and a symplectic
2-plane bundle (ξH, ω).

If we further require that
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(H2) ω is closed

then we can conclude that any section v ∈ Γ(`ω) of `ω, in particular XH, satisfies

Lvω = ivdω + d(ivω) = 0

so the flow of any section of `ω preserves ω. Finally, if we require that

(H3) dλ vanishes on `ω,

then we find that
LXHλ = iXHdλ+ d(iXHλ) = 0

so λ is preserved by the flow of XH, and hence the splitting (2.1) is also preserved
by the flow of XH. Following [5], we will refer to a pair H = (λ, ω) satisfying (H1)–
(H3) as a stable Hamiltonian structure on M . We will refer to the vector field XH
arising from such a structure as the Reeb vector field associated to H, and we will
refer the the hyperplane bundle ξH as the hamiltonian hyperplane field associated
to H.

In what follows the dynamics of the vector field XH will play an important role,
and the periodic orbits of XH will be of particular interest. For our purposes, it
will be convenient to think of periodic orbits as maps parametrized by S1 ≈ R/Z
equipped with the basepoint 0 ∈ R/Z. More precisely, for τ > 0 we define the set

P̃0
τ (M,H) of simple τ -periodic orbits of XH to be the set of all γ ∈ C∞(S1,M),

such that γ is an embedding and γ satisfies the equation

dγ(t)∂t = τXH(γ(t))

for all t ∈ S1. We will denote the set of all simple periodic orbits by

P̃0(M,H) := ∪τ>0P̃0
τ (M,H).

We note that each set P̃0
τ (M,H) is invariant under the S1-action on C∞(S1,M)

defined by c ∗ γ(t) = γ(t+ c) for c ∈ R/Z and γ ∈ C∞(S1,M). We define the space
of unparametrized simple periodic orbits to be

P0(M,H) = P̃0(M,H)/S1

to be the space of S1-orbits in P̃0(M,H). For some of the results we present
(particularly the asymptotic results in Section 3.1.3) the choice of basepoint 0 ∈
R/Z will be important for precise statements. Otherwise, we will generally want
to think of two simple orbits as the same if they belong to the same class in

P0(M,H) = P̃0(M,H)/S1. In what follows, we will use the same notation for

an orbit γ ∈ P̃0(M,H) and its equivalence class in P0(M,H), and if we write
γ2 = γ1 for two simple periodic orbits, the “=” should be interpreted modulo the

S1-action on P̃0(M,H) unless otherwise stated.

Given a γ ∈ P̃0(M,H), we define for any m ∈ Z \ {0} a map γm ∈ C∞(S1,M)
by

γm = γ ◦ pm
where pm : S1 → S1 is the m-fold covering map defined by pm([t]R/Z) = [mt]R/Z.
We refer to γm as a multiply covered periodic orbit with multiplicity m, and we
denote the set of all periodic orbits (simple and multiply covered) by

P(M,H).

Let ψ : R×M →M be the flow of the XH, i.e.

ψ̇t(x) = XH(ψt(x))
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for all (t, x) ∈ R×M . If γ ∈ P̃0(M,H) is a simple T -periodic orbit, then it follows
from the fact that LXHλ = 0 and LXHω = 0 observed earlier that dψmT |ξH

γ(0)
∈

Sp(ξHγ(0), ωγ(0)) for all m ∈ Z. We say that the periodic orbit γm is nondegenerate

if dψmT |ξH
γ(0)

does not have 1 in its spectrum. We will say a Hamiltonian structure

H = (λ, ω) is nondegenerate if all periodic orbits of the corresponding vector field
XH are nondegenerate. If γm is nondegenerate we say that

• γm is hyperbolic if dψmT |ξH
γ(0)

has real eigenvalues, and that

• γm is elliptic if dψmT |ξH
γ(0)

has complex eigenvalues.

We will furthermore say that

• γm is even if it is hyperbolic and dψmT |ξH
γ(0)

has positive eigenvalues, and

• γm is odd if it is either elliptic, or if it is hyperbolic and dψmT |ξH
γ(0)

has

negative eigenvalues.

The designation of a periodic orbit as even or odd will correspond to the parity of
the Conley-Zehnder index of that orbit (see Section 3.1.1).

2.2. Almost complex cobordisms. Let (M,H) be a manifold equipped with a
stable Hamiltonian structure H = (λ, ω). We would like to define a preferred class
of almost complex structures on R×M which interacts in a specific way with the
Hamiltonian structure. First recall that given any symplectic vector bundle (E,ω),
a complex structure J on E is said to be compatible with ω if the bilinear form
defined by

gJ(·, ·) = ω(·, J ·)
is a metric on E. It is a well know fact that the space of all such J is nonempty
and contractible in the C∞ topology (see e.g. [13]).

Recalling now that (ξH, ω) is a symplectic vector bundle, we define the set
J (M,H) to be the set of complex structures on ξH which are compatible with
ω. Given a J ∈ J (M,H), we can extend it to an R-invariant almost complex

structure J̃ on R×M by requiring

J̃∂a = XH and J̃ |ξH = J

where a is the parameter along R. We will refer to the almost complex structure J̃
on R×M defined in this way as the standard cylindrical almost complex structure
associated to J ∈ J (M,H).

Let W be a 4-manifold without boundary. We define a positive Hamiltonian
structured end to be data Ẽ+ = (E+,Φ+,M+,H+) where E+ ⊂ W is an open
subset of W , M+ is a closed (possible disconnected) manifold equipped with a
stable Hamiltonian structure H+, and Φ+ : E+ → R+ × M+ is a diffeomor-
phism. Similarly we will define a negative Hamiltonian structured end to be data
Ẽ− = (E−,Φ−,M−,H−) where everything is as before except that Φ− is now
a diffeomorphism mapping E− to R− × M−. A 4-manifold W equipped with
(possibly empty) cylindrical ends Ẽ± = (E±,Φ±,M±,H±) will be called a cobor-
dism of Hamiltonian structures or a manifold with Hamiltonian structured ends if
W \E+∪E− is a compact manifold with (possibly empty) boundary. If a manifold

W with Hamiltonian structured ends Ẽ± = (E±,Φ±,M±,H±) is equipped with an

almost complex structure J̄ , we say that J̄ is compatible with the ends Ẽ± if it is
conjugated to a standard cylindrical almost complex structure on the ends, that is,
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if dΦ± ◦ J̄ = J̃± ◦dΦ+ for some J± ∈ J (M±,H±). We will refer to (R×M, J̄) as a

cylindrical cobordism if J̄ = J̃ is the standard cylindrical almost complex structure
associated to J ∈ J (M,H) for some Hamiltonian structure H on M . In practice,
we will usually suppress the set E± and diffeomorphism Φ± and just refer to the
data (R±×M±,H±) as a cylindrical end, or (R±×M±,H±, J±) when we wish to
specify the almost complex structure on the ends.

Now, let (W1, J̄1) and (W2, J̄2) be cobordisms of Hamiltonians structures equipped
with compatible almost complex structures, and assume that W1 is equipped with
negative cylindrical end (R− ×M1,H1, J1) and that W2 is equipped with positive
cylindrical end (R+×M2,H2, J2). We say that (W1, J̄1) can be stacked on (W2, J̄2)
if M1 = M2 = M , H1 = H2, and J1 = J2. In this case, we define the concatena-
tion W1 �W2 of W1 and W2 to be the C0-manifold obtained by compactifying the
negative end of W1 with {−∞} ×M , compactifying the positive end of W2 with
{+∞}×M and making the obvious identification of {−∞}×M with {+∞}×M .
This operation can obviously be generalized to an arbitrarily long list of cobordisms{

(W1, J̄1), (W2, J̄2), . . . , (WN , J̄N )
}

provided of course that the negative end of Wi

matches with the positive end of Wi+1.
We remark that in the setting of symplectic field theory, the cobordisms consid-

ered are usually equipped with a symplectic form, and it is assumed that the almost
complex structure is compatible with the symplectic form. In some cases, these con-
ditions allow one to obtain topological controls on energy, and this control in turn
is important for compactness theorems necessary to define the algebraic structure
of the theory. However, here we are primarily concerned with intersection-theory-
related algebraic invariants which only require an almost complex structure with
the correct asymptotic behavior. Therefore, we will not make any assumptions
about the behavior of the almost complex structure away from the cylindrical ends.

2.3. Asymptotically cylindrical maps and pseudoholomorphic curves. Let
(M,H = (λ, ω)) be a closed manifold equipped with a stable Hamiltonian structure,

and let γ ∈ P̃0(M,H) be a simple τ -periodic orbit of XH. For some m ∈ Z \ 0,
consider the map

γ̃m : R× S1 → R×M

defined by

γ̃m(s, t) = (mτs, γm(t)) ∈ R×M.

We will refer to such a map as a cylinder over the periodic orbit γm, or simply as an
orbit cylinder. The reader should note that for any J ∈ J (M,H), orbit cylinders

have J̃-invariant tangent spaces.
In this paper, the main objects we will study are maps from punctured Riemann

surfaces to a cobordism of Hamiltonian structures with the maps asymptotic at the
punctures to orbit cylinders. More precisely, we consider a quadruple (Σ, j,Γ, ũ)
where (Σ, j) is a closed Riemann surface, Γ ⊂ Σ is a finite set, and

ũ = (a, u) : Σ \ Γ→ R×M

is a smooth map. We say that ũ is asymptotically cylindrical over γm at z∗ ∈ Γ if
there exists a holomorphic embedding

φ : [R,∞)× S1 ⊂ C/iZ→ Σ \ Γ
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satisfying lims→∞ φ(s, t) = z∗ so that the maps

ṽc : [R,∞)× S1 → R×M

defined by

ṽc := (a(φ(s+ c, t))−mτc, u(φ(s+ c, t)))

satisfy

lim
c→∞

ṽc = γ̃m|[R,∞)×S1 in C1([R,∞)× S1,R×M).

The map ũ is said to be a smooth asymptotically cylindrical map if ũ is asymptot-
ically cylindrical at each z ∈ Γ over some periodic orbit γmzz . In this case we will
say that γmzz is the asymptotic limit of ũ at z. Note that if mz > 0 (resp. < 0)
then the R component of ũ approaches +∞ (resp. −∞). If mz > 0, we will refer
to z as a positive puncture of ũ, and similarly if mz < 0 we will refer to z as a
negative puncture of ũ. When convenient we will write Γ = Γ+ ∪ Γ− to indicate
how Γ decomposes as positive punctures, Γ+ and negative punctures Γ−.

We will denote the space of smooth asymptotically cylindrical maps in R ×M
from a genus g surface with n punctures by

C∞g,n(M,H),

and we will let

C∞(M,H) := ∪g>0 ∪n≥0 C
∞
g,n(M,H)

denote the space of all smooth asymptotically cylindrical maps in R×M .
In a similar manner, we can define asymptotically cylindrical maps in a 4-

manifold W with Hamiltonian structured ends E± = (R± × M±,H±). Let ũ :
Σ \ Γ → W be a smooth map, and assume that each z ∈ Γ has an open neigh-
borhood Uz ⊂ Σ so that the image ũ(Uz \ {z}) of the punctured neighborhood lies
entirely within one of the cylindrical ends E+ or E−. Then we can think of the
map ũ|Uz\{z} as a map to R×M±, and define what it means for ũ to be asymptot-
ically cylindrical over a periodic orbit as we did above. The map ũ is then said to
be asymptotically cylindrical if it is asymptotically cylindrical at each z ∈ Γ over
some periodic orbit γmzz . For asymptotically cylindrical maps in a cobordism, the
punctures approaching periodic orbits γmzz in the positive cylindrical end R+×M+

are always positive punctures (i.e. have mz > 0), and similarly those punctures at
which ũ approaches a periodic orbit γmzz in the negative end R−×M− have mz < 0.
We will denote the space of genus-g, n-punctured asymptotically cylindrical maps
in W by

C∞g,n(W,H+,H−)

and the space of all asymptotically cylindrical maps in W by

C∞(W,H+,H−).

Now, let (W1, J̄1) and (W2, J̄2) be almost complex cobordisms, and assume
that W1 is equipped with negative cylindrical end (R− ×M,H, J) and that W2

is equipped with positive cylindrical end (R+ ×M,H, J) so that we can form the
concatenation W1 �W2. For i ∈ {1, 2}, let

ũi : Σi \ (Γi,+ ∪ Γi,−)→Wi

be asymptotically cylindrical maps. Assume that there exists a bijection

i : Γ2,+ → Γ1,−
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so that if ũ2 as asymptotic at z ∈ Γ2,+ to γm, then ũ1 is asymptotic at i(z) ∈ Γ1,−
to γ−m. Then we can form the concatenated map

ũ1 � ũ2 : Σ1 � Σ2 \ (Γ+
1 ∪ Γ−2 )→W1 �W2

where Σ1 � Σ2 is the topological surface formed by circle compactifying Σ1 at its
negative punctures, circle compactifying Σ2 at its positive punctures, and then
identifying each negative circle with its corresponding (under the bijection i) pos-
itive circle in a way that makes ũ1 � ũ2 a continuous map. Note that when the
asymptotic data contains multiply covered orbits, Σ1�Σ2 is only well-defined up to
Dehn twists unless further choices (namely so-called asymptotic markers) are made.
The specifics won’t be important here, so we won’t address this issue any further.
We will refer to a map ũ1 � ũ2 constructed in this way as a smooth asymptotically
cylindrical building in W1 �W2.

Consider an asymptotically cylindrical map (Σ, j,Γ, ũ) ∈ C∞(W,H+,H−) and
assume that W is equipped with an almost complex structure J̄ compatible with
the cylindrical ends. If the map ũ satisfies the equation

(2.2) dũ ◦ j = J̄ ◦ dũ
we say that (Σ, j,Γ, ũ) is an asymptotically cylindrical pseudoholomorphic map. We
define an equivalence relation on punctured pseudoholomorphic maps by saying
that (Σ, j,Γ, ũ) is equivalent to (Σ′, j′,Γ′, ũ′) if there exists a biholomorphic map

φ : Σ′ → Σ

so that Γ = φ(Γ′) and ũ ◦ φ = ũ′. An equivalence class of maps [Σ, j,Γ, u] will be
referred to as an asymptotically cylindrical pseudoholomorphic curve. We will use
the notations

M(W, J̄,H+,H−) and M(M,H, J)

to denote the set of asymptotically cylindrical pseudoholomorphic curves in (W, J̄)

or (R×M, J̃) respectively, and similarly we will use

Mg,n(W, J̄,H+,H−) and Mg,n(M,H, J).

if we wish to specify the genus and number of punctures.
N.B. To simplify our language, we will henceforth simply use the term “pseu-

doholomorphic curve/map” when we are referring to asymptotically cylindrical
pseudoholomorphic curves/maps. The reader should always assume that all
pseudoholomorphic curves are asymptotically cylindrical unless stated
otherwise.

As with smooth asymptotically cylindrical maps, we can concatenate pairs (or
finite lists) of asymptotically cylindrical pseudoholomorphic maps into cobordisms
with matching ends, providing the asymptotic data match appropriately. Following
[2], we will call such maps pseudoholomorphic buildings.

2.4. Main results. Throughout this section, we will let (M,H = (λ, ω)) denote
a 3-manifold equipped with a nondegenerate stable Hamiltonian structure, and we
will let (W, J̄) denote an almost complex 4-manifold equipped with cylindrical ends
E± = (R±×M±,H±, J±) where the stable Hamiltonian structuresH± are assumed
to be nondegenerate.

The main results of this paper are concerned with the intersection properties of
pseudoholomorphic curves in 4-manifolds with Hamiltonian structured cylindrical
ends. Due to the noncompactness of the domains of the curves we consider, the
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problem of understanding intersection behavior becomes particularly subtle in the
case that the curves have multiple ends which approach coverings of the same orbit,
or, when considering self-intersection problems, in the case that an end approaches
a multiple cover of an orbit. Indeed, while all intersections (or self-intersections
and singularities) must be isolated by the results of Micallef and White in [18], it
is not immediately obvious why the algebraic intersection number of two curves -
computed by summing local intersection indices - must be finite since it is conceiv-
able that a pair of curves could have a sequence of intersections approaching the
punctures. Similarly, it is not clear that a single curve couldn’t have a sequence
of self-intersections approaching a puncture at which the curve is asymptotic to a
multiple cover of an orbit or approaching a pair of punctures at which the curve is
asymptotic to coverings of the same orbit. While we will see that the asymptotic re-
sults of [22] imply that the intersection number of two curves or the self-intersection
index of a single curve must in fact be finite (see Corollaries 3.10 and 3.11 below),
an additional unavoidable complication is that these quantities may not be sta-
ble under homotopies since intersections could run in or out of the punctures at
shared asymptotic limits. We thus seek to determine to what degree these quanti-
ties are topologically controlled by the homotopy classes of the maps in C∞(M,H)
or C∞(W,H+,H−) (depending on the target manifold).

As a first step towards finding intersection-related topological invariants of a pair
of maps with common asymptotic limits we perturb one of the maps in a prescribed
direction near the ends. This idea was studied locally for a single embedded pseu-
doholomorphic half-cylinder in [16] and further pursued in [14], [21], and [15]. More
precisely, let Φ denote a choice of trivialization of the plane-field ξH along every
simple periodic orbit. Then given two maps ũ, ṽ ∈ C∞(W, J̄,H+,H−), we define
the relative intersection number of ũ and ṽ by iΦ(ũ, ṽ) by

iΦ(ũ, ṽ) = int(ũ, ṽΦ)

where ṽΦ is the map obtained by perturbing ṽ near the punctures in a direction de-
termined by the trivialization Φ, and where “int” denotes the algebraic intersection
number computed by perturbing ũ and ṽΦ on compact subsets of their domain so
that they are transverse, and then counting intersections with sign. It is well known
that the resulting count is independent of the compactly supported perturbation
of ũ and ṽΦ since ũ and ṽΦ are disjoint outside of a compact set. Thus the relative
intersection number computed in this way depends on the homotopy classes of ũ
and ṽ in C∞(W, J̄,H+,H−), and the homotopy class of the trivialization Φ.

While the relative intersection number gives a topological invariant of a pair of
asymptotically cylindrical maps, its relationship to the algebraic intersection num-
ber of two (unperturbed) pseudoholomorphic curves is not clear, and in particular
it’s not immediately clear whether or how it can be used to find a bound on the
algebraic intersection number of two pseudoholomorphic curves. We will see below
that through careful consideration of the relative asymptotic behavior of the curves
from [22], such a bound depending only on the homotopy classes of the maps can
be obtained by adding an appropriate quantity to the relative intersection number
which balances the trivialization dependence. Motivated by the local analysis in
Section 3, we define the generalized intersection number [ũ] ∗ [ṽ] of two asymp-
totically cylindrical maps (Σ, j,Γ, ũ), (Σ′, j′,Γ′, ṽ) ∈ C∞(W,H+,H−) as follows:
assuming that ũ is asymptotic at z ∈ Γ to a cylinder over γmzz and similarly that ṽ
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is asymptotic at w ∈ Γ′ to a cylinder over γmww we define [ũ] ∗ [ṽ] by

(2.3) [ũ] ∗ [ṽ] = iΦ(ũ, ṽ) +
∑

(z,w)∈Γ×Γ′

γz=γw
mzmw>0

mzmw max
{
bµΦ(γmzz )/2c
|mz| ,

bµΦ(γmww )/2c
|mw|

}

where µΦ(γmz ) denotes the Conley-Zehnder index of the periodic orbit γmzz (see
[8] and Section 3 below), and where b·c denotes the greatest integer function. Note
that the sum here is taken over all pairs of punctures with the same sign where
the maps in question are asymptotically cylindrical over coverings of the same
underlying simple (unparametrized) periodic orbit.

The following theorem summarizes the main properties of the generalized inter-
section number.

Theorem 2.1 (Properties of the generalized intersection number). Let W , W1

and W2 be 4-manifolds with Hamiltonian structured cylindrical ends, and assume
we can form the concatenation W1 �W2. Then:

(1) If (Σ, j,Γ, ũ) and (Σ′, j′,Γ′, ṽ) ∈ C∞(W,H+,H−) are asymptotically cylin-
drical maps then the generalized intersection number [ũ] ∗ [ṽ] depends only
on the homotopy classes of ũ and ṽ in C∞(W,H+,H−).

(2) For any (Σ, j,Γ, ũ) and (Σ′, j′,Γ′, ṽ) ∈ C∞(W,H+,H−)

[ũ] ∗ [ṽ] = [ṽ] ∗ [ũ].

(3) If (Σ, j,Γ, ũ), (Σ′, j′,Γ′, ṽ), (Σ′′, j′′,Γ′′, w̃) ∈ C∞(W,H+,H−) then

[ũ+ ṽ] ∗ [w̃] = [ũ] ∗ [w̃] + [ṽ] ∗ [w̃]

where “+” on the left hand side denotes the disjoint union of the maps ũ
and ṽ.

(4) If ũ1 � ũ2 and ṽ1 � ṽ2 are asymptotically cylindrical buildings in W1 �W2

then
[ũ1 � ũ2] ∗ [ṽ1 � ṽ2] ≥ [ũ1] ∗ [ṽ1] + [ũ2] ∗ [ṽ2].

Moreover, strict inequality occurs if and only if there is a periodic orbit
γ so that ũ1 has a negative puncture asymptotic to γm, ṽ1 has a negative
puncture asymptotic to γn, and both γm and γn are odd orbits.

In item (4) above, the possibility of strict inequality has to do with the fact
that at an odd orbit (with a fixed multiplicity) the eigenvectors of the asymptotic
operator controlling the direction of approach of negative ends must have strictly
greater winding (computed relative to the direction of the Reeb flow) than those
controlling the direction of approach of positive ends. The relevant details from
[10], [8] are reviewed in section 3.1 below. In some applications it is convenient
to modify the generalized intersection number to include information about shared
odd orbits so that one has a product which is level-wise additive, i.e. always satisfies
equality in item (4) above. This approach is taken by Momin in [19] to study a
variation on contact homology where only curves contained in the complement of
a prescribed collection of elliptic orbits are included in the differential.

One of the motivations for defining the generalized intersection number as we
did is the next theorem, which generalizes the fact that two closed curves with-
out common components have a nonnegative homological intersection number, and
that the intersection number vanishes only if the two curves do not intersect. The
total asymptotic intersection index δ∞(ũ, ṽ) mentioned in the theorem is defined in
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Section 3 below. For the moment the reader should know that it is a nonnegative
quantity defined for pairs of pseudoholomorphic curves having no common com-
ponents that can be thought of as a measure of the degree of tangency at infinity
between the two curves. Here, we say the two maps ũ and ṽ have no common
components if there is no component of the domain of ũ which has image identical
to that of a component of the domain of ṽ.

Theorem 2.2. Let (W 4, J̄) be an almost complex cobordism with cylindrical ends
(R± ×M±, J±,H±), and let [Σ, j,Γ, ũ], [Σ′, j′,Γ′, ṽ] ∈ M(W, J̄,H+,H−) be pseu-
doholomorphic curves in W with no common components. Then

(2.4) [ũ] ∗ [ṽ] = int(ũ, ṽ) + δ∞(ũ, ṽ),

where int(ũ, ṽ) is the algebraic intersection number of ũ and ṽ, and δ∞(ũ, ṽ) is the
asymptotic intersection index of ũ and ṽ. In particular

[ũ] ∗ [ṽ] ≥ int(ũ, ṽ) ≥ 0,

and

[ũ] ∗ [ṽ] = 0

if and only if ũ and ṽ don’t intersect, and the total asymptotic intersection index
vanishes, i.e. δ∞(ũ, ṽ) = 0.

As an immediate corollary to this, we can conclude that if a homotopy class
of maps with connected domains in C∞(W,H+,H−) has a negative generalized
self-intersection number, then that homotopy class can contain at most one pseu-
doholomorphic curve for a given compatible almost complex structure.

We note that in contrast to the case of closed pseudoholomorphic curves, posi-
tivity of the generalized intersection number of two given curves does not guarantee
that the two curves intersect. This is because the algebraic intersection number of
two punctured curves is not a homotopy-invariant quantity, and intersections be-
tween two pseudoholomorphic curves can disappear out the punctures. The degree
to which intersections can escape or appear at the punctures is however topolog-
ically controlled: even though both quantities on the right hand side of (2.4) can
vary under homotopies of curves, their sum is topologically determined, and this
fact coupled with the nonnegativity of those quantities allows a topological bound
on the total count of intersections and “tangencies at infinity.” One might consider
this fungibility of intersections and “tangencies at infinity” as motivation to think of
tangencies at infinity, or “asymptotic intersections,” as being somehow equivalent
to actual intersections. This viewpoint is further supported by the fact that consid-
ering weighted fredholm theory arguments as in [11, 3], one would expect that the
space of pairs of curves (ũ, ṽ) with δ∞(ũ, ṽ) > 0 should have positive codimension
in the universal moduli space of pseudoholomorphic curves.

We next state a generalization for punctured curves of the adjunction formula
(1.1). We first establish some notation and terminology. Let (Σ, j,Γ, ũ) ∈ C∞(W,H+,H−)
be an asymptotically cylindrical map, and assume that at z ∈ Γ, u is asymptotic
to the periodic orbit γmzz . A choice of complex trivialization of the hamiltonian

plane-field distribution (ξH
±
, J±) along each γz induces a complex trivialization of

the pull-back bundle (ũ∗TW, J̄) since on the cylindrical ends we have

(TW, J̄) ≈ (R⊕ RXH± ⊕ ξH
±
, J̃±) ≈ CXH± ⊕ (ξH

±
, J±).
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Given such a choice of trivialization, Φ, we can define the relative chern number
cΦ1 (ũ∗TW ) which is the obstruction to extending over Σ \ Γ the trivialization of
(ũ∗TW, J̄) → Σ \ Γ that has been chosen at the ends (see [14, 21] or section 4.2.1
below for a precise definition). We define the total Conley-Zehnder index µ(ũ) of
the map ũ by

µ(ũ) := 2cΦ1 (ũ∗TW ) +
∑
z∈Γ

µΦ(γmzz ).

It follows from change of trivialization formulas given below for the relative first
chern number and the Conley-Zehnder index that the total Conley-Zehnder index
does not depend on the choice of trivialization.

Next, assuming γ is a simple periodic orbit of a Reeb vector field we define the
spectral covering number of the periodic orbit γm by

σ̄(γm) = gcd(m, bµΦ(γm)/2c).
We observe that this quantity does not depend on a choice of trivialization since
changing the trivialization changes bµΦ(γm)/2c by an integer multiple of m (see
comments following Lemma 3.4). With u as in the previous paragraph, we then
define the total spectral covering number σ̄(u) of u by

σ̄(u) =
∑
z∈Γ

σ̄(γmzz ).

We observe that the total spectral covering number of a map depends only on its
asymptotic limits, and not on the map itself.

We now state a generalization of (1.1) involving the generalized intersection
number. The quantity δ(ũ) in equation (2.5), which we call the self-intersection
index, is a nonnegative integer-valued quantity which records information about
double points and singular points, and is zero if and only if u is an embedding (see
[18] and section 4.2.2 below). The asymptotic self-intersection index δ∞(ũ) of ũ
is defined in section 3.2 below. For the moment, the reader should know that it
is a nonnegative, integer-valued quantity, defined for a simple pseudoholomorphic
curve that can be thought of as a measure of the degree of self-tangency at infinity.
Here, we say a pseudoholomorphic curve is simple if it does not factor through a
branched cover.

Theorem 2.3. Let [Σ, j,Γ, ũ] ∈M(W, J̄,H+,H−) be a connected pseudoholomor-
phic curve, and assume that ũ is simple. Then

(2.5) [ũ] ∗ [ũ]− 1
2µ(ũ) + 1

2#Γodd + χ(Σ)− σ̄(ũ) = 2[δ(ũ) + δ∞(ũ)],

where #Γodd is the number of punctures of ũ with odd Conley-Zehnder indices. In
particular,

[ũ] ∗ [ũ]− 1
2µ(ũ) + 1

2#Γodd + χ(Σ)− σ̄(ũ) ≥ 0

and equality occurs if and only if ũ is embedded and the asymptotic self-intersection
index of ũ vanishes, i.e. δ∞(ũ) = 0.

Note that in contrast to the case of closed pseudoholomorphic curves and (1.1),
positivity of the left-hand side of equation (2.5) does not guarantee a curve is
not embedded. This is because the self-intersection index δ(ũ) is not, in general,
topologically determined for punctured curves since double points can escape out
the ends in families of curves. However, much like in the discussion following
Theorem 2.2 above, this theorem shows that the sum of the self-intersection index
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and the asymptotic self-intersection index is topologically determined, and that
double points escaping out the ends are traded for self-tangencies at infinity. Thus,
we might think of having a positive asymptotic self-intersection index as being
somehow equivalent to having double points or singular points, a point of view
which is again supported by the fact that the fredholm theory suggests that curves
with δ∞(ũ) > 0 should form strata of positive codimension in the universal moduli
space.

Results closely related to Theorem 2.3 have been proved by Hutchings in [14]
and [15]. Due to the specific application being pursued in those papers, no theorem
equivalent to 2.3 appears. Equation (18) in Remark 3.2 of [14] identifies embedded
curves, but not in terms of quantities that are topologically determined. Still, the
appropriate analogue of that result to the present context is the key step in prov-
ing Theorem 2.3. On the other hand, the index inequality in Theorem 1.7 of [14]
gives a purely topological condition that guarantees a curve will be embedded, but
only identifies those curves whose asymptotic data satisfy an additional “admissi-
bility” condition. Theorem 2.3 above, can thus be thought of as being intermediate
between these two results.

2.4.1. Cylindrical cobordisms. In this section we specialize to the case of a cylindri-
cal cobordism (R×M, J̃) equipped with an R-invariant almost complex structure J̃
arising from a compatible J ∈ J (M,H) for some nondegenerate stable Hamiltonian
structure H = (λ, ω) on M .

An important (and well-known) observation is that space of curvesM(M,H, J)
is equipped with an R-action, defined by translating the R-coordinate of the given
curve. More precisely, if [Σ, j,Γ, ũ] is a pseudoholomorphic curve, and we write
ũ = (a, u) ∈ R × M , then [Σ, j,Γ, ũc] where ũc(z) := (a(z) + c, u(z)) is also a
pseudoholomorphic curve. Furthermore, in the cylindrical case, the way the almost
complex structure is defined allows the pseudoholomorphic curve equation (2.2) for
the map (Σ, j,Γ, (a, u)) to be rewritten,

(2.6)
u∗λ ◦ j = da

πξH ◦ du ◦ j = J ◦ πξH ◦ du

where πξH : TM = RXH ⊕ ξH → ξH is the projection of TM onto ξH determined
by the splitting (2.1). Thus, the M -component, u, of a curve in R×M determines
R-component, a, up to a constant.

As an immediate consequence of the existence of the R-action, Theorem 2.2, and
the homotopy invariance of the generalized intersection number, we can conclude
that if a connected curve [Σ, j,Γ, ũ] has no component whose image lies in an orbit
cylinder, then

[ũ] ∗ [ũ] = [ũ] ∗ [ũc] ≥ 0

so such a curve must have a nonnegative self-intersection number.
Since, in the cylindrical case, the projection of the curve to the 3-manifold con-

tains all of the information (up to an R-shift), it is not surprising that general-
ized intersection number of two curves in R × M can be computed in terms of
3-dimensional invariants associated to the curves; namely we state a formula in
terms of the intersections between one the curves with periodic orbits which are
asymptotic limits of the other curve, and how the ends of the curves wind around
the periodic orbits (see Theorem 4.16 below). Moreover, since the formula we give
decomposes into a collection of nonnegative terms, this computation then allows
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one to deduce necessary and sufficient conditions for the generalized intersection
number to vanish, which we state in Corollary 4.17.

Part of the reason we seek to find conditions to characterize when the generalized
intersection number of two curves [Σ, j,Γ, ũ = (a, u)] and [Σ′, j′,Γ′, ṽ = (b, v)] ∈
M(M,H, J) is zero (or nonzero) is that [ũ] ∗ [ṽ] = 0 implies that the projections u,
v, of the maps to M don’t intersect provided that these maps have no components
projecting to identical images in M . Indeed, if we can find a z ∈ Σ and w ∈ Σ′ so
that u(z) = v(w) then we can find a c so that ũ(z) = ṽc(w), which in turn implies
that int(ũ, ṽc) > 0 and hence [ũ] ∗ [ṽ] = [ũ] ∗ [ṽc] ≥ int(ũ, ṽc) > 0 by Theorem
2.2. Thus the vanishing of the generalized intersection number gives a sufficient
conditions for the projection of the curves to the three-manifold to not intersect.
The vanishing of the generalized intersection number is not a necessary condition for
the projected curves to not intersect since it is possible for the algebraic intersection
number of ũ and ṽc to be zero for all c ∈ R, but still have [ũ] ∗ [ṽ] > 0, since
the asymptotic intersection index could be nonzero. However, in the R-invariant
setting, the asymptotic intersection number changes in a predictable manner when
R-shifting one of the two curves, and we are able to establish a set of necessary and
sufficient conditions for the two projected curves to not intersect.

Before stating the relevant theorem we discuss some of the more immediate
necessary conditions for the projected curves u and v to not intersect. We first
recall some facts from [10] and [8]. Namely, if a curve [Σ, j,Γ, ũ = (a, u)] does
not have any components with image lying in an orbit cylinder, then there is a
neighborhood of each puncture on which the map does not intersect any of its
asymptotic limits. Thus choosing a loop in one of these neighborhoods which winds
around the puncture once in a clockwise direction1, and choosing a trivialization Φ
of ξH along the orbit, we get a well defined winding number windΦ

∞(ũ; z) for each
z ∈ Γ. Moreover, it is shown in [8] (and reviewed in Lemma 3.13 below) that

windΦ
∞(ũ; z) ≤ bµΦ(γmzz )/2c

where we assume ũ to be asymptotic to γmzz at z ∈ Γ. If we consider a small
torus T 2

γz bounding a tubular neighborhood of γz and use the framing Φ to identify

H1(T 2
γz ) with Z ⊕ Z, the intersection of the projected map u with T 2

γz will be a

curve in the homology class (mz,windΦ(ũ; z)). If ṽ also has an end approaching γz
at w ∈ Γ′, the homology class of intersection of v with T 2

γz will then be given by

(mw,windΦ(ṽ;w)). Thus, if the projected maps u and v are to be disjoint, we must
have that the intersection number

(mz,windΦ(ũ; z)) · (mw,windΦ(ṽ;w)) = mz windΦ(ṽ;w)−mw windΦ(ũ; z)

is zero or equivalently

(2.7)
windΦ

∞(ũ;z)
mz

=
windΦ

∞(ṽ;w)
mw

.

1This convention agrees with that used in [8] for positive punctures, but is opposite that
used in [8] for negative punctures. What this means geometrically is that we compute windings
by traversing the orbit in a direction determined by the orientation of the boundary of the S1-

compactified punctured surface, while in [8] the convention is to compute windings by traversing
the orbit in the direction determined by the Reeb vector field. We use this convention because it
simplifies the statements of most of our results.
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Therefore, if the projections u and v don’t intersect, it is necessary that (2.7) holds
at any pair of punctures (z, w) ∈ Γ×Γ′ at which u and v are asymptotic to coverings
of a common orbit.

Next suppose that u intersects one of the asymptotic limits of v. Then one can
use the asymptotic results of [10] (or see Theorem 3.7 below) with the fact that
the orbit is a projection to M of a pseudoholomorphic curve in R ×M to argue
that u must intersect v. Thus if u and v don’t intersect, it must be the case that u
intersects none of the asymptotic limits of v, and vice versa.

As the following theorem shows, the necessary conditions we’ve just stated for
the projections of two curves to M to not intersect are also sufficient, and in fact
somewhat weaker conditions are sufficient.

Theorem 2.4. Let [Σ, j,Γ, ũ = (a, u)] and [Σ′, j′,Γ′, ṽ = (b, v)] ∈ M(M,H, J) be
pseudoholomorphic curves, and assume that no component of ũ or ṽ lies in in orbit
cylinder, and that the projected curves u and v do not have identical image on any
component of their domains. Then the following are equivalent:

(1) The projected curves u and v do not intersect.
(2) All of the following hold:

(a) The map u does not intersect any of the positive asymptotic limits of
v.

(b) The map v does not intersect any of the negative asymptotic limits of
u.

(c) If γ is a periodic orbit so that at z ∈ Γ, ũ is asymptotic to γmz and at
w ∈ Γ′, ṽ is asymptotic to γmw , then:

(i) If mz and mw have the same sign then

wind∞(ũ;z)
mz

≥ wind∞(ṽ;w)
mw

.

(ii) If mz < 0 and mw > 0 then γmz and γmw are both even orbits
and

windΦ
∞(ũ;z)
mz

= bµΦ(γmz )/2c
mz

= bµΦ(γmw )/2c
mw

=
windΦ

∞(ṽ;w)
mw

.

(3) All of the following hold:
(a) The map u does not intersect any of the asymptotic limits of v.
(b) The map v does not intersect any of the asymptotic limits of u.
(c) If γ is a periodic orbit so that at z ∈ Γ, ũ is asymptotic to γmz and at

w ∈ Γ′, ṽ is asymptotic to γmw , then

wind∞(ũ;z)
mz

= wind∞(ṽ;w)
mw

.

When two curves, [Σ, j,Γ, ũ] and [Σ′, j′,Γ′, ṽ] ∈ M(M,H, J), each have as an
asymptotic limit a cover of the same even periodic orbit, it is sometimes possible to
conclude that the generalized intersection number [ũ] ∗ [ṽ] is positive. Let γ denote
either a simple, even orbit or the double cover of an odd, hyperbolic orbit. In this
case it is possible to use the asymptotic description from Theorem 3.7 below to
define a notion of two curves approaching a cover of γ in the same direction. We
delay the precise definition to Section 4.3.4 because it is somewhat technical. The
following theorem then says that two curves approaching a cover of γ in the same
direction is a sufficient condition for a positive generalized intersection number.
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Theorem 2.5. Let γ be a periodic orbit satisfying the above assumptions, and let
[Σ, j,Γ, ũ = (a, u)] and [Σ′, j′,Γ′, ṽ = (b, v)] ∈ M(M,H, J) be connected pseudo-
holomorphic curves. Assume that at punctures z ∈ Γ and w ∈ Γ′, ũ and ṽ approach
a cover of γ in the same direction, and that there do not exist neighborhoods U of
z and V of w so that u(U \ {z}) = v(V \ {w}). Then

[ũ] ∗ [ṽ] > 0.

Just as it is of use to know when the generalized intersection number of a pair
of curves vanishes, it is of use to know when the generalized self-intersection num-
ber of a single curve [Σ, j,Γ, ũ = (a, u)] ∈ M(M,H, J) vanishes. Combining the
adjunction formula (2.5) with the previously referenced formula (4.19) for the gen-
eralized intersection number in terms of data associated to the projected curves,
we get a collection of conditions equivalent to the vanishing of the generalized self-
intersection number [ũ] ∗ [ũ], provided the map ũ is simple and doesn’t have any
components contained in an orbit cylinder (Corollary 4.25 below). From this result
we will see that under the stated assumptions, [ũ] ∗ [ũ] = 0 implies that ũ is an
embedding which projects to an immersion in M transverse to the flow of XH which
doesn’t intersect any of its asymptotic limits.

Combining this with the above discussion, we see that if ũ is furthermore con-
nected, then [ũ]∗ [ũ] = 0 implies that ũ doesn’t intersect any of its R-translates, and
thus that the projected curve u is an embedding (since it is an injective immersion
that never intersects any of its asymptotic limits). We can therefore conclude that
if the projected map u is not an embedding then [ũ]∗[ũ] > 0. As with the discussion
above of intersections of projections of curves to M , the converse is not true, since
it could be the case that [ũ]∗ [ũc] > 0, but still have int(ũ, ũc) = 0 for all c ∈ R\{0}.

However, again as above, the asymptotic intersection index of ũ and ũc changes
in a predictable manner as c varies, and we can use this fact to come up with
the following criteria for the map u to be an embedding. As with Theorem 2.4,
this result can be viewed as saying that certain subsets of the “obvious” necessary
conditions for u to be an embedding are also sufficient. In condition (4) below, the
relative asymptotic intersection number

iΦ∞([ũ; z], [ũ;w])

is a count of how many intersections appear between a neighborhood of z ∈ Γ and
a neighborhood of w ∈ Γ when ũ is perturbed near w in a direction determined by
a trivialization Φ of the asymptotic limit of ũ at w. More detail on this quantity
can be found in section 3.2 below.

Theorem 2.6. Let [Σ, j,Γ, ũ = (a, u)] ∈M(M,H, J) be a connected, simple pseu-
doholomorphic curve, and assume that ũ does not have image contained in an orbit
cylinder. Then the following are equivalent:

(1) The projected map u : Σ \ Γ→M is an embedding.
(2) The algebraic intersection number int(ũ, ũc) between ũ and an R-translate

ũc = (a+ c, u) is zero for all c ∈ R \ {0}.
(3) All of the following hold:

(a) u does not intersect any of its asymptotic limits.
(b) If γ is a periodic orbit so that u is asymptotic at z ∈ Γ to γmz and u

is asymptotic at w ∈ Γ to γmw , then
wind∞(ũ;z)

mz
= wind∞(ũ;w)

mw
.
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(4) All of the following hold:
(a) The map ũ is an embedding.
(b) The projected map u is an immersion which is everywhere transverse

to XH
(c) For each z ∈ Γ, we have

gcd(mz,wind∞(ũ; z)) = 1.

(d) If γ is a periodic orbit so that u is asymptotic at z to γmz and u
is asymptotic at w 6= z to γmw with mzmw > 0, then the relative
asymptotic intersection number of the ends [ũ; z] and [ũ;w] satisfies

iΦ∞([ũ; z], [ũ;w]) = −mzmw max
{

windΦ
∞(ũ;z)
mz

,
windΦ

∞(ũ;w)
mw

}
.

We note that the conditions of this theorem simplify somewhat if every asymp-
totic limit of ũ is geometrically distinct. In particular, condition (3) implies that
a simple curve with geometrically distinct asymptotic limits projects to an embed-
ding in M if and only if the projection doesn’t intersect any of its asymptotic limits.
For planes, this generalizes Theorem 1.2 from [8].

As an application of some of these ideas, we can prove a result about the contact
homology of a manifold admitting a holomorphic open book decomposition satis-
fying some additional assumptions. Recall that an open book decomposition of a
3-manifold M is a pair (L, π) where L ⊂ M is a link, and π : M \ L → S1 is a
fibration, the fibers π−1(θ) of which are embedded surfaces bounded by L. In this
case the link L is referred to as the binding of the open book decomposition, and
the fibers of the fibration are referred to as pages of the open book decomposition.

Now consider M equipped with a stable Hamiltonian structureH and compatible
complex multiplication J ∈ J (M,H). We say that (M,H, J) admits a holomorphic
open book decomposition, if M admits an open book decomposition (L, π) so that
the link L is comprised of elliptic periodic orbits of the vector field XH, and the
pages are projections of J̃-holomorphic curves in R ×M . We say a holomorphic
open book decomposition is stable if the pseudoholomorphic curves which project
to pages are genus 0, have only positive simple punctures, and have Fredholm index
2.

Theorem 2.7. Assume that (M,H, J) admits a stable, holomorphic planar open
book decomposition. Let [Σ, j,Γ, ũ = (a, u)] ∈ M(M,H, J) be a pseudoholomorphic
curve, and assume that the image of u is not a page of the open book decomposition.
Then at least one of the following is true:

(1) At least one of the positive punctures of ũ limits to an orbit that is not a
binding of the open book decomposition.

(2) At least one of the positive punctures of ũ limits to a multiple cover of a
binding orbit of the open book.

This result in particular immediately implies the following corollary. See [4] for
the definition of contact homology and cylindrical contact homology.

Corollary 2.8. Let (M,H, J) admit a stable, holomorphic open book decomposition
(L, π), and let γ ⊂ L be a binding orbit, and assume that the contact homology and
cylindrical contact homology of the triple (M,H, J) is well-defined. Then γ is a
cycle in the contact homology and cylindrical contact homology of (M,H, J).
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2.4.2. Generalized pseudoholomorphic curves. Finally we present a result concern-
ing the intersection properties of so-called generalized pseudoholomorphic curves.
These curves are introduced in [7] as a possible way to extend the theory of finite-
energy foliations (see e.g [12]) to include curves with nontrivial genus.

The generalized pseudoholomorphic curve equation for an asymptotically cylin-
drical map (Σ, j,Γ, (a, u)) ∈ C∞(M,H) is obtained by twisting the first of the two
equations in (2.6) by a harmonic form on Σ. More precisely, we consider quintuplets
(Σ, j,Γ, ũ = (a, u), ν) where the quadruple (Σ, j,Γ, (a, u)) is a smooth asymptoti-
cally cylindrical map, (i.e. belongs to C∞(M,H)), and where ν is a 1-form on the
unpunctured surface Σ. Such a quintuple is called a generalized pseudoholomorphic
map in (M,H, J) if it satisfies

(2.8)


u∗λ ◦ j = da+ ν

πξH ◦ du ◦ j = J ◦ πξH ◦ du
dν = 0 = d(ν ◦ j).

A generalized pseudoholomorphic curve is the equivalence class [Σ, j,Γ, ũ = (a, u), ν]
of the quintuple (Σ, j,Γ, ũ = (a, u), ν) under the the equivalence relation of holo-
morphic reparametrization of the domain.

As with pseudoholomorphic maps, a finite energy condition guarantees that the
maps are asymptotically cylindrical. We will not give the definition of energy here,
but will instead just assume that we are dealing with asymptotically cylindrical
maps. We will denote the set of asymptotically cylindrical generalized pseudoholo-
morphic curves in (M,H, J) by M∆(M,H, J)

In contrast to genuinely pseudoholomorphic curves, generalized pseudoholomor-
phic curves do not satisfy local positivity of intersections. Indeed, it is possible to
construct a pair of local solutions ũ = (a, u) and ṽ = (b, v) to (2.8) which have an
isolated intersection of negative index (see Appendix B). In light of this, one might
expect that a pair of generalized pseudoholomorphic curves could have arbitrary
generalized intersection number, but as the following theorem shows, this is not the
case.

Theorem 2.9. Let [Σ, j,Γ, ũ, ν], [Σ′, j′,Γ′, ṽ, ν′] ∈ M∆(M,H, J) be generalized
pseudoholomorphic curves, and assume that no component of ũ or ṽ is contained
in an orbit cylinder. Then

[ũ] ∗ [ṽ] ≥ 0.

This result puts topological restrictions on what homotopy classes in C∞(M,H)
can contain generalized pseudoholomorphic maps. Indeed we have the following
immediate corollaries of Theorem 2.9.

Corollary 2.10. Let (Σ, j,Γ, ũ) ∈ C∞(M,H) be a smooth asymptotically cylindri-
cal map with no component homotopic to an orbit cylinder. If

[ũ] ∗ [ũ] < 0.

Then there are no generalized pseudoholomorphic curves in the same relative ho-
motopy class as ũ.

Corollary 2.11. Let (Σ, j,Γ, ũ) ∈ C∞(M,H) be a smooth asymptotically cylindri-
cal map with no component homotopic to an orbit cylinder. Assume there exists a
generalized pseudoholomorphic curve [Σ, j,Γ, ṽ, ν] ∈M∆(M,H, J)t so that

[ũ] ∗ [ṽ] < 0.
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Then there are no generalized pseudoholomorphic curves in the same relative ho-
motopy class as ũ.

2.5. Overview. The remainder of the paper is devoted to proving the results above
concerning the properties and applications of generalized intersection number. We
review relevant technical background material where appropriate.

As mentioned above, some difficulties arise in trying to understand the inter-
section and embedding properties of punctured pseudoholomorphic curves when
multiple ends approach the same orbit, or, when concerned with embedding con-
trols, when an end approaches a multiple cover of an orbit. First, it is not a priori
clear that the algebraic intersection number is finite since the domains are not
compact. Second, even if the algebraic intersection number is finite, in families of
curves, intersections (or self-intersections) can appear or disappear at the ends and
thus, the algebraic intersection number is not topologically determined.

A precise understanding of the asymptotic behavior of punctured pseudoholo-
morphic curves is the key both to establishing finiteness of the algebraic intersection
number and to understanding to what degree intersections or self-intersections can
appear or disappear at the ends. The relevant asymptotic results are proved in [22]
and are reviewed in section 3.1.3 after reviewing facts about asymptotic operators
and the Conley-Zehnder index in section 3.1.1. With the appropriate asymptotic
results in hand, we study some local asymptotic winding invariants in section 3.1.4
which are convenient for encoding intersection related invariants we develop. Then
in section 3.2 we take up the study of local asymptotic intersection invariants. In
particular we define and establish the main properties of the asymptotic intersec-
tion index δ∞([ũ; z], [ṽ;w]) of two ends and the asymptotic self-intersection index
δ∞([ũ; z]) of a single end. For pseudoholomorphic curves, these quantities can, in
light of the asymptotic results of [22], be thought of as measures respectively of
tangency or self-tangency at infinity, and in this case these quantities give the up-
per bound on the count of intersections or self-intersections that could appear that
those ends.

The theorems stated above in section 2.4 are then proved in section 4 along with
some complementary results. We establish the basic properties of the relative and
generalized intersection numbers in section 4.1 building up to the proof of Theorem
2.2. Section 4.2 is then devoted to proving Theorem 2.3 and some related results.
The proofs of these theorems rest on the fact that, in the cases we consider, the
generalized intersection number can be understood completely by combining facts
about the local behavior of pseudoholomorphic curves from [18] with the asymptotic
intersection invariants developed section 3. In section 4.3, we then specialize to the
case of a cylindrical cobordism. The key idea here is that the homotopy invariance
of the generalized intersection number coupled with the existence of the R-action
allows the generalized intersection number to be computed in terms of quantities
associated to the projection of the curve to the three-manifold.

Finally we close with two appendices. In appendix A we adapt a proof from
[8] to show that the projection to ξH along XH of the differential of a connected
curve in M(M,H, J) either vanishes identically, or has a finite number of zeroes
of positive order. In appendix B we show that local solutions to the generalized
pseudoholomorphic curve equations 2.8 can exhibit intersection behavior not found
in genuinely pseudoholomorphic maps.
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3. Local intersection numbers at punctures

3.1. Asymptotics and asymptotic winding numbers.

3.1.1. Asymptotic operators and the Conley-Zehnder index. Throughout this sec-
tion, we will assume that (M,H) is a 3-manifold equipped with a stable Hamiltonian
structureH = (λ, ω), and that J ∈ J (M,H) is a compatible complex multiplication
on ξH.

We will associate to any periodic orbit a differential operator related to the
linearized flow. Let γ ∈ P(M,H) be a τ -periodic orbit (possibly multiply covered)
and let h be a vector field along γ, that is h : S1 → TM is a smooth function
satisfying h(t) ∈ Tγ(t)M for all t ∈ S1. Since h is defined along a flow line of XH
we can define the Lie derivative LXHh of h by

LXHh(t) = d
ds

∣∣
s=0

dψ−s(γ(t+ s/τ))h(t+ s/τ).

Since the flow ψt of XH preserves the splitting (2.1), so must LXH , and we can
conclude that if h(t) ∈ ξHγ(t) for all t ∈ S1, then LXHh(t) ∈ ξHγ(t) for all t ∈ S1.

Moreover, if ∇ is a symmetric connection on TM , we can use dγ(t)∂t = τ ·XH(γ(t))
to write

τ · LXHh = Lτ ·XHh = ∇τ ·XHh−∇h(τ ·XH) = ∇th− τ∇hXH,
and therefore the differential operator ∇t · −τ∇·XH maps sections of γ∗ξH to
sections of γ∗ξH.

Choosing some J ∈ J (M,H), we associate to each τ -periodic orbit γ ∈ Pτ (M,H)
a differential operator Aγ,J : C∞(γ∗ξH) → C∞(γ∗ξH) acting on the space of
smooth sections of ξH along γ defined by

Aγ,Jη = −J(∇tη − τ∇ηXH).

We note that the discussion of the previous paragraph implies that Aγ,J does in fact
map the space of sections of ξH along γ to itself, and that Aγ,J is independent of
symmetric connection ∇ used to define it. We will refer to Aγ,J as the asymptotic
operator associated to the orbit γ. Define an inner product on C∞(γ∗ξH) by

〈h, k〉J =

∫
S1

ωγ(t)

(
h(t), J(γ(t))k(t)

)
dt.

Recalling that LXHω = 0, we have for any h, k ∈ C∞(γ∗ξH) that

∂
∂tωγ(t)(h(t), k(t)) = ωγ(t) (τ(LXHh)(t), k(t)) + ωγ(t) (h(t), τ(LXHk)(t))

Noting that the compatibility of J with ω|ξH implies that ω(J ·, J ·) = ω(·, ·) on

ξH × ξH, we integrate this to give

〈h,Aγ,Jk〉J = 〈Aγ,Jh, k〉J
Therefore Aγ,J is formally self-adjoint, and Aγ,J induces a self-adjoint operator

Aγ,J : D(Aγ,J) = H1(γ∗ξH) ⊂ L2(γ∗ξH)→ L2(γ∗ξH).

We will refer to Aγ,J as the asymptotic operator of γ.
The kernel of Aγ,J is closely related to the degeneracy of the orbit γ. Indeed,

if γ is degenerate then there is a nonzero v0 ∈ ξHγ(0) so that dψτ (γ(0))v0 = v0.

Defining v ∈ C∞(γ∗ξH) by v(t) = dψτt(γ(0))v0, we have that LXHv ≡ 0, so
v ∈ kerAγ,J . Conversely, if h ∈ C∞(γ∗ξH) satisfies h ∈ kerAγ,J , then we can
conclude that LXHh ≡ 0 so we must have that h(t) = dψτt(γ(0))h(0), and in
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particular h(0) = dψτ (γ(0))h(0). Therefore γ is nondegenerate if and only if Aγ,J

has trivial kernel.
It will be important to understand the behavior, particularly the winding, of

eigenvectors of asymptotic operators associated to periodic orbits in trivializations
of ξH. We establish our conventions for dealing with trivializations here. Given a
simple periodic orbit γ ∈ P0(M,H) we will use the term unitary trivialization of
(γ∗ξH, ω, J) to refer to a trivialization

Φγ : S1 × R2 → ξH|γ

of γ∗ξH satisfying

ω(Φγ ·,Φγ ·) = dx ∧ dy
Φγ ◦ J0 = J ◦ Φγ

where J0 is the standard complex multiplication used to identify R2 with C. Having
chosen a unitary trivialization Φγ of (γ∗ξH, ω, J), we get an induced trivialization
for ξH along the multiply covered orbit ((γm)∗ξH, ω, J) by pulling back Φγ via
the m-fold covering map [t]R/Z → [mt]R/Z. When dealing with trivializations of

ξH along an orbit γm, we will always assume that the trivialization arises from a

choice of trivialization along the underlying simply covered orbit γ ∈ P̃0(M,H).
Moreover, we will generally use the same notation to indicate the trivialization Φ
of ξH along γ, and that induced on ξH along γm.

In a unitary trivialization of the (γ∗ξH, ω, J) along a simple periodic orbit γ :
S1 →M , the asymptotic operator Aγm,J takes the form

(Aγm,Jh)(t) = −i ddth(t)− S(t)h(t),

where S(t) is a symmetric, two-by-two matrix. An eigenvector of Aγm,J satisfies a
linear, first order o.d.e. and therefore never vanishes since it doesn’t vanish iden-
tically. Hence every eigenvector gives a map from S1 → R2 \ {0} and thus has
a well defined winding number. Since −i ddt − S(t) is a compact perturbation of

−i ddt , it can be shown that the winding is monotonic in the eigenvalue, and that to
any k ∈ Z there is a two dimensional space of eigenvectors with winding k. These
results are proved in Section 3 of [8], and we restate them here as a lemma.

Lemma 3.1. Let γ ∈ P0(M,H) be a simple periodic orbit of XH, let Aγm,J denote
the asymptotic operator of γm for m ∈ Z \ {0}, and let T(γ∗ξH) denote the set of
homotopy classes of unitary trivializations of (γ∗ξH, ω, J). There exists a map
w : σ(Aγm,J)× T(γ∗ξH)→ Z which satisfies

(1) If e : S1 → (γm)∗ξH is an eigenvector of Aγm,J with eigenvalue λ, then
w(λ, [Φ]) = wind(Φ−1e).

(2) For any fixed [Φ] ∈ T(γ∗ξH) we have that

w(λ, [Φ]) < w(µ, [Φ])⇒ λ < µ.

(3) If m(λ) = dim ker(Aγm,J−λ) denotes the multiplicity of λ as an eigenvalue
we have for every k ∈ Z and [Φ] ∈ T(γ∗ξH) that∑

{λ |w(λ,[Φ])=k}

m(λ) = 2.
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In this paper the relationship between the spectrum of the asymptotic operator
associated to a simply covered orbit γ and that of the asymptotic operator associ-
ated to its k-fold iterate γk will be important. First note that there is a Zk action
on sections of (γk)∗ξH defined by [j]Z/kZ ∗k f(t) = f(t+ j

k ). It is easily verified that
Aγk,J is equivariant with respect to this action, and therefore that the eigenspaces
of Aγk,J are fixed by this action. We say an eigenvector e of Aγk,J is multiply
covered if the isotropy group

G(e) = {j ∈ Zk | j ∗k e = e}

is nontrivial, and we define the covering number of e

cov(e) = |G(e)|

of e to be the order of this group. Put more simply, cov(e) is the largest positive
integer m dividing k for which (k/m) ∗k · fixes e. It follows from the definition of
Aγ,J that if e is an eigenvector of Aγ,J with eigenvalue λ, then the section ek ∈
C∞((γk)∗ξH) defined by ek(t) = e(kt) is an eigenvector of Aγk,J with eigenvalue
kλ. Furthermore, it is straightforward to see that any eigenvector e of Aγk,J with
covering number m = cov(e) is of the form e(t) = f(mt) for some eigenvector f of
Aγk/m,J with cov(f) = 1.

The following lemma is an easy consequence of the preceding discussion and
Lemma 3.1.

Lemma 3.2. If e is an eigenvector of Aγk,J and Φ is a trivialization of γ∗ξH, then

cov(e) = gcd(wind(Φ−1e), k).

Following [8] we define the Conley-Zehnder index of a periodic orbit γk in terms
of the spectrum of the asymptotic operator Aγk,J . We define a number σ−max(γk) ∈
σ(Aγk,J) by

(3.1) σ−max(γk) = max(σ(Aγk,J) ∩ R−)

i.e. so that σ−max(γk) is the largest negative eigenvalue of Aγk,J . Given a trivial-

ization Φ of γ∗ξH, we define

(3.2) αΦ(γk) = w(σ−max(γk); [Φ])

so that αΦ(γk) is the winding relative to Φ of any eigenvector of Aγk,J having the

largest possible negative eigenvalue. We define the parity of p(γk) of γk by

(3.3) p(γk) =

{
0 if ∃µ ∈ σ(Aγk,J) ∩ R+ with w(µ, [Φ]) = αΦ(γk)

1 otherwise

and we note that this definition does not depend on the choice of Φ. We recall from
[8] that the parity defined here agrees with the designation of γk as even or odd as
defined in Section 2.1. The Conley-Zehnder index µΦ(γk) of the orbit γk relative
to the trivialization Φ is then defined by

(3.4) µΦ(γk) = 2αΦ(γk) + p(γk).

We will at times suppress the choice of trivialization in our notation for α or µ,
but it should always be understood that a choice of trivialization is necessary to
define these quantities. We also observe that even though the asymptotic operator
Aγk,J depends on a choice of J ∈ J (M,H), the Conley-Zehnder index of an orbit
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is independent of this choice, as can be seen by the alternate definitions given in
[8].

Understanding how the Conley-Zehnder index of γk behaves as a function of
k for fixed γ will be important. This is well understood and the important facts
will be listed in the following lemma, the proof of which follows from basic facts
about the symplectic group Sp(1) which can be found in Appendix 8.1 in [12] or
the first chapter of [1]. For our purposes here, it will be more convenient to state
an iteration formula for α rather than µ, but the relationship between these two is
clear.

Lemma 3.3. Let γ be a nondegenerate (not necessarily simple) periodic orbit, and
let k ∈ Z \ {0} be a nonzero integer.

• If γ is an even orbit, then

(3.5) α(γk) = kα(γ)

• If γ is an odd hyperbolic orbit, then

(3.6) α(γk) = bk(α(γ) + 1
2 )c = kα(γ) + k−p(k)

2

where b·c is the least integer function, and p(k) denotes the parity of the
integer k.
• If γ is an elliptic orbit, then there exists an irrational θ ∈ R so that

(3.7) α(γk) = bkθc.

It will be convenient for later to record how α changes with changes of trivializa-
tion. The only subtlety here is that since we always deal with trivializations of the
underlying simply covered orbits, we get a factor which accounts for the covering
number of the orbit. We note that if E → S1 is a Hermitian line bundle with uni-
tary trivializations Φ and Ψ, the map Φ−1 ◦Ψ determines a map S1 → U(1) ≈ S1.
We denote the degree of this map by deg(Φ−1 ◦ Ψ). We now state the formula as
a lemma and omit the easy proof.

Lemma 3.4. Let Φ and Ψ be trivializations of γ∗ξH. Then

(3.8) αΦ(γk) = αΨ(γk) + k deg(Φ−1 ◦Ψ)

for any nonzero k ∈ Z.

We close this section by introducing a quantity that will be useful later. Given
any eigenvalue µ ∈ σ(Aγk,J) it is clear from Lemmas 3.1 and 3.2 that all eigenvec-
tors with eigenvalue µ have the same covering number. We will therefore write

cov(µ)

to denote the covering number of any eigenvector with eigenvalue µ. Given any
simple periodic orbit γ ∈ P0(M,H), we will then define the spectral covering number
σ̄(γk) of γk to be

(3.9) σ̄(γk) := cov(σ−max(γk))

and note that by Lemma 3.2 that

σ̄(γk) = gcd(k, αΦ(γk))

where αΦ(γk) is computed relative to any trivialization of γ∗ξH. Note that even
though αΦ(γk) depends on a choice of trivialization, Lemma 3.4 above shows that
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changing the trivialization changes α by an integer multiple of k, so the gcd on the
right hand side of this equation is unchanged.

We note that as a consequence of Lemma 3.3, the spectral covering number of a
hyperbolic orbit can be computed knowing just the covering number of the orbit,
and whether the underlying simple orbit is even or odd. We state this result as a
lemma and omit the straightforward proof.

Lemma 3.5. Let γ be simple periodic orbit, and let k ∈ Z \ {0}.
• If γ is an even orbit, then

σ̄(γk) = |k|.

• If γ is an odd, hyperbolic orbit, then

σ̄(γk) =

{
|k|/2 if k is even

1 if k is odd.

3.1.2. Asymptotically cylindrical ends. Here we will introduce a notion that will
be useful for framing the results of the next several sections. In this section we
continue to consider a 3-manifold M equipped with a stable Hamiltonian structure
H = (λ, ω) and a compatible J ∈ J (M,H).

Consider quadruples of the form (Σ, j, z∗, u) where (Σ, j) is a (not necessarily
closed) Riemann surface without boundary, z∗ ∈ Σ is a point, and u : Σ \ {z∗} →
R×M is a smooth map. We will call such a quadruple an asymptotically cylindrical
end model if there is a periodic orbit γm so that u is asymptotically cylindrical over
γm.

We define an equivalence relation on end models in the following way. We say
that asymptotically cylindrical end models (Σ, j, z∗, u) and (Σ′, j′, w∗, v) are equiva-
lent if there exists an open neighborhood U ⊂ Σ of z∗, and a holomorphic embedding
ψ : U → Σ′ with ψ(z∗) = w∗ so that

u = v ◦ ψ.

on U \ {z∗}. An equivalence class [Σ, j, z∗, u] of asymptotically cylindrical end
models will be referred to as a asymptotically cylindrical end.

An asymptotically cylindrical end is said to be embedded if it has a representative
model (Σ, j, z∗, u) for which u is an embedding. A pair of asymptotically cylindrical
ends are said to be nonintersecting, if they can be represented by models (Σ, j, z∗, u)
and (Σ′, j′, w∗, v) satisfying

u(Σ \ {z∗}) ∩ v(Σ′ \ {w∗}) = ∅.

An asymptotically cylindrical end is said to be pseudoholomorphic if it can be
represented by a model (Σ, j, z∗, u) with u : (Σ \ {z∗} , j) → (R ×M, J̃) a pseudo-
holomorphic map.

By choosing holomorphic coordinates near a given point, it is clear that any
asymptotically cylindrical end can be represented by a model of the form (D, i, 0, u),
where D is the unit disk in C centered at 0 ∈ C. We will call such a model, a unit
disk model. Given an asymptotically cylindrical end [D, i, 0, u] and a positive integer
m, we can define the m-multiple cover m · [D, i, 0, u] of [D, i, 0, u] by

m · [D, i, 0, u] := [D, i, 0, u ◦ φm]
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where φm : D → D is the map φ(z) = zm. It is a straightforward exercise in
complex analysis to verify that the equivalence class of the end-model produced in
this way does not depend on the choice of unit disk model used in the definition.

It will be convenient for some of the following results to consider asymptoti-
cally cylindrical ends with one additional piece of data. We will call a quintu-
ple (Σ, j, z∗, v̄, u) a decorated asymptotically cylindrical end model if the quadruple
(Σ, j, z∗, u) is an asymptotically cylindrical end model, and

v̄ ∈ Σ0
z∗ := (Tz∗Σ \ {0})/R+

is a ray in the tangent space of Σ at z∗. The ray in the data for a decorated end
model will be referred to as an asymptotic marker or decoration of the end. Two
decorated end models (Σ, j, z∗, [X]Σ0

z∗
, u) and (Σ′, j′, w∗, [Y ]Σ′0w∗

, v) are said to be

equivalent when there is an open neighborhood U ⊂ Σ of z∗ and a holomorphic
embedding ψ : U → Σ′ with ψ(z∗) = w∗, [dψ(z∗)X]Σ′0w∗

= [Y ]Σ′0w∗
and

u = v ◦ ψ

on U \ {z∗}. An equivalence class of decorated end models is called a decorated
asymptotically cylindrical end.

It is clear that any decorated asymptotically cylindrical end can be represented
by a model of the form (D, i, 0, [1]C∗/R+ , u). As with undecorated ends, we can
define the m-multiple cover by

m · [D, i, 0, [1]C∗/R+ , u] = [D, i, 0, [1]C∗/R+ , u ◦ φm],

and it is easily verified that the equivalence class of end models produced in this
way does not depend on the unit disk model chosen to represent the end.

Finally, given a decorated end [Σ, j, z∗, [X]Σ0
z∗
, u], and a a ∈ C∗ we define the

change of decoration map taking [Σ, j, z∗, [X]Σ0
z∗
, u] to a ∗ [Σ, j, z∗, [X]Σ0

z∗
, u] by

defining

a ∗ [Σ, j, z∗, [X]Σ0
z∗
, u] = [Σ, j, z∗, [aX]Σ0

z∗
, u],

and again, it is easily verified that this is a well-defined operation on ends indepen-
dent of the choice of representing model and X ∈ [X]Σ0

z∗
.

3.1.3. Asymptotic normal forms and some consequences. Underlying all of the re-
sults of this paper is a precise description of the asymptotic behavior of pseu-
doholomorphic half-cylinders, and of the relative asymptotic behavior of a pair of
half-cylinders limiting to the same periodic orbit. The key results are proved in [22]
which builds on previous results from [10, 16, 9, 20]. In this section, we will review
the relevant facts and some consequences. Here we continue to assume (M,H, J)
to be a 3-manifold equipped with a stable Hamiltonian structure and compatible
complex multiplication, but we now assume H to be nondegenerate.

Let [Σ, j, z∗, [X], ũ = (a, u)] be a decorated asymptotically cylindrical end in

(R ×M, J̃), and assume that u is asymptotically cylindrical over γk for some τ -

periodic γ ∈ P̃0(M,H) and k ∈ Z \ {0}. Moreover, we assume that if σ : [0, ε)→ Σ
is a smooth curve satisfying σ(0) = z∗ and σ′(0) ∈ [X], then limt→0 u(σ(t)) = γ(0),
i.e. if we extend the projected map u to the S1 compactification of Σ \ {z∗}, the
asymptotic marker [X] hits the point γ(0) on the orbit.
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The assumption that ũ is asymptotically cylindrical allows us to find for some
R ∈ R an embedding2 ψ : [R,∞)× S1 → Σ \ Γ, with

lim
s→∞

ψ(s, t) = z∗

lim
s→∞

− ∂sψ(s,0)
|∂sψ(s,0)| ∈ [X] ∈ (Tz∗Σ \ {0})/R+(3.10)

and a map U : [R,∞)×S1 → (γk)∗ξH with U(s, t) ∈ ξHγk(t) for all (s, t) ∈ [R,∞)×S1

so that

(3.11) ũ(ψ(s, t)) = (kτs, expγk(t) U(s, t)),

where exp denotes the exponential map of the metric

gH,J := λ⊗ λ+ ω(·, J ·)
on M . We will call a pair (U,ψ) satisfying (3.10)-(3.11) an asymptotic representative
of [Σ, j, z∗, [X], u]. It is clear from C1 convergence of ũ to R × γk that (3.10) and
(3.11) uniquely determine (U,ψ) up to restriction of the domain.

Now let [Σ′, j′, w∗, [Y ], ṽ] be a second decorated asymptotically cylindrical end,
which is also asymptotically cylindrical over γk. Then we can find an asymptotic
representative (V, φ) of ṽ near w∗ so that we can write

ṽ(φ(s, t)) = (kτs, expγk(t) V (s, t))

If the ends being considered are pseudoholomorphic, the asymptotic behavior of
the difference of the maps U and V is given by the following theorem. The proof
can be found in [22].

Theorem 3.6. Assume that [Σ, j, z∗, [X], ũ] and [Σ′, j′, w∗, [Y ], ṽ] are distinct, dec-
orated pseudoholomorphic ends asymptotically cylindrical over γk, with asymptotic
representatives (U,ψ) and (V, φ) respectively. Then the difference U − V , where
defined, can be written

U(s, t)− V (s, t) = eλs[e(t) + r(s, t)]

where e is an eigenvector of the asymptotic operator Aγk,J with eigenvalue λ < 0
and where r satisfies

|∇is∇
j
tr(s, t)| ≤Mije

−ds

for all (s, t) ∈ [R,∞) × S1, (i, j) ∈ N2, and some appropriate constants d > 0,
Mij > 0.

Some remarks about this theorem are in order. We first remark that if (U, φ) is
an asymptotic representative of [Σ, j, z∗, [X], ũ], then (U(·, · + 1

k ), φ(·, · + 1
k )) is an

asymptotic representative of the end

ei2π/k ∗ [Σ, j, z∗, [X], ũ] = [Σ, j, z∗, [e
i2π/kX], ũ].

2 We remark that the embedding ψ above is not in general holomorphic with respect to the
standard almost complex structure j0 on [R,∞) × S1 ⊂ R × S1 = C/iZ even if the end is pseu-

doholomorphic. However it is easily seen from the results in [22] and the fact that nondegeneracy
implies exponential convergence that if the end is pseudoholomorphic, then there exist positive

constants d and M so that

|∂̄j,j0ψ(s, t)| = | 1
2

(dψ + j ◦ dψ ◦ j0)(s, t)| ≤Me−(d+2π)s

for all (s, t) ∈ [R,∞)× S1, where the norm | · | on Hom0,1(R× S1, TΣ) is defined with respect to
the euclidean metric on R× R/Z and any metric on the unpunctured surface Σ.
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Thus if ei2πl/k ∗ [Σ, j, z∗, [X], ũ] 6= ei2πj/k ∗ [Σ′, j′, w∗, [Y ], ṽ], the previous theorem
then lets us write

U(s, t+ l
k )− V (s, t+ j

k ) = eλlj [elj(t) + rlj(s, t)]

with each λlj , elj and rlj satisfying that same properties as the λ, e, and r appearing
in the theorem. When |k| > 1, we can apply this observation to the case where
ṽ = ũ so the theorem gives an asymptotic description of each of the maps U(s, t+
i
k )−U(s, t+ j

k ). Additionally, we remark that in the case that ṽ is a cylinder over

γk, we get that V ≡ 0, so this theorem reduces to give an asymptotic description
of a single half-cylinder as in [10, 20]. Combining these observations, we get the
following description of the asymptotic behavior of U which is a refinement of the
results of [10, 20] in the event that |k| > 1. For proof, see [22].

Theorem 3.7. With (U, φ) as defined above, there exists an s0 ∈ R so that for
(s, t) ∈ [s0,∞)× S1, either U vanishes identically or

U(s, t) =

N∑
i=1

eλis(ei(t) + ri(s, t))

where

• The λi are a sequence of negative eigenvalues of Aγk,J which is strictly
decreasing in i (i.e. λj < λi for j > i).
• Each ei(6= 0) is an eigenvector of Aγk,J with eigenvalue λi.
• The sequence of positive integers defined by k1 = cov(e1), ki = gcd(ki−1, cov(ei)),

is strictly decreasing in i.
• The ri satisfy ri(s, t) = ri(s, t+

1
ki

). Moreover, each ri satisfies exponential
decay estimates of the form∣∣∇ls∇mt ri(s, t)∣∣ < Mlme

−ds.

The following two corollaries will be important for our later results. For proofs
see [22].

Corollary 3.8. Let [Σ, j, z∗, ũ] and [Σ′, j′, w∗, ṽ] be pseudoholomorphic ends in
R×M . Then precisely one of the following is true:

• The ends are equal, i.e. [Σ, j, z∗, ũ] = [Σ′, j′, w∗, ṽ].
• One end is a multiple cover of the other, i.e. there exists an integer m ≥ 2

so that either

m · [Σ, j, z∗, ũ] = [Σ′, j′, w∗, ṽ]

or

[Σ, j, z∗, ũ] = m · [Σ′, j′, w∗, ṽ].

• The ends [Σ, j, z∗, ũ] and [Σ′, j′, w∗, ṽ] are nonintersecting.

Corollary 3.9. Let [Σ, j, z∗, ũ] be a pseudoholomorphic end in R ×M . Then ei-
ther [Σ, j, z∗, ũ] is embedded, or there exists an embedded pseudoholomorphic end
[Σ′, j′, w∗, ṽ] and an integer m ≥ 2 so that

[Σ, j, z∗, ũ] = m · [Σ′, j′, w∗, ṽ].

Combining these corollaries with results about the local behavior of pseudoholo-
morphic curves due to Micallef and White [18] or McDuff [17] gives the following
generalizations of results that are well-known for closed curves.
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The first such result is that two connected curves either have the same image or
intersect in at most a finite set.

Corollary 3.10. Let (W, J̄) be an almost complex 4-manifold with Hamiltonian
structured ends, and let [Σi, ji,Γi, ũi] ∈ M(W, J̄,H+,H−) be connected pseudo-
holomorphic curves. Then the sets ũ−1

i (ũj(Σj \ Γj)) are either finite or equal to
Σj \ Γj.

We next address the question of double points and singularities for a connected
curve. A pseudoholomorphic curve [Σ, j,Γ, ũ] ∈M(W, J̄,H+,H−) is called multiply
covered it factors through another curve [Σ′, j′,Γ′, ṽ] via a holomorphic map ψ :
Σ → Σ′ with degψ ≥ 2. If a curve is not multiply covered, it is said to be simple.
We can now state the following corollary.

Corollary 3.11. Let (W, J̄) be an almost complex 4-manifold with Hamiltonian
structured ends, and let [Σ, j,Γ, ũ] ∈ M(W, J̄,H+,H−) a connected, simple pseu-
doholomorphic curve. Then the set of double points of ũ

D(ũ) =
{

(p, q) ∈ (Σ \ Γ)2 | ũ(p) = ũ(q), p 6= q
}

and the set of singular points3 of ũ

S(ũ) = {p ∈ Σ \ Γ | dũ(p) = 0}

are both finite.

A version of the following corollary is proved in [10] in the case that the stable
Hamiltonian structure arises from a contact form. The proof given there readily
generalizes to any stable Hamiltonian structure.

Corollary 3.12. Let [Σ, j,Γ, ũ] ∈M(W, J̄,H+,H−) be a pseudoholomorphic curve,

let z∗ ∈ Γ be a puncture, and let π : T (R± × M±) → ξH
±

be the projection

onto ξH
±

over the cylindrical ends determined by the splitting T (R± × M±) ≈
R⊕RXH± ⊕ ξH

±
. Choose an open neighborhood U ′ ⊂ Σ of z∗ so that ũ(U ′ \ {z∗})

lies entirely within one of the cylindrical ends so that π ◦dũ is defined on U ′ \ {z∗}.
Then there exists an open neighborhood U ′ ⊂ U of z∗ so that π ◦ dũ either vanishes
identically on U ′ or vanishes nowhere on U ′.

3.1.4. Asymptotic winding numbers. In this section we will define some invariants
associated to the ends of an asymptotically cylindrical map. Throughout (W, J̄)
will denote a 4-dimensional almost complex cobordism with positive/negative ends

(R± ×M±, J̃±,H± = (λ±, ω±)).
Let [Σ, j, z, [X], ũ] be a decorated (not necessarily pseudoholomorphic) end which

is asymptotically cylindrical over γm for some γ ∈ P̃0(M,H) and some m ∈ Z\{0}.
We will abbreviate the end by [ũ; z] for simplicity. Define:

αΦ(ũ; z) := αΦ(γm) with the right hand side as defined in (3.2).(3.12)

µΦ(ũ; z) := µΦ(γm) with the right hand side as defined in (3.4).(3.13)

σ̄(ũ; z) := σ̄(γm) with the right hand side as defined in (3.9).(3.14)

3 Note that the fact that ũ is pseudoholomorphic implies that either rank dũ(p) = 2 or dũ(p) = 0
for every p ∈ Σ \ Γ.
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We note that each of these quantities depends only on the asymptotic limit of the
end, and not on the map, or the decoration. In the case that the end [ũ; z] is
pseudoholomorphic, we define

e1(ũ; z) := the leading eigenvector in the asymptotic expression of(3.15)

ũ at z from Theorem 3.7.

If |m| > 1 then e1(ũ; z) depends on the choice of asymptotic marker, but applying
the change of decoration map (ei2π/m)· ∈ Hom(TzΣ) has the effect of replacing the
eigenvector e1 = e1(ũ; z) with e1(·+ 1

m ), and e1(ũ; z) does determine a well-defined

m-fold multisection of ξH|γ which doesn’t depend on the choice of marker.
We say that the end [ũ; z] winds if it can be represented by a model (Σ, j, z, [X], ũ =

(a, u)) in which the map ũ does not intersect the cylinder over γm, or equivalently,
so that the projection u of the map to M does not intersect the asymptotic limit γ.
In this case, we define the asymptotic winding windΦ

∞(ũ; z) of ũ at z relative to the
trivialization Φ of γ∗ξH by choosing a small clockwise loop around z, and defining
windΦ

∞(ũ; z) to be the winding of the image of this loop around γ computed in the
trivialization Φ. The assumption that the image of u does not intersect γ implies
that the resulting quantity is independent of the loop chosen. In the case that [ũ; z]
is a pseudoholomorphic end, it is an easy consequence of Theorem 3.7 that

(3.16) windΦ
∞(ũ; z) := wind(Φ−1e1(ũ; z))

Note that the comments of the previous paragraph show that windΦ
∞(ũ; z) depends

only on the undecorated end [Σ, j, z, ũ] and not on the choice of asymptotic marker.
The following lemma collects some useful facts about wind∞.

Lemma 3.13. Let Φ and Ψ be trivializations of γ∗ξH, and let [ũ; z] denote an end
which winds and which is asymptotically cylindrical over γm with m ∈ Z \ {0}.
Then

(3.17) windΦ
∞(ũ; z) = windΨ

∞(ũ; z) +m deg(Φ−1 ◦Ψ).

and the quantity

(3.18) d0(ũ; z) := αΦ(ũ; z)− windΦ
∞(ũ; z)

is independent of the choice of trivialization. Moreover, if [ũ; z] is pseudoholomor-
phic then d0(ũ; z) ≥ 0 and

(3.19) ∆1(ũ; z) := (|m| − 1)d0(ũ; z)− σ̄(ũ; z) + cov(e1(ũ; z))

is even, nonnegative, and ∆1(ũ; z) = 0 if and only if at least one of the following
holds:

• |m| = 1
• d0(ũ; z) = 0
• d0(ũ; z) = 1 and σ̄(ũ; z) = |m|.

Proof. The change of trivialization formula follows as in (3.8) and we omit the triv-

ial proof. The independence of αΦ(ũ; z)−windΦ
∞(ũ; z) is then a consequence of the

respective change-of-trivialization formulas. In the event that [ũ; z] is pseudoholo-
morphic, the nonnegativity of this quantity has been previously proved in [8], and
is an easy consequence the monotonicity of winding relative to eigenvalue (Lemma
3.1) and the fact that e1(ũ; z) has negative eigenvalue (Theorem 3.7), and therefore
must have have winding no greater than αΦ(ũ; z) (by definition of α).
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Next, still assuming that [ũ; z] is pseudoholomorphic, we consider the quantity

∆1(ũ; z) = (|m| − 1)[αΦ(ũ; z)− windΦ
∞(ũ; z)]− σ̄(ũ; z) + cov(e1(ũ; z)),

and observe that if windΦ
∞(ũ; z) = αΦ(ũ; z) then cov(e1(ũ; z)) = σ̄(ũ; z) as a conse-

quence of Lemma 3.2, so then ∆1(ũ; z) = 0. On the other hand, if |m| = 1, then
we must have cov(e1(ũ; z)) = σ̄(ũ; z) = 1 since both of these quantities must divide
m. Again we have ∆1(ũ; z) = 0, and we can conclude that ∆1(ũ; z) = 0 whenever
(|m| − 1)d0(ũ; z) = 0.

Assuming then that |m| ≥ 2 and d0(ũ; z) ≥ 1, we get that

∆1(ũ; z) ≥ |m| − 1− σ̄(ũ; z) + cov(e1(ũ; z))

which must be nonnegative since σ̄(ũ; z) ≤ |m| while cov(e1(ũ; z)) ≥ 1. More-
over, the only possibility for ∆1(ũ; z) = 0 is if d0(ũ; z) = 1, σ̄(ũ; z) = |m| and
cov(e1(ũ; z)) = 1. If we assume that σ̄(ũ; z) = |m|, we can conclude from Lemma
3.2 that

gcd(|m|, αΦ(ũ; z)) = σ̄(ũ; z) = |m|
so |m| divides αΦ(ũ; z). If we further assume that d0(ũ; z) = 1, we can use this
with Lemma 3.2 to argue

cov(e1(ũ; z)) = gcd(|m|,windΦ
∞(ũ; z))

= gcd(|m|, αΦ(ũ; z)− d0(ũ; z))

= gcd(|m|, αΦ(ũ; z)− 1)

= 1.

We can conclude that if d0(ũ; z) = 1 and σ̄(ũ; z) = |m|, then cov(e1(ũ; z)) = 1, and
hence ∆1(ũ; z) = 0. We have thus shown that ∆1(ũ; z) ≥ 0 and ∆1(ũ; z) = 0 if and
only if (|m| − 1)d0(ũ; z) = 0, or d0(ũ; z) = 1 and σ̄(ũ; z) = |m|.

Finally, to prove the evenness of ∆1(ũ; z), we observe that, as a result of Lemma
3.2, the quantity is of the form

(3.20) (m− 1)(a− b)− gcd(m, a) + gcd(m, b)

(where here a = αΦ(ũ; z) and b = windΦ
∞(ũ; z)). If the term (m− 1)(a− b) is odd

then it must be the case that m is even and a and b have opposite parity. In this
case, it follows that gcd(m, a) and gcd(m, b) must have opposite parity, so the sum
of the three terms is even. In the case that (m − 1)(a − b) is even, we have either
that m is odd or that a and b have the same parity (or both). In either case, it
follows that gcd(m, a) and gcd(m, b) have the same parity, and so the sum of the
three terms must be even. �

Next we will introduce a quantity associated to an embedded end which records
some of the finer information about the asymptotic behavior in the event that the
asymptotic limit of the puncture is multiply covered. Let [ũ; z] = [Σ, j, z, [X], ũ] still

denote a decorated end in (R×M, J̃) which is asymptotically cylindrical over γm,
but now assume in addition that [ũ; z] is an embedded end and that |m| ≥ 2. Let
(U,ψ) be an asymptotic representative of [ũ; z] as defined in the previous section,
i.e.

ũ(ψ(s, t)) = (mτs, expγm(t) U(s, t)).
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The assumption that [ũ; z] is an embedded end implies that U(s, t)−U(s, t+ j
m ) = 0

if and only if j is a multiple of m. Consequently, the winding of the map

t ∈ S1 7→ Φ−1
γm(t)

[
U(s, t)− U(s, t+ j

m )
]
∈ R2 \ {0}

well defined and independent of s. We define the secondary winding of ũ at z
relative to the trivialization Φ by

windΦ
2 (ũ; z) :=

|m|−1∑
j=1

wind Φ−1
[
U(s, ·)− U(s, ·+ j

m )
]
.

as with the asymptotic winding, it is straightforward to show that the secondary
winding depends only on the undecorated end [Σ, j, z, ũ], and not on the choice of
asymptotic marker.

In the event that the embedded end [ũ; z] is pseudoholomorphic, the secondary
winding can be computed in terms of the eigenfunctions from Theorem 3.6. Letting
(U,ψ) still denote an asymptotic representative of [ũ; z], we have from Theorem 3.6,
that

U(s, t)− U(s, t+ j
m ) = eλjs[ej(t) + rj(s, t)]

with λj < 0 an eigenvector of A = Aγm,J , ej 6= 0 an eigenvector of A with
eigenvalue λj , and rj converging exponentially to 0. We will write

(3.21) e∆
j (ũ; z) = ej

to denote the eigenvector appearing in the formula for U(s, t) − U(s + j
m ). Since

the rj converge to 0 as s→∞, it follows that

windΦ
2 (ũ; z) :=

|m|−1∑
j=1

wind(Φ−1e∆
j (ũ; z)).

We collect some useful properties of wind2 in the following lemma.

Lemma 3.14. Let [ũ, z] = [Σ, j, z, ũ] be an embedded end in (R×M, J̃) and assume
that [ũ; z] is asymptotically cylindrical over γm. If Φ and Ψ are trivializations of
γ∗ξH then

windΦ
2 (ũ; z) = windΨ

2 (ũ; z) +m(|m| − 1) deg(Φ−1 ◦Ψ).

If [ũ; z] is pseudoholomorphic, then the quantities

∆2(ũ; z) := (|m| − 1) windΦ
∞(ũ; z)− cov(e1(ũ; z)) + 1− windΦ

2 (ũ; z)(3.22)

∆tot(ũ; z) = (|m| − 1)αΦ(ũ; z)− σ̄(ũ; z) + 1− windΦ
2 (ũ; z)

are even, nonnegative, and independent of the choice of trivialization. Moreover,
we have that ∆2(ũ; z) = 0 if and only if the asymptotic representation of ũ near
z (from Theorem 3.7) has at most two terms and the winding of the eigenvectors
appearing in this formula differ precisely by 1. In particular

windΦ
2 (ũ; z) = (|m| − 1) windΦ

∞(ũ; z)

if and only if cov(e1(ũ; z)) = 1.

Proof. The change of trivialization formula follows as in (3.8) and we again omit
the easy proof. The trivialization independence of the two quantities ∆2(ũ; z)
and ∆tot(ũ; z) is then a straightforward consequence of the change of trivialization
formulas.
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Assuming now that [ũ; z] is pseudoholomorphic, the nonnegativity and evenness
of ∆tot(ũ; z) will follow from the nonnegativity and evenness of ∆2(ũ; z) along with
Lemma 3.13, since ∆tot(ũ; z)−∆2(ũ; z) = ∆1(ũ; z), which was already shown to be
nonnegative and even.

To prove that ∆2(ũ; z) is even and nonnegative, we first write down an alternate
formula for wind2 in terms of the eigenvectors appearing in Theorem 3.7. According
to the theorem, we can write

(3.23) ũ(ψ(s, t)) =

(
mτs, expγm(t)

N∑
i=1

eλis[ei(t) + ri(s, t)]

)
with λi < λi−1, the sequence

k1 = cov(e1) ki = gcd(ki−1, cov(ei))

strictly decreasing in i, and the ri satisfying ri(s, t + 1
ki

) = ri(s, t) and converging

exponentially to zero. We observe that Lemma 3.1 implies that wind Φ−1ei ≤
wind Φ−1ei−1 since λi < λi−1. Since ki−1 divides cov(ei−1) and gcd(ki−1, cov(ei)) =
ki < ki−1 it follows that that cov(ei) 6= cov(ei−1), so Lemma 3.2 let’s us conclude
that we have the strict inequality wind Φ−1ei < wind Φ−1ei−1.

Abbreviating k0 = |m| and wi = wind Φ−1ei, we claim that we can conclude
from (3.23) that

(3.24) windΦ
2 (ũ; z) =

N∑
i=1

(ki−1 − ki)wi.

To see this, observe that if ei(·)−ei(·+ j
k0

) is nonzero then Lemma 3.1 implies that

wind Φ−1ei = wind Φ−1[ei(·)− ei(·+ j
k0

)]

since ei and ei(·)−ei(·+ j
k0

) are eigenvectors of A with the same eigenvalue. Then,

we can use that ri(s, t+ 1
ki

) = ri(s, t) and that

ei(t+ 1
ki

) = ei(t+ cov(ei)/ki
cov(ei)

) = ei(t)

to conclude that if (U,ψ) is an asymptotic representative of ũ, then as j varies

over {1, . . . , k0 − 1}, precisely ki−1 − ki of the terms Φ−1[U(s, ·) − U(s, · + j
k0

)]

have winding wi for s large. The formula (3.24) follows immediately from this
observation and the definition of wind2.

Using the formula (3.24), the quantity ∆2(ũ; z) of interest can be written

∆2(ũ; z) = (k0 − 1)w1 − k1 + 1−
N∑
i=1

(ki−1 − ki)wi.

Using that kN = 1 since [u; z] is an embedded end, we can rewrite this as

∆2(ũ; z) =

N∑
i=1

(ki−1 − ki)w1 − k1 + 1−
N∑
i=1

(ki−1 − ki)wi

= 1− k1 +

N∑
i=1

(ki−1 − ki)(w1 − wi)
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and since the i = 1 term of the sum vanishes, we continue

= 1− k1 +

N∑
i=2

(ki−1 − ki)(w1 − wi)

= 1− k1 +

N∑
i=2

i∑
j=2

(ki−1 − ki)(wj−1 − wj)

= 1− k1 +

N∑
j=2

N∑
i=j

(ki−1 − ki)(wj−1 − wj)

= 1− k1 +

N∑
j=2

(kj−1 − 1)(wj−1 − wj)

=

N∑
j=2

(kj−1 − 1)(wj−1 − wj) + kj − kj−1.(3.25)

Using that wj−1 − wj ≥ 1 for each j and that the kj are a decreasing sequence of
positive integers, we find that each term in this sum in nonnegative (in fact positive
except possibly when j = N). Using the definition of kj with Lemma 3.2, we have
that

(3.26) kj = gcd(kj−1, cov(ej(ũ; z))) = gcd(kj−1, gcd(k0, wj)) = gcd(kj−1, wj)

since kj−1 divides k0. Using further that kj divides wj , we can also write kj =
gcd(kj , wj). These observations allow us to rewrite this sum as

(3.27)

N∑
j=2

(kj−1 − 1)(wj−1 − wj) + gcd(kj−1, wj)− gcd(kj−1, wj−1).

Comparing this with (3.20), it easily follows that each term in the sum is even, and
consequently that the sum is even.

Finally, to see the last claims are true, we observe that it follows from (3.25) that
∆2(ũ; z) = 0 only if wj−1−wj = 1 for all j ∈ Z∩ [2, N ]. However, if wj−1−wj = 1
for some j ∈ Z ∩ [2, N ], we have from (3.26) that

kj = gcd(kj−1, wj) = gcd(kj−1, wj−1 − 1) = 1

since kj−1 divides wj−1. Since the kj form a decreasing sequence of positive integers,
this implies that we must have j = N , and we therefore have that wj−1−wj = 1 for
at most one value of j ∈ Z ∩ [2, N ]. This observation in conjunction with formula
(3.25) imply that ∆2(ũ; z) = 0 if and only if the asymptotic representation (3.23)
of ũ near z has at most two terms, with the winding of the two eigenvectors (in
the case of two terms) appearing in that formula differing by 1. Moreover, there is
one term in this representation if and only if k1 = 1, which happens precisely when
the leading eigenvector e1(ũ; z) is simply covered, and in this case ∆2(ũ; z) = 0 is
equivalent to

windΦ
2 (ũ; z) = (|m| − 1) windΦ

∞(ũ; z).

�

We close this section by defining a quantity that records relative asymptotic
information about two nonintersecting ends limiting to a cover of the same orbit
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with the same covering number. We again let [ũ; z] = [Σ, j, z, [X], ũ] be a decorated
end which is asymptotically cylindrical over γm, we let [ṽ;w] = [Σ′, j′, w, [X], ṽ]
be a second decorated end which is also asymptotically cylindrical over γm, and
assume that the end [ũ; z] and [ṽ;w] are nonintersecting. If we let (U,ψ) and (V, φ)
be asymptotic representatives of [ũ; z] and [ṽ, w] respectively, then the assumption

that [ũ; z] and [ṽ;w] are nonintersecting implies that U(s, t)− V (s, t+ j
m ) is never

zero. Consequently, the maps

t ∈ S1 7→ Φ−1
γm(t)

[
U(s, t)− V (s, t+ j

m )
]
∈ R2 \ {0}

have well-defined winding which is independent of s. We then define the total
relative winding of [ũ; z] and [ṽ;w] relative to a trivialization Φ of γ∗ξH by

windΦ
rel([ũ; z], [ṽ;w]) :=

|m|−1∑
j=0

wind Φ−1
[
U(s, ·)− V (s, ·+ j

m )
]
.

As with the secondary winding, the total relative winding of two nonintersect-
ing ends is easily verified to be independent of choice of asymptotic marker, and
therefore gives a well-defined invariant of the undecorated ends [Σ, j, z, ũ] and
[Σ′, j′, w, ṽ].

In the event that the ends [ũ; z] and [ṽ;w] are pseudoholomorphic, the total rela-
tive winding can be computed in terms of the eigenfunctions appearing in Theorem
3.6. Indeed the assumption that [ũ; z] and [ṽ;w] are nonintersecting tells us that
for each j ∈ {0, . . . , |m| − 1} we can write

U(s, t)− V (s, t+ j
k ) = eλjs[ej(t) + rj(s, t)]

where ej is an eigenvector of the asymptotic operator with eigenvalue λj < 0 and
where rj converges exponentially to zero. The fact that the rj converge to zero as
s→∞ lets us conclude that

windΦ
rel([ũ; z], [ṽ;w]) :=

|m|−1∑
j=0

wind(Φ−1ej).

We collect some useful properties of windrel in the following lemma.

Lemma 3.15. Let [ũ; z] = [Σ, j, z, ũ] and [ṽ;w] = [Σ′, j′, w, ṽ] be nonintersecting

ends in (R ×M, J̃) which are asymptotically cylindrical over γm. If Φ and Ψ are
trivializations of γ∗ξH, then

windΦ
rel([ũ; z]; [ṽ;w]) = windΨ

rel([ũ; z]; [ṽ;w]) +m|m|deg(Φ−1 ◦Ψ)

and

windΦ
rel([ũ; z]; [ṽ;w]) = windΦ

rel([ṽ;w]; [ũ; z]).

If [ũ; z] and [ṽ;w] are pseudoholomorphic ends, the quantity

|m|max
{

windΦ
∞(ũ; z),windΦ

∞(ṽ;w)
}
− windΦ

rel([ũ; z]; [ṽ;w])

is nonnegative and independent of choice of trivialization, and we have the strict
inequality

|m|max
{

windΦ
∞(ũ; z),windΦ

∞(ṽ;w)
}
− windΦ

rel([ũ; z]; [ṽ;w]) > 0
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only if e1(ũ; z) = j ∗m e1(ṽ;w) for some j ∈ Z|m|, where ∗m denotes the Z|m|-action

on (γm)∗ξH (or equivalently if e1(ũ; z) and e1(ṽ;w) determine the same multisection
of γ∗ξH).

Proof. As with Lemmas 3.13 and 3.14, the change of trivialization formula follows
just as in (3.8) and we omit the trivial proof. The symmetry of the total relative
winding is an easy consequence of the fact that winding is fixed by negation and
the Zm action, while the fact that the quantity

|m|max
{

windΦ
∞(ũ; z),windΦ

∞(ṽ;w)
}
− windΦ

rel([ũ; z]; [ṽ;w])

is independent of choice of trivialization follows from the change-of-trivialization
formulas for windrel and wind∞.

Now assume that [ũ; z] and [ṽ;w] are pseudoholomorphic. To see that

|m|max
{

windΦ
∞(ũ; z),windΦ

∞(ṽ;w)
}
− windΦ

rel([ũ; z]; [ṽ;w]) ≥ 0

we observe that the differences

U(s, t)− V (s, t+ j
k )

cannot decay slower than both of U and V . This observation with the definition of
windrel and the monotonicity of winding with respect to eigenvalue imply that

windΦ
rel([ũ; z]; [ṽ;w]) ≤ |m|max

{
windΦ

∞(ũ; z),windΦ
∞(ṽ;w)

}
as claimed. To prove the final claim, we first assume that e1(ũ; z) and e1(ṽ;w) have
different eigenvalues. Using the symmetry of the relative winding, we can assume
without loss of generality that the eigenvalue of e1(ũ; z) is strictly larger than that
of e1(ṽ;w). In this case, it is immediate that e1(ũ; z) must be the eigenvector

appearing in the asymptotic formula for U(s, t) − V (s, t + j
m ) for all j ∈ Zm. It

follows from the definition of the total relative winding, and the monotonicity of
winding in the eigenvalue (Lemma 3.1) that

windΦ
rel([ũ; z]; [ṽ;w]) = |m|windΦ

∞(ũ; z) = |m|max
{

windΦ
∞(ũ; z),windΦ

∞(ṽ;w)
}

as claimed. Next assuming that e1(ũ; z) and e1(ṽ;w) have the same eigenvalue
(and hence the same winding), but belong to different Zm-orbits. Then it is again
straightforward to argue that the eigenvector appearing in the asymptotic formula
of U(s, t)− V (s, t+ j

m ) is

e1(ũ; z)− j ∗m e1(ṽ;w),

and hence

windΦ
rel([ũ; z], [ṽ;w]) =

|m|−1∑
j=0

wind Φ−1 [e1(ũ; z)− j ∗m e1(ṽ;w)]

= |m|windΦ
∞(ũ; z)

(
= |m|windΦ

∞(ṽ;w)
)

= |m|max
{

windΦ
∞(ũ; z),windΦ

∞(ṽ;w)
}
.

The only remaining possibility is that e1(ũ; z) and e1(ṽ;w) have the same eigenvalue
and that e1(ũ; z) is in the Zm-orbit of e1(ṽ;w). Hence, this must be true if the strict
inequality is to occur. �
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3.2. Local intersection theory at∞. We now study local intersection properties
of asymptotically cylindrical curves near their punctures. The key idea, originally
considered in a special case in [16] and more generally in [14], is to perturb the curves
near the ends and compute an intersection number which depends on the direction
of the perturbation. We will see that for pseudoholomorphic ends, this intersection
number is always bounded from below by a number which also depends on the direc-
tion of perturbation, but that the difference between the intersection number and
its lower bound is independent of this choice. We can thus associate to each pseu-
doholomorphic end or pair of ends, an “asymptotic self-intersection/intersection
number” which, roughly speaking, measures tangencies (or self-tangencies) at in-
finity. Many of our results in this section are analogous to those in section 6 of
[14]. We present full proofs here because our point of view and conventions are
somewhat different than those used in [14], and because in one case we achieve a
stronger bound than what is given in [14] which is important for our applications.

We start by considering an embedded (not necessarily pseudoholomorphic) end
model (Σ, j, z, ũ) in R×M , which we assume is asymptotically cylindrical over γm.
Let (U,ψ) denote an asymptotic representative for ũ, so that

ũ(ψ(s, t)) = (mτs, expγm(t) U(s, t))

with ψ : [R,∞)× S1 → Σ \ {z} a proper embedding.
Letting Φ : S1 × C→ γ∗ξH be a unitary trivialization of γ∗ξH and ε ∈ R+ ⊂ C

be a positive real number (thought of as lying in C), we define a map ũz,ε,Φ :
[R,∞)× S1 → R×M by

ũz,ε,Φ(s, t) = (mτs, expγm(t)[U(s, t) + Φ(mt)ε])

so that ũε,Φ is a perturbation of ũ near z in a direction determined by Φ.

Lemma 3.16. There exists an ε0 > 0 so that the intersection number

int(ũ|ψ([R,∞)×S1), ũz,ε,Φ)

is well-defined, independent of ε ∈ (0, ε0), and invariant under homotopies Φτ :
S1 × C→ γ∗ξH of unitary trivializations of γ∗ξH.

Proof. Abbreviating CR = [R,∞)×S1 and IR = [R,R+1]×S1, it follows from the
asymptotic behavior of ũ and the assumption that ũ|ψ([R,∞)×S1) is an embedding
that we can find a number ε0 > 0 so that for any ε ∈ (0, ε0) there exists an R(ε)
so that

ũ(ψ(IR ∪ CR(ε))) ∩ ũz,ε,Φ(CR) = ∅ and ũ(ψ(CR)) ∩ ũz,ε,Φ(IR ∪ CR(ε)) = ∅

for any unitary trivialization Φ; that is, the preimages of all intersections of ũ and
ũz,ε,Φ are contained in the cylinder [R+ 1, R(ε)]× S1.

With this condition satisfied, we can apply standard transversality arguments to
find smooth homotopies v·, w· : [0, 1] × [R,∞) × S1 → R ×M so that v0 = ũ ◦ ψ
and w0 = ũz,ε,Φ,

vτ |IR∪CR(ε)
= ũ ◦ ψ|IR∪CR(ε)

and wτ |IR∪CR(ε)
= ũz,ε,Φ|IR∪CR(ε)

for all τ ∈ [0, 1],

vτ (IR ∪ CR(ε)) ∩ wτ (CR) = ∅ and vτ (CR) ∩ wτ (IR ∪ CR(ε)) for all τ ∈ [0, 1],

and so that v1 and w1 have only transverse intersections. These conditions imply
that the set S = {(p, q) ∈ CR × CR | v1(p) = w1(q)} is contained in ([R+ 1, R(ε)]×
S1)2, and the transversality assumption implies that the set S is finite. We can
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therefore define the intersection number int(v1, w1) by counting with sign the in-
tersections of v1 and w1, and we define

int(ũ|ψ([R,∞)×S1), ũz,ε,Φ) = int(v1, w1).

Considering a generic path of homotopies shows that this number does not depend
on the choice of homotopy. Moreover, if ũτz and ũτz,ε,Φ are any homotopies starting

at ũ|ψ([R,∞)×S1) and ũz,ε,Φ respectively, we will have that

int(ũ|ψ([R,∞)×S1), ũz,ε,Φ) = int(ũτz , ũ
τ
z,ε,Φ)

provided that there exists an R1 so that

ũτz (IR ∪ CR1
) ∩ ũτz,ε,Φ(CR) = ∅ and ũτz (CR) ∩ ũτz,ε,Φ(IR ∪ CR1

) = ∅

for all τ ∈ [0, 1]. In particular, this homotopy invariance implies that the intersec-
tion number int(ũ|ψ([R,∞)×S1), ũz,ε,Φ) is independent of ε ∈ (0, ε0) and invariant

under homotopies of unitary trivializations Φτ : S1 × C→ γ∗ξH. �

We use the above lemma to define an invariant of an embedded, asymptotically
cylindrical end model. Let (Σ, j, z, ũ) still denote an embedded end model, let O
be some open neighborhood of z, and let ũz,ε,Φ denote a perturbation of ũ|O near
z defined as above. The preceding lemma shows that the intersection number

int(ũ|O, ũz,ε,Φ)

is independent of sufficiently small ε > 0 and depends only on the map ũ, and the
homotopy class of unitary trivialization Φ. Using this observation, we define the
relative asymptotic self-intersection number iΦ∞(ũ; z) of the end model (Σ, j, z, ũ)
relative to Φ by

iΦ∞(ũ; z) := int(ũ|O, ũz,ε,Φ)

for any sufficiently small ε > 0 so that the conclusions of the preceding lemma hold.
Using Theorem 3.7, we can compute iΦ∞(ũ; z) in terms of the winding invariants

defined in the previous section. We state this as a lemma.

Lemma 3.17. Let (Σ, j, z, ũ) be an embedded, asymptotically cylindrical end model,
and let Φ be a unitary trivialization of the plane-field ξH along the asymptotic limit
of ũ at z. Then the asymptotic self-intersection number iΦ∞(ũ; z) of ũ at z relative
to Φ is given by

iΦ∞(ũ; z) = −windΦ
2 (ũ; z).

We remark that this Lemma demonstrates that the asymptotic intersection num-
ber is an invariant of the embedded pseudoholomorphic end [Σ, j, z, ũ] and does not
depend on the choice of embedded model (Σ, j, z, ũ) representing [Σ, j, z, ũ].

Proof. Assume that γm is the asymptotic limit of the end, and let (U,ψ) be an
asymptotic representative of the end, so we can write

ũ(ψ(s, t)) = (mτs, expγm(t) U(s, t))

Note that the assumption that ũ is an embedding implies U(s, t)−U(s, t+ j
m ) has

no zeroes for j 6= 0 mod m. By definition, the asymptotic self-intersection number
iΦ∞(ũ; z) is computed by counting signed intersections of ũ and the map

ũz,ε,Φ(s, t) = (mτs, expγm(t)[U(s, t) + Φ(mt)ε]).
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Considering the representations given for these maps, we see that

ũ ◦ ψ(s, t) = ũz.ε,Φ(s′, t′)

if and only if

s = s′,

t = t′ + j
m for some j ∈ Zm, and

U(s, t) = U(s, t+ j
m ) + Φ(mt)ε,

where in the last condition we have applied the previous two and have used the
1-periodicity of Φ and the 1

m -periodicity of γm. It clear then that the algebraic
count of intersections of ũ with ũz,ε,Φ is equal to the sum of the algebraic count of
zeroes of

U(s, t)− U(s, t+ j
m )− Φ(mt)ε

as j varies over Zm, which in turn is equal to the algebraic count of zeroes of the
function Fj : [R,∞)× S1 → C defined by

Fj(s, t) = Φ(mt)−1[U(s, t)− U(s, t+ j
m )]− ε ∈ C

as j varies over Zm \ {0}.
Since all zeroes of the Fj lie in the interior of a compact cylinder of the form

[R1, R2]× S1, the algebraic count of zeroes of Fj will be equal to the difference in
winding of the loop t 7→ Fj(s, t) for s ≥ R2 and s ≤ R1. For large s′ ≥ R2, the
assumed decay of U − j ∗ U implies that

wind(Fj(s
′, ·)) = wind(Φ(m ·)−1[U(s, ·)− U(s, ·+ j

m )]− ε) = wind(−ε) = 0.

Next, assuming we’ve chosen ε < inft∈S1 |U(R1, t)− U(R1, t+ j
m )|, we have that

wind(Fj(R1, ·)) = wind(Φ(m ·)−1[U(R1, ·)− U(R1, ·+ j
m )]− ε)

= wind(Φ(m ·)−1[U(R1, ·)− U(R1, ·+ j
m )]).

Since Φ(mt)−1[U(s, t) − U(s, t + j
m )] has no zeroes, we know that the winding is

independent of s. We these observations with the definition of wind2 from the
previous section to conclude that

iΦ∞(ũ; z) =

|m|−1∑
j=1

wind(Fj(R2, ·))− wind(Fj(R1, ·))

= −
|m|−1∑
j=1

wind(Φ(m ·)−1[U(R1, ·)− U(R1, ·+ j
m )])

= −windΦ
2 (ũ; z),

as claimed. �

As an immediate corollary of this computation and Lemma 3.14 we get that
the asymptotic self-intersection number satisfies a number of properties. Note that
(3.28) below is an improvement on Lemma 6.7 in [14], and reduces to the result
given there when cov(e1(ũ; z)) = 1.
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Corollary 3.18. Let [ũ; z] = [Σ, j, z, ũ] be an embedded end, with asymptotic limit
γm, and let Φ and Ψ be unitary trivializations of γ∗ξH. Then the relative asymptotic
self-intersection number of the end [ũ; z] satisfies

iΦ∞(ũ; z) = iΨ∞(ũ; z)−m(|m| − 1) deg(Φ−1 ◦Ψ)

If [ũ; z] is a pseudoholomorphic end, then:

• We have that

(3.28) iΦ∞(ũ; z) ≥ −(|m| − 1) windΦ
∞(ũ; z) + cov(e1(ũ; z))− 1

and that

iΦ∞(ũ; z) = −(|m| − 1) windΦ
∞(ũ; z)

if and only if cov(e1(ũ; z)) = 1.
• In particular, we have that

iΦ∞(ũ; z) ≥ −(|m| − 1)αΦ(ũ; z) + σ̄(ũ; z)− 1

and that

iΦ∞(ũ; z) = −(|m| − 1)αΦ(ũ; z)

if and only if d0(ũ; z) = 0 and σ̄(ũ; z) = 1.

The lower bounds on iΦ∞(ũ; z) should be thought of as a sort of “positivity of
intersections at infinity” for embedded pseudoholomorphic ends. Indeed, we have
shown that the quantity

iΦ∞(ũ; z) + (|m| − 1)αΦ(ũ; z)

is independent of choice of trivialization, and that

iΦ∞(ũ; z) + (|m| − 1)αΦ(ũ; z) = windΦ
2 (ũ; z) + (|m| − 1)αΦ(ũ; z)

= ∆1(ũ; z) + ∆2(ũ; z) + [σ̄(ũ; z)− 1]

where each of the three terms on the right hand side of this equation are nonnegative
quantities when [ũ; z] is pseudoholomorphic. We will define the asymptotic self-
intersection index δ∞(ũ; z) of the end [ũ; z] to be

δ∞(ũ; z) := 1
2

[
iΦ∞(ũ; z) + (|m| − 1)αΦ(ũ; z)− σ̄(ũ; z) + 1

]
(3.29)

= 1
2∆tot(ũ; z).

We note that for pseudoholomorphic ends the asymptotic self-intersection index
takes values in the nonnegative integers as a result of Lemmas 3.14 and 3.17. The as-
ymptotic self-intersection index can be thought of as a measure of the self-tangency
at infinity of a pseudoholomorphic end. In any given trivialization, it counts one
half the difference between the number of intersections an embedded end has with
a perturbed copy of itself and the minimum number that must appear for any end
with the same asymptotic data.

We now move on to considering the asymptotic intersection properties of a pair
of ends of curves which are asymptotic to coverings of the same simple periodic
orbit with the same sign. Our assumptions will be that (Σ, j, z, ũ) and (Σ′, j′, w, ṽ)
are nonintersecting (not necessarily pseudoholomorphic) end models in R × M .
We further assume that ũ is asymptotically cylindrical near z over γmz , and ṽ is
asymptotically cylindrical near w to γmw , and that mz and mw have the same sign.
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We assume that (U,ψ) and (V, φ) are asymptotic representatives of ũ and ṽ
respectively so that we can write

ũ ◦ ψ(s, t) = (mzτs, expγmz (t) U(s, t))

ṽ ◦ φ(s, t) = (mwτs, expγmw (t) V (s, t))

for (s, t) ∈ [R,∞)×S1 for some R ∈ R. If Φ is a trivialization of γ∗ξH, we define a
map ṽw,ε,Φ : [R,∞)×S1 →W as above by perturbing the map ṽ on a neighborhood
of w in a direction determined by Φ. As above we have the following lemma.

Lemma 3.19. There exists an ε0 > 0 so that the intersection number

int(ũ, ṽw,ε,Φ)

is well-defined and independent of ε ∈ (0, ε0) and invariant under homotopies of
unitary trivializations Φ.

Proof. Again denoting CR = [R,∞)× S1 and IR = [R,R+ 1]× S1, it follows from
the asymptotic behavior of (ũ; z) and (ṽ;w) that there exists an ε1 > 0 so that

ũ ◦ φ(IR) ∩ ṽw,ε,Φ(CR) = ∅ and ũ ◦ φ(CR) ∩ ṽw,ε,Φ(IR) = ∅

for and ε ∈ (0, ε1) and any unitary trivialization Φ of γ∗ξH. Moreover, the asymp-
totic behavior of ũ and ṽ implies that there exists an ε2 so that for any ε ∈ (0, ε2) we
can find an R(ε) so that ũ◦φ(CR(ε))∩ṽw,ε,Φ(CR) = ∅ and ũ◦φ(CR)∩ṽw,ε,Φ(CR(ε)) =
∅ for any unitary Φ. Therefore choosing ε0 > 0 less than min {ε1, ε2}, it follows
that for any ε ∈ (0, ε0) we have

ũ ◦ φ(IR ∪ CR(ε)) ∩ ṽw,ε,Φ(CR) = ∅

and

ũ ◦ φ(CR) ∩ ṽw,ε,Φ(IR ∪ CR(ε)) = ∅
for any unitary Φ. Given this, the claims of the lemma follow from standard
transversality and homotopy invariance arguments as in Lemma 3.16. �

We use this lemma to define a local invariant of a pair of nonintersecting asymp-
totically cylindrical ends. Let (Σ, j, z, ũ) and (Σ′, j′, w, ṽ) still denote nonintersect-
ing end models asymptotically cylindrical over γmz and γmw respectively, with mz

and mw having the same sign. Let O be some open neighborhood of w, and let vε,Φ
still denote a perturbation of ṽ|O defined as above. The preceding lemma shows
that the intersection number

int(ũ, ṽε,Φ)

is independent of sufficiently small ε > 0 and depends only on the maps ũ and ṽ
and the homotopy class of the unitary trivialization Φ. Using this observation, we
define the relative asymptotic intersection number of the end models (Σ, j, z, ũ) and
(Σ′, j′, w, ṽ) relative to Φ by

iΦ∞([ũ; z], [ṽ;w]) := int(ũ|O, ṽε,Φ).

where ε > 0 is chosen small enough so that the conclusions of the previous lemma
apply.

As with the relative asymptotic self-intersection number, we can use Theorem
3.6 to compute the relative asymptotic intersection number in terms of the local
winding-related invariants studied in the previous section.
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Lemma 3.20. Let (Σ, j, z, ũ) and (Σ′, j′, w, ṽ) be nonintersecting asymptotically
cylindrical end models, and assume that (Σ, j, z, ũ) and (Σ′, j′, w, ṽ) are asymptoti-
cally cylindrical over γmz and γmw respectively with mzmw > 0. Then the relative
asymptotic intersection number of (ũ; z) and (ṽ;w) is given by

iΦ∞([ũ; z], [ṽ;w]) = − 1
mzmw

windΦ
rel(|mw| · [ũ; z], |mz| · [ṽ;w])

where Φ is a unitary trivialization of γ∗ξH, and m· is the operation of multiply
covering an asymptotically cylindrical end.

We remark that, as with the relative asymptotic self-intersection number, this
lemma demonstrates that the relative asymptotic intersection number is an invari-
ant of the ends [Σ, j, z, ũ] and [Σ′, j′, w, ṽ], and does not depend on the choice of
models representing these ends.

Proof. We initially assume that the ends in question cover γ with the same covering
number, i.e. that mz = mw. In this case, an argument analogous to that in Lemma
3.17 shows that

iΦ∞([ũ; z], [ṽ;w]) = −windΦ
rel([ũ; z], [ṽ;w]).

Moreover, it is an easy consequence of the definition of windrel that

windΦ
rel(m · [ũ; z],m · [ṽ;w]) = m2 windΦ

rel([ũ; z], [ṽ;w])

for any positive integer m so this is equivalent to the formula given in the statement
of the lemma.

In the case that [ũ; z] and [ṽ;w] cover γ with different covering numbers (i.e.
mz 6= mw) then we can replace [ũ; z] and [ṽ;w] with the multiply covered ends
|mw| · [ũ; z] and |mz| · [ṽ;w] which both have covering number mz|mw| = |mz|mw.
Then the reasoning of the previous paragraph gives

iΦ∞(|m2| · [ũ; z], |mz| · [ṽ;w]) = −windΦ
rel(|m2| · [ũ; z], |mw| · [ṽ;w]).

Moreover, it is an easy consequence of the definition of the relative asymptotic
intersection number that

iΦ∞(k1 · [ũ; z], k2 · [ṽ;w]) = k1k2 i
Φ
∞([ũ; z], [ṽ;w])

for any positive integers k1 and k2. The claim of the lemma follows immediately
from these two equations. �

This lemma used with the basic results about the total relative winding yields
the following corollary. Note that (3.30) below is analogous to Lemma 6.9 in [14].

Corollary 3.21. Let [ũ; z] and [ṽ;w] be nonintersecting ends asymptotically cylin-
drical over γmz and γmw respectively, and let Φ and Ψ be unitary trivializations of
γ∗ξH. Then the relative asymptotic intersection number satisfies

iΦ∞([ũ; z], [ṽ;w]) = iΦ∞([ṽ;w], [ũ; z])

iΦ∞([ũ; z], [ṽ;w]) = iΨ∞([ũ; z], [ṽ;w])−mz|mw|deg(Φ ◦Ψ)

If [ũ; z] and [ṽ;w] are pseudoholomorphic, then

iΦ∞([ũ; z], [ṽ;w]) ≥ −mzmw max
{

windΦ
∞(ũ;z)
|mz| ,

windΦ
∞(ṽ;w)
|mw|

}
(3.30)

iΦ∞([ũ; z], [ṽ;w]) ≥ −mzmw max
{
αΦ(γmz )
|mz| , α

Φ(γmw )
|mw|

}
.(3.31)
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Proof. The first two statements follow directly from Lemmas 3.20 and 3.15. The
inequality (3.30) follows from these same Lemmas and the additional elementary
fact that

windΦ
∞(m · [ũ; z]) = mwindΦ

∞(ũ; z)

for any pseudoholomorphic end [ũ; z] and any positive integer m. Finally, the
inequality (3.31) follows from (3.30) and that

windΦ
∞(ũ; z) ≤ αΦ(ũ; z)

for pseudoholomorphic ends, as observed in Lemma 3.13. �

As in the case of a single end, we define the asymptotic intersection index,
δ∞([ũ; z], [ṽ;w]), of the pair of ends [ũ; z] and [ṽ;w] satisfying the assumptions
of the previous lemmas by

(3.32) δ∞([ũ; z], [ṽ;w]) := iΦ∞([ũ; z], [ṽ;w]) +mzmw max
{
αΦ(γmz )
|mz| , α

Φ(γmw )
|mw|

}
and we note that when [ũ; z] and [ṽ;w] are pseudoholomorphic, this quantity is non-
negative as a result of the preceding corollary. The asymptotic intersection index
can be thought of as a measure of the tangency at infinity of the two pseudoholo-
morphic ends. It counts the difference between the number of intersections that
appear when one end is perturbed and the minimum number that must appear for
any two nonintersecting pseudoholomorphic ends with the given asymptotic data.

4. Invariants and applications

4.1. The generalized intersection number and positivity of intersections.

4.1.1. Relative intersection number. In this section we introduce the relative inter-
section number, and establish its basic properties. We consider two smooth asymp-
totically cylindrical maps (Σ, j,Γ, ũ), (Σ′, j′,Γ′, ṽ) ∈ C∞(W,H+,H−) where W is a
4-manifold with Hamiltonian structured cylindrical ends. Given a trivialization Φ
of the stable Hamiltonian hyperplane field along the periodic orbits, we define the
relative intersection number iΦ(ũ, ṽ) of ũ and ṽ relative to Φ by perturbing ṽ near
its punctures in a direction determined by Φ and computing the algebraic inter-
section number of ũ with the perturbation of ṽ. More precisely, given a puncture
w ∈ Γ′ of ṽ, we can find a neighborhood U of w which gets mapped entirely within
one of the cylindrical ends, and so that

ṽ(φ(s, t)) = (ms, expγm(t) h(s, t)) ∈ R± ×M±

for some simple periodic orbit γ andm ∈ Z\{0}, where φ : [R,∞)×S1 → U\{w} is a
diffeomorphism. Choosing some smooth cutoff function β supported in U and equal
to 1 in a neighborhood of w, we define the perturbed end ṽUΦ,ε : U \{w} → R±×M±
by

(4.1) ṽUΦ,ε = (ms, expγm(t) [h(s, t) + β(φ(s, t))Φγ(mt)ε]) ∈ R± ×M±

where Φγ : S1×C→ γ∗ξH
±

is a unitary trivialization of γ∗ξH
±

and ε ∈ R+ ∈ C is
a small, positive real number. We define the map ṽΦ,ε : Σ′ \Γ′ →W by replacing ṽ
in a neighborhood of each puncture with a perturbation as in (4.1). It then follows
from standard arguments that there exists an ε0 > 0 so that for ε ∈ (0, ε0) the
algebraic intersection number

int(ũ, ṽΦ,ε)
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is independent of all choices made except for that of the homotopy class of triv-
ialization Φ. We thus define the relative intersection number iΦ(ũ, ṽ) of ũ and ṽ
relative to Φ by

iΦ(ũ, ṽ) := int(ũ, ṽΦ,ε)

for some sufficiently small ε > 0.
We summarize important properties of the relative intersection number in the

following proposition.

Proposition 4.1. Let ũ and ṽ satisfy the assumptions of the previous paragraph,

and let Φ be a trivialization of ξH
±

along the asymptotic limits of ũ and ṽ. More-
over, assume that at z ∈ Γ, ũ is asymptotic to γmzz and at w ∈ Γ′, ṽ is asymptotic
to γmww . Then the relative intersection number iΦ(ũ, ṽ) satisfies:

(1) iΦ(ũ, ṽ) depends only on the homotopy classes of Φ, ũ, and ṽ
(2) iΦ(ũ, ṽ) = iΦ(ṽ, ũ)

(3) If Ψ is another trivialization of ξH
±

along the periodic orbit set of the ends,
then

iΦ(ũ, ṽ) = iΨ(ũ, ṽ) +
∑

(z,w)∈Γ+×Γ′+
γz=γw

−mzmw deg(Φ−1
γz ◦Ψγw)

+
∑

(z,w)∈Γ−×Γ′−
γz=γw

mzmw deg(Φ−1
γz ◦Ψγw)

Proof. Part (1) follows from standard transversality and homotopy-invariance ar-
guments, and we omit the straightforward details.

To see that part (2) is true, it suffices construct homotopies ũτ and ṽτ , so that

ũ0 = ũ

ũ1 = ũΦ,ε

ṽ0 = ṽΦ,ε

ṽ1 = ṽ

and so that there exist neighborhoods U of Γ and V of Γ′ so that

ũτ (U \ Γ) ∩ ṽτ (Σ′ \ Γ′) = ∅

and

ũτ (Σ \ Γ) ∩ ṽτ (V \ Γ′) = ∅.
for all τ ∈ [0, 1]. This again is straightforward and we omit the details.

Finally (3), follows from an argument analogous to that in Lemma 2.5 (b) in
[14], and we refer the reader there for more detail. �

For pseudoholomorphic maps, it follows from Corollary 3.10 that the relative
intersection number can be computed by summing local intersection numbers, and
asymptotic intersection numbers as defined in the preceding section. Before stating
the result, we establish some notation and terminology. Consider pseudoholomor-
phic curves [Σ, j,Γ, ũ], [Σ′, j′,Γ′, ṽ] ∈ M(W, J̄,H+,H−). A small neighborhood of
a puncture z ∈ Γ determines a pseudoholomorphic end (as defined in section 3.1.2)
which we will abbreviate [ũ; z]. Thus if [ũ; z] and [ṽ;w] are nonintersecting and



44 R. SIEFRING

asymptotic to a covering of the same orbit with the same sign, we can define the
relative asymptotic intersection number

iΦ∞([ũ; z], [ṽ;w])

as in the previous section. Otherwise, we define

iΦ∞([ũ; z], [ṽ;w]) = 0

and we define the total relative asymptotic intersection number iΦ∞(ũ, ṽ) of [Σ, j,Γ, ũ]
and [Σ′, j′,Γ′, ṽ] by

iΦ∞(ũ, ṽ) :=
∑

(z,w)∈Γ×Γ′

iΦ∞([ũ; z], [ṽ;w]).

Next, we say that [Σ, j,Γ, ũ] and [Σ′, j′,Γ′, ṽ] ∈M(W, J̄,H+,H−) have no com-
mon components if ũ−1(ṽ(Σ′ \ Γ′)) does not contain an open set. In this case, it
follows from Corollary 3.10 that ũ and ṽ intersect in a finite number of points.
We can thus define the algebraic intersection number of ũ and ṽ by summing lo-
cal intersection numbers. We now state the result giving the relative intersection
number of two pseudoholomorphic curves. This result is analogous to Lemma 8.5
in [14] in the case that the S1 and S2 considered there are pseudoholomorphic. The
result follows immediately from local intersection properties of pseudoholomorphic
curves, Corollary 3.10, and the definitions of the terms involved, and we omit the
straightforward proof.

Theorem 4.2. Let [Σ, j,Γ, ũ], [Σ′, j′,Γ′, ṽ] ∈ M(W, J̄,H+,H−) be a pair of pseu-
doholomorphic curves having no common components. Then

(4.2) iΦ(ũ, ṽ) = int(ũ, ṽ) + iΦ∞(ũ, ṽ).

4.1.2. The generalized intersection number. We now define the generalized inter-
section number of two asymptotically cylindrical maps. This quantity will be an
integer-valued symmetric product on the space of (homotopy classes of) smooth
asymptotically cylindrical maps, which for pseudoholomorphic curves will bound
the algebraic intersection number from above.

Motivated by the bounds on relative asymptotic intersection numbers from Corol-
lary 3.21 above, we define a homotopy-invariant product on asymptotically cylindri-
cal maps by adding a term to the relative intersection pairing that cancels out the
trivialization dependence. Consider two smooth asymptotically cylindrical maps
(Σ, j,Γ, ũ) and (Σ′, j′,Γ′, ṽ) ∈ C∞(W,H+,H−) with W as usual denoting a 4-
dimensional manifold with Hamiltonian structured ends. Assume that at z ∈ Γ±
that ũ is asymptotic to γmzz , and at w ∈ Γ′± that ṽ is asymptotic to over γmww . Given

a trivialization of ξH
±

along the asymptotic limits of ũ and ṽ, define a quantity
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ΩΦ(ũ, ṽ) by4

ΩΦ(ũ, ṽ) :=
∑

(z,w)∈Γ+×Γ′+
γz=γw

mzmw max
{
αΦ(γmzz )
mz

,
αΦ(γmww )
mw

}

+
∑

(z,w)∈Γ−×Γ′−
γz=γw

mzmw max
{
αΦ(γmzz )
−mz ,

αΦ(γmww )
−mw

}
.

Note that this quantity depends only on the asymptotic data associated to the two
maps, and not on the maps themselves. We then define the generalized intersection
number of two asymptotically cylindrical maps by

(4.3) [ũ] ∗ [ṽ] = iΦ(ũ, ṽ) + ΩΦ(ũ, ṽ).

We note that as an immediate consequence of the change of trivialization formulas
for iΦ and αΦ from Proposition 4.1 and Lemma 3.4 that the generalized intersection
number does not depend on the choice of trivialization.

We now prove Theorem 2.1 which gives the basic properties of the generalized
intersection number. We restate the result here for the convenience of the reader.

Proposition 4.3 (Properties of the generalized intersection number). Let W , W1

and W2 be 4-manifolds with Hamiltonian structured cylindrical ends, and assume
we can form the concatenation W1 �W2. Then:

(1) If (Σ, j,Γ, ũ) and (Σ′, j′,Γ′, ṽ) ∈ C∞(W,H+,H−) are asymptotically cylin-
drical maps then the generalized intersection number [ũ] ∗ [ṽ] depends only
on the homotopy classes of ũ and ṽ.

(2) For any (Σ, j,Γ, ũ) and (Σ′, j′,Γ′, ṽ) ∈ C∞(W,H+,H−)

[ũ] ∗ [ṽ] = [ṽ] ∗ [ũ].

(3) If (Σ, j,Γ, ũ), (Σ′, j′,Γ′, ṽ), (Σ′′, j′′,Γ′′, w̃) ∈ C∞(W,H+,H−) then

[ũ+ ṽ] ∗ [w̃] = [ũ] ∗ [w̃] + [ṽ] ∗ [w̃]

where “+” on the left hand side denotes the disjoint union of the maps ũ
and ṽ.

(4) If u1 � u2 and v1 � v2 are asymptotically cylindrical buildings in W1 �W2

then
[u1 � u2] ∗ [v1 � v2] ≥ [u1] ∗ [v1] + [u2] ∗ [v2].

Moreover, strict inequality occurs if and only if there is a periodic orbit
γ so that ũ1 has a negative puncture asymptotic to γm, ṽ1 has a negative
puncture asymptotic to γn, and both γm and γn are odd orbits.

Proof. The first claim follows immediately from the fact that iΦ∞(ũ, ṽ) and ΩΦ(ũ, ṽ)
are determined entirely by the homotopy classes of ũ, ṽ, and Φ. Since their sum
does not depend on a choice of trivialization, the generalized intersection number
only depends on the homotopy class of ũ and ṽ in C∞(W,H+,H−).

The second claim follows immediately from the symmetry of the relative inter-
section number and the quantity ΩΦ(ũ, ṽ), and the third claim follows immediately
from the definition and basic properties of intersection numbers.

4 Note that this is the same quantity appearing in the sum on the right hand side of formula
(2.3) from the introduction, except here we use that αΦ(γk) = bµΦ(γk)/2c (see (3.4)) and we

explicitly separate the parts of the sum coming respectively from positive punctures and negative
punctures.



46 R. SIEFRING

Before proving the final claim, we first establish some notation. We first observe
that, since we assume that the concatenation u1 � u2 is defined, that the asymp-
totic data at the negative punctures of u1 must correspond with and match the
asymptotic data at the positive punctures of u2. We will let Γ1,− =

{
z−i
}

denote

the set of negative punctures of u1 and Γ2,+ =
{
z+
i

}
denote the set of positive

punctures of u2. Moreover we assume that at z+
i , u2 is asymptotic to the periodic

orbit γmii , while at z−i , u1 is asymptotic to the periodic orbit γ−mii . Similarly, let
Γ′1,− =

{
w−j
}

(Γ′2,+ =
{
w+
j

}
) be the set of negative (positive) punctures of v1 (v2),

and assume that at w+
j (w−j ) that v2 (v1) is asymptotic to the periodic orbit γ̂

nj
j ,

γ̂
−nj
j .

With this notation set, it follows the definition of the generalized intersection
number that

(4.4)

[u1 � u2] ∗ [v1 � v2]− [u1] ∗ [v1]− [u2] ∗ [v2]

=
∑
i,j

γi=γ̂j

−minj

(
max

{
αΦ(γ

mi
i )

mi
,
αΦ(γ̂

nj
j )

nj

}
+ max

{
αΦ(γ

−mi
i )

mi
,
αΦ(γ̂

−nj
j )

nj

})

Consider then the expression

∆(γ,m, n) := −mn
(

max
{
αΦ(γm)
m , α

Φ(γn)
n

}
+ max

{
αΦ(γ−m)

m , α
Φ(γ−n)
n

})
with m and n positive integers. If γ is an even orbit, then Lemma 3.3 implies that

∆(γ,m, n) = −mn
(

max
{
mαΦ(γ)

m , nα
Φ(γ)
n

}
+ max

{
−mαΦ(γ)

m , −nα
Φ(γ)
n

})
= 0.

If γ is odd and hyperbolic, we get

∆(γ,m, n) = −mn

(
max

{
mαΦ(γ)+

1
2 (m−p(m))

m ,
nαΦ(γ)+

1
2 (n−p(n))

n

}

+ max

{
−mαΦ(γ)+

1
2 (−m−p(−m))

m ,
−nαΦ(γ)+

1
2 (−n−p(−n))

n

})
= −mn

(
max

{
−p(m)

m ,−p(n)
n

})
= min {np(m),mp(n)} ≥ 0,

and we get a strict inequality here if and only if m and n are both odd. Finally, if
γ is elliptic, we get that there is an irrational θ so that

∆(γ,m, n) = −mn
(

max
{
bmθc
m , bnθcn

}
+ max

{
b−mθc
m , b−nθcn

})
= min {−nbmθc,−mbnθc}+ min {−nb−mθc,−mb−nθc}
≥ −bnmθc − b−nmθc
= dnmθe − bnmθc = 1.

Thus for each pair (i, j) with γi = γ̂j and γmii and γ̂
nj
j both having odd Conley-

Zehnder index, we get a positive term in the sum (4.4), which proves our claim. �

We next prove Theorem 2.2 which is one of the main motivations for defining
the generalized intersection number as we have. It says that for a pair of asymp-
totically cylindrical pseudoholomorphic curves with no common components, the
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generalized intersection number is equal to the algebraic intersection number plus
the total measure of tangency at infinity between the two curves. Since the gen-
eralized intersection number is a homotopy invariant quantity, while the algebraic
intersection number in general is not, this result demonstrates the utility of this
quantity in situations where one is hoping to obtain topological control over the
total count of intersections between two curves.

Before restating and proving the theorem we establish some notation. As pre-
viously noted an asymptotically cylindrical pseudoholomorphic curve [Σ, j,Γ, u] ∈
M(W, J̄,H+,H−) determines a pseudoholomorphic end (as defined in section 3.1.2)
in one of the ends of W . Given a second curve [Σ′, j′,Γ′, v] having no common com-
ponents with ũ and so that the ends [u; z] and [v;w] are asymptotic to a covering of
the same orbit with the same sign, we can define the asymptotic intersection index

δ∞([u; z], [v;w])

as before in (3.32). Otherwise, we define

δ∞([u; z], [v;w]) = 0,

and we then define the total asymptotic intersection index δ∞(u, v) of [Σ, j,Γ, u]
and [Σ′, j′,Γ′, v] by

δ∞(u, v) :=
∑

(z,w)∈Γ×Γ′

δ∞([u; z], [v;w]).

We now restate and prove Theorem 2.2.

Theorem 4.4 (Positivity of the generalized intersection number). Let (W 4, J̄) be
an almost complex cobordism with cylindrical ends (R± × M±, J±,H±), and let
[Σ, j,Γ, u], [Σ′, j′,Γ′, v] ∈ M(W, J̄,H+,H−) be pseudoholomorphic curves in W
with no common components. Then

(4.5) [u] ∗ [v] = int(u, v) + δ∞(u, v).

In particular

[u] ∗ [v] ≥ int(u, v) ≥ 0,

and

[u] ∗ [v] = 0

if and only if u and v don’t intersect, and the total asymptotic intersection number
vanishes, i.e. δ∞(u, v) = 0.

Proof. The equation (4.5) follows immediately from adding ΩΦ(u, v) to both sides
of (4.2) and then applying the definition (3.32) of the asymptotic intersection index.

The final two claims are direct consequences of (4.5), local positivity of inter-
sections for pseudoholomorphic curves, and the nonnegativity of the asymptotic
intersection index. �

4.2. The adjunction formula.



48 R. SIEFRING

4.2.1. Relative Chern numbers and the total Conley-Zehnder index. In order to
state the appropriate generalization of (1.1), we will need to introduce a relative
version of the first Chern number of a complex vector bundle over a punctured
Riemann surface. This will then be used to define the total Conley-Zehnder index
of an asymptotically cylindrical map.

Let (Σ, j) be a closed Riemann surface, and let Γ ⊂ Σ be a finite set. We will
call an open neighborhood U of Γ disk-like if the closure Ū of U is diffeomorphic to
a disjoint union of closed disks, and if each component of U contains precisely one
element of Γ. Let E → Σ \ Γ be a complex vector bundle. Since for any disk-like
neighborhood U of Γ the set U \ Γ has the homotopy type of a disjoint union of
circles, the restriction E|U\Γ is trivial. Let Φ : U \ Γ× Cn → E be a trivialization
of E|U\Γ. If E is a line bundle, then we will define the first Chern number c1(E; Φ)
of E relative to Φ to be equal to the algebraic count of zeroes of a generic extension
of the section Φ(z)1 of E|U\Γ to a section of E. If dimCE = n > 1, we define the
first Chern number of E relative to Φ by

c1(E; Φ) = c1(ΛnCE; ΛnCΦ)

where ΛnCE is the determinant line bundle of E and ΛnCΦ is the trivialization of
ΛnCE|U\Γ induced by Φ. We can define an equivalence relation on the set of pairs
(U,Φ) of disk-like neighborhoods of Γ and trivializations Φ of E|U\Γ be defining
(U,Φ) ∼ (V,Ψ) provided there exists a disk-like neighborhood U ′ ⊂ U ∩ V of Γ
so that Φ|U ′\Γ is homotopic to Ψ|U ′\Γ. The relative first Chern number c1(E; Φ)
clearly only depends on the equivalence class of the pair (U,Φ).

We collect some useful properties of the relative first Chern number in the lemma
below, but before stating the lemma we will establish some notation and terminol-
ogy. Given a punctured Riemann surface Σ \ Γ, we will call a pair (U,ψ) a holo-
morphic cylindrical coordinate system around Γ if U is a disk-like neighborhood

of Γ and ψ is a biholomorphic map ψ : q#Γ
i=1([0,∞) × S1)i → Ū \ Γ. Using the

coordinate fields ∂s and ∂t to identify T(s,t)([0,∞)× S1) with C, we note that the
derivative of ψ is a map

dψ : T (q#Γ
i=1([0,∞)× S1)i) ≈ (q#Γ

i=1([0,∞)× S1)i)× C→ TΣ|U\Γ
and therefore determines a trivialization of (TΣ, j) over U \ Γ. If E → Σ \ Γ is a
complex bundle, and Φ and Ψ are trivializations of E|U\Γ, then Φ−1◦Ψ determines a

map U \Γ→ GLn(C). If we denote ψi = ψ|([0,∞)×S1)i , then det((Φ−1◦Ψ)(ψi(s
′, ·)))

is an oriented loop in C \ {0} for any fixed s′ ∈ R+. We define deg(Φ−1 ◦Ψ) by

deg(Φ−1 ◦Ψ) =

#Γ∑
i=1

wind
(
det
(
(Φ−1 ◦Ψ)(ψi(s

′, ·))
))

and note that this definition does not depend on the choice of holomorphic cylin-
drical coordinates, or on s′.

Lemma 4.5. Let (Σ, j) be a closed Riemann surface and let Γ ⊂ Σ be a finite set.
Let E, E1, E2 → Σ\Γ be complex vector bundles over Σ\Γ, and let U be a disk-like
neighborhood of Γ. Then

• If Φ and Ψ are each trivializations of E|U\Γ then

(4.6) c1(E; Φ) = c1(E; Ψ)− deg(Φ−1 ◦Ψ).



INTERSECTIONS 49

• If Φi is a trivialization of Ei|U\Γ for i ∈ {1, 2}, then

(4.7) c1(E1 ⊕ E2; Φ1 ⊕ Φ2) = c1(E1; Φ1) + c1(E2; Φ2)

and

(4.8) c1(E1 ⊗ E2; Φ1 ⊗ Φ2) = c1(E1; Φ1) + c1(E2; Φ2).

• If (U,ψ) is a holomorphic cylindrical coordinate system, then

(4.9) c1(T (Σ \ Γ); dψ) = χ(Σ \ Γ) = χ(Σ)−#Γ

where χ(S) denotes the Euler characteristic of S.

Proof. To see that (4.6) is true, we pick a holomorphic cylindrical coordinate system
(U,ψ), and choose a generic section h of E|U\Γ which is equal to ΛnCΦ(z)1 for

z ∈ ∪iψi([0, 1]× S1) and equal to ΛnCΨ(z)1 for z ∈ ∪iψi([2,∞)× S1). Extending h
to a generic section of ΛnCE, the algebraic count of zeroes of h in Σ \ Γ is equal to
c1(E; Ψ) while the algebraic count of zeroes in Σ\U is equal to c1(E; Φ). Therefore,
letting m represent the algebraic count of zeroes of h in the necks ∪iψi([1, 2]×S1),
we must have

c1(E; Φ) = c1(E; Ψ) +m

so it suffices to show m = − deg(Φ−1 ◦Ψ). This indeed follows from

m =

#Γ∑
i=1

wind((ΛnCΦ(ψi(2, ·)))−1h(ψi(2, ·)))− wind((ΛnCΦ(ψi(1, ·)))−1h(ψi(1, ·)))

=

#Γ∑
i=1

wind(1)− wind((ΛnCΦ(ψi(1, ·)))−1(ΛnCΨ(ψi(1, ·)))1)

=

#Γ∑
i=1

−wind(ΛnC(Φ−1 ◦Ψ)(ψi(1, ·))1) =

#Γ∑
i=1

−wind(det((Φ−1 ◦Ψ)(ψi(1, ·))))

= −deg(Φ−1 ◦Ψ).

To prove (4.7) and (4.8), we first observe that there are natural isomorphisms

Λn1+n2

C (E1 ⊕ E2)→ (Λn1

C E1)⊗ (Λn2

C E2)

and
Λn1n2

C (E1 ⊗ E2)→ (Λn1

C E1)⊗ (Λn2

C E2)

where ni = dimCEi. Furthermore, the trivializations Λn1+n2

C (Φ1⊕Φ2) of Λn1+n2

C (E1⊕
E2)|U\Γ and Λn1n2

C (Φ1 ⊗ Φ2) of Λn1n2

C (E1 ⊗ E2)|U\Γ both induce the trivialization
(Λn1

C Φ1)⊗(Λn2

C Φ2) on (Λn1

C E1)⊗(Λn2

C E2)|U\Γ under the given isomorphisms. There-
fore both (4.7) and (4.8) are equivalent to the special case of (4.8) when E1 and E2

are line bundles. In this case, we let hi be a generic section of Ei agreeing with Φi1
over U \ Γ, we assume that the zero loci of h1 and h2 are disjoint. Then h1 ⊗ h2 is
a section of E1 ⊗E2 agreeing with (Φ1 ⊗ Φ2)1 over U \ Γ, and the algebraic count
of zeroes of h1 ⊗ h2 is given by the sum of the algebraic counts of zeroes of h1 and
h2.

Finally, to see that (4.9) holds, we note that if (U,ψ) is holomorphic cylindrical
coordinate system then the section dψ(z)1 of U \ Γ extends to a smooth section of
U with a simple zero of positive index at each point of Γ. Any extension of this
section to a generic section of TΣ will have χ(Σ) zeroes counted with sign, of which
χ(Σ)−#Γ lie within Σ \ Γ. �
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Having defined the relative first Chern number, we now define the total Conley-
Zehnder index. Let (Σ, j,Γ, u) ∈ C∞(W,H+,H−) be an asymptotically cylindrical
map in a 4-manifold W with Hamiltonian structured ends, and assume that W
is equipped with a compatible almost complex structure J̄ . A choice of unitary

trivialization of (ξH
±
, J±) along each asymptotic limit of u induces a complex

trivialization of the pull-back bundle (u∗TW, J̄) near the punctures of u since on
the cylindrical ends we have

(TW, J̄) ≈ (R⊕ RXH± ⊕ ξH
±
, J̃±) ≈ CXH± ⊕ (ξH

±
, J±).

We will use Φ to denote both the chosen trivialization of (ξH
±
, J±) along the

asymptotic limits, and the induced trivialization of (u∗TW, J̄) near the punctures.
We then define the total Conley-Zehnder index of µ(u) of u by

µ(u) = 2cΦ1 (u∗TW, u∗J̄) +
∑
z∈Γ

µΦ(γmzz ).

where u is assumed to be asymptotic to γmzz at z ∈ Γ. We note that this quantity
is independent of choice of trivialization as a result of Lemmas 3.4 and 4.5, and
depends only on the homotopy classes of u and compatible J̄ . We further note that
in applications, the 4-manifold W is typically equipped with a symplectic form with
which J̄ must be compatible on all of W (as opposed to being just compatible on
the ends as we assume here). In this case, it is well known (see e.g. [13]) that the
space of such J̄ is contractible, so the total Conley-Zehnder index would depend
only on the homotopy class of the map u.

4.2.2. The adjunction formula. In this section we prove Theorem 2.3 which is a gen-
eralization of (1.1) for punctured curves which is stated in terms of the generalized
intersection number.

Before proving the result, we review some basic facts about the local intersection
properties of pseudoholomorphic curves which we will need. Proofs of these facts
can be found in [17] or [18]. Let u : (Σ, j)→ (W 4, J) be a pseudoholomorphic map
in an almost complex 4-manifold. Since du : TzΣ→ Tu(z)W is complex linear, the
derivative of u is always either rank 2 or rank 0. Define the singular set S(u) of u
to be the set of points where the derivative of u is zero, i.e.

S(u) := {z ∈ Σ | du(z) = 0} .

Each point z ∈ S(u) has an open neighborhood U so that either u|U\{z} is an
embedding, or u|U\{z} factors through an embedding via a holomorphic covering.
Consequently, the singular set of a pseudoholomorphic map is an isolated subset
of the domain. For an asymptotically cylindrical pseudoholomorphic map, this
fact combined with the assumed convergence to an orbit cylinder at the punctures
implies that the singular set is finite.

Given a point z ∈ S(u), assume that u|U\{z} is an embedding for some open
neighborhood U of z. We can define a quantity δ(u; z) in the following way: there
exists a C1-small perturbation J ′ of J supported near u(z) and C1-small pertur-
bation u′ of u supported in a neighborhood U of z so that u′|U is an immersed
J ′-holomorphic map with precisely δ(u; z) transverse double points. This quantity
is independent of the choice of perturbation.

Now, let v : (Σ′, j′)→ (W 4, J) be another pseudoholomorphic map, and assume
that u(p) = v(q) for some (p, q) ∈ Σ× Σ′. Then there exist open neighborhoods U
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of p and V of q so that either

V ⊂ v−1(u(U))

or

u(U \ {p}) ∩ v(V \ {q}) = ∅.
In the latter case, when u and v have an isolated intersection at u(p) = v(q), we
will denote the local intersection number of u at p with v at q by

δ((u; p), (v; q)).

The local intersection number δ((u; p), (v; q)) is always greater than or equal to 1,
and is equal to 1 if and only if u is immersed at p, v is immersed at q and u and v
intersect transversely.

Assume next that u : (Σ, j)→ (W 4, J) is a simple map, that is that u does not
factor through a branched cover of Riemann surfaces. Define the double point set
Du ⊂ Σ× Σ \∆Σ of u by

D(u) = {(p, q) |u(p) = u(q), p 6= q} .

As observed in Corollary 3.11, the preceding discussion and Corollaries 3.8 and
3.9 imply that an asymptotically cylindrical curve has at most a finite number of
double points. For such a map, we define the self-intersection index δ(u) of u by

(4.10) δ(u) =
∑

z∈S(u)

δ(u; z) +
1

2

∑
(z,w)∈D(u)

δ((u; z), (u;w)).

We note that this quantity is an integer since the second sum counts (z, w) and (w, z)
separately. A pseudoholomorphic map u is an embedding if and only if δ(u) = 0.
Furthermore, δ(u) has the following significance: if J ′ is a compactly supported,
perturbation of J , and u′ is an immersed, J ′-holomorphic, compactly supported
perturbation of u having only transverse double points, then u′ has precisely δ(u)
double points.

Next, we consider an almost complex cobordism of Hamiltonian structures (W, J̄,H+,H−)
and let [Σ, j,Γ, u] ∈ M(W, J̄,H+,H−) be a simple pseudoholomorphic curve. We
define the total asymptotic self-intersection index of u by

δ∞(u) =
∑
z∈Γ

δ∞(u; z) +
1

2

∑
(z,w)∈Γ×Γ

z 6=w

δ∞([u; z], [u;w]),

where δ(u; z) is as defined in (3.29) and δ∞([u; z], [u;w]) is as defined in (3.32).
This quantity will be nonnegative integer-valued since the asymptotic intersection
index δ∞([u; z], [u;w]) is symmetric, and each pair of distinct punctures is counted
twice in the second sum.

Letting [Σ, j,Γ, u] ∈M(W, J̄,H+,H−) still denote a simple curve, we now define
the singularity index 5 sing(u) of u by

sing(u) := δ(u) + δ∞(u).

The singularity index is nonnegative-integer-valued, and equals zero for a given
curve if and only if that curve is embedded and has asymptotic self-intersection

5 N.B. This definition of sing(u) is different from the one used in [21]
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index equal to zero. Finally, recalling the definition (3.14) of the spectral cover-
ing number σ̄(u; z) of a pseudoholomorphic end [u; z], we define the total spectral
covering number of u by

σ̄(u) =
∑
z∈Γ

σ̄(u; z).

The spectral covering number depends only on the asymptotic data of the map,
and not on the map itself.

We now prove Theorem 2.3 which we restate here for the convenience of the
reader (cf. Remark 3.2 in [14] and Theorem 3.13 in [21]).

Theorem 4.6 (Theorem 2.3). Let (W, J̄) be an almost complex 4-manifold with
cylindrical ends (R± ×M±,H±, J±) and let [Σ, j,Γ, u] ∈ M(W, J̄,H+,H−) be a
connected, simple pseudoholomorphic curve. Then

(4.11) [u] ∗ [u]− 1
2µ(u) + 1

2#Γodd + χ(Σ)− σ̄(u) = 2 sing(u)

where #Γodd denotes the number of punctures of u limiting to orbits with odd
Conley-Zehnder indices. In particular,

[u] ∗ [u]− 1
2µ(u) + 1

2#Γodd + χ(Σ)− σ̄(u) ≥ 0

and equality occurs if and only u and embedded and u has total asymptotic self-
intersection index equal to zero.

Proof. We first observe that it suffices to assume that u is an immersion having
only transverse double points. If not we can apply results of Micallef and White [18]
to find an immersion u1 : Σ \Γ→W which is homotopic to u via a homotopy that
is constant outside a compact subset of Σ \ Γ, which has precisely δ(u) transverse

double points and no other singularities, and which is J̃1-holomorphic for some J̃1

which is homotopic to J̃ via a homotopy that is constant outside a compact set.
Such a homotopy leaves all the terms in (4.11) constant, and it thus suffices to
prove the result for such a u1.

Proceeding with these assumptions, we compute the relative intersection number
of u with itself for a given trivialization Φ by pushing u off of itself with a section
of the normal bundle to u which is asymptotic at each puncture to Φ(ε). Using
standard homotopy invariance and transversality arguments, it can be shown that
the zeroes of the section contribute cΦ1 (Nu) to iΦ(u, u), and the double points of u
contribute 2δ(u) to iΦ(u, u). Moreover, the local asymptotic analysis in Section 3.2
shows that multiply covered ends, and distinct ends approaching coverings of the
same orbits contributes a total of∑

z∈Γ

iΦ∞(u; z) +
∑

(z,w)∈Γ×Γ
z 6=w

iΦ∞([u; z], [u;w])

so consequently we have that

(4.12) iΦ(u, u) = cΦ1 (Nu) + 2δ(u) +
∑
z∈Γ

iΦ∞(u; z) +
∑

(z,w)∈Γ×Γ
z 6=w

iΦ∞([u; z], [u;w]).

(This is equivalent to formula (4.1) in [15] and to the first formula on page 110 of
[21]).
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Assuming that at a puncture z ∈ Γ±, u is asymptotic to γmzz , we add∑
(z,w)∈Γ×Γ
γz=γw
mzmw>0

mzmw max
{
αΦ(γmzz )
|mz| ,

αΦ(γmww )
|mw|

}

=
∑
z∈Γ

|mz|αΦ(γmzz ) +
∑

(z,w)∈Γ×Γ
z 6=w
γz=γw
mzmw>0

mzmw max
{
αΦ(γmzz )
|mz| ,

αΦ(γmww )
|mw|

}

to (4.12) and use the definitions of [·] ∗ [·], δ∞(·), and δ∞(·, ·) to get

[u] ∗ [u] = cΦ1 (Nu) + 2δ(u) +
∑
z∈Γ

[2δ∞(u; z) + α(u; z) + σ̄(u; z)− 1]

+
∑

(z,w)∈Γ×Γ
z 6=w

δ∞([u; z], [u;w])

= cΦ1 (Nu) + 2 sing(u) + σ̄(u)−#Γ +
∑
z∈Γ

α(u; z)

= cΦ1 (Nu) + 2 sing(u) + σ̄(u)−#Γ− 1
2#Γodd +

∑
z∈Γ

1
2µ

Φ(u; z).

Finally, using the properties of the relative chern number we have that

cΦ1 (u∗TW ) = χ(Σ \ Γ) + cΦ1 (Nu)

= χ(Σ)−#Γ + cΦ1 (Nu)

which, combined with the above formula for [u] ∗ [u], gives that

[u] ∗ [u]− 1
2µ(u) + χ(Σ) + 1

2#Γodd − σ̄(u) = 2 sing(u).

as claimed. �

It will be useful in certain contexts to rewrite (4.11) in terms of the virtual
dimension (or Fredholm index) of the moduli space of the curve being considered.
We define the index of a pseudoholomorphic curve [Σ, j,Γ, u] ∈ M(W, J̄,H+,H−)
by the formula

(4.13) ind(u) = µ(u)− χ(Σ) + #Γ.

If u is simple, the index is equal to the dimension of the moduli space of un-
parametrized curves near u for a generic choice of admissible almost complex struc-
tures on W (see [11, 3]). Using this formula we can restate the adjunction formula
as follows.

Corollary 4.7. Let (W, J̄) be an almost complex 4-manifold with cylindrical ends
(R± ×M±,H±, J±) and let [Σ, j,Γ, u] ∈M(W, J̄,H+,H−) be a connected, simple
pseudoholomorphic curve. Then

(4.14) [u] ∗ [u]− 1
2 [ind(u)− χ(Σ) + #Γeven] + #Γ− σ̄(u) = 2 sing(u).

Using the homotopy invariance of the generalized intersection number, we have
the following corollary which allows us to bound the number of intersections between
two pseudoholomorphic curves which are homotopic. This result is useful in the
study of finite energy foliations (see e.g. [12]).
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Corollary 4.8. Let [Σ, j,Γ, u] ∈ M(W, J̄,H+,H−) be a connected, simple pseu-
doholomorphic curve, and let [Σ′, j′,Γ′, v] ∈ M(W, J̄,H+,H−) be a second curve,
distinct from u, which is homotopic to u in C∞(W,H+,H−). Then

int(u, v) ≤ 1
2 [ind(u)− χ(Σ) + #Γeven] + σ̄(u)−#Γ + 2 sing(u).

4.3. Cylindrical cobordisms. In this section we will consider some applications
of the intersection theory we’ve developed in previous sections to curves in a cylin-
drical cobordism. Throughout the remainder of this section M will denote a
3-manifold equipped with the nondegenerate stable Hamiltonian structure H =
(λ, ω), and a compatible almost complex structure J ∈ J (M,H). As in previous
sections, we will denote the associated R-invariant almost complex structure on
R×M by J̃ .

It will be convenient for many of the results in this section to consider a special
class of smooth asymptotically cylindrical maps. Given an asymptotically cylindri-
cal map (Σ, j,Γ, (a, u)) ∈ C∞(M,H), we say that (Σ, j,Γ, (a, u)) has ends which
wind if there is an open neighborhood U of Γ so that u|U does not intersect any
of the asymptotic limits of u, i.e. in the language of Section 3.1.4 a neighborhood
of each puncture determines an asymptotically cylindrical end which winds. If
(Σ, j,Γ, (a, u)) is an asymptotically cylindrical map with ends that wind, we can

define for each puncture z ∈ Γ the asymptotic winding windΦ
∞(u; z) as we do in

Section 3.1.4 by choosing a small clockwise loop ρ around z and computing the
winding of u ◦ ρ relative to a trivialization Φ of ξH along the asymptotic limit of u
at z.

4.3.1. Tangency to the flow and windπ. Let ũ = (a, u) : Σ \ Γ → R × M be a
pseudoholomorphic curve, and let πξH : TM = RXH ⊕ ξH → ξH be the projection

onto ξH determined by the splitting (2.1). Then the projection πξH ◦ du of the
derivative of u is a complex linear map

πξH ◦ du(z) : (Tz(Σ \ Γ), j)→ (ξHu(z), J)

according to the second equation in (2.6). Thus for any z ∈ Σ \ Γ, πξH ◦ du(z)
has rank 0 or 2. In the case that the Hamiltonian structure on M arises from a
contact form, it is shown in [8] that πξH ◦ du either vanishes identically, or has
isolated zeroes of finite positive order. The proof given there readily generalizes to
the case of an arbitrary stable Hamiltonian structure (see Appendix A). Moreover,
assuming that πξH ◦ du doesn’t vanish identically, it follows from Corollary 3.12
that πξH ◦ du has at most a finite number of zeroes. Following, [8] we will denote
the algebraic count of the zeroes of πξH ◦ du by windπ(u).

Since πξH ◦ du is a section of the complex line bundle, HomC(Tz(Σ \ Γ), u∗ξH),
the algebraic count of zeroes of πξH ◦ du is determined by the behavior of u near
the punctures. Indeed in [8] it is shown that

(4.15) windπ(u) + d0(ũ) = 1
2 (ind(ũ)− χ(Σ) + #Γeven)

where

d0(ũ) =
∑
z∈Γ

d0(ũ; z),

and d0(ũ; z) is as defined in (3.18). Substituting into (4.14) gives the following
corollary to Theorem 4.6 which will be useful for some results later in this section.



INTERSECTIONS 55

Corollary 4.9. Let [Σ, j,Γ, ũ = (a, u)] ∈M(M,H, J) be a connected, simple pseu-
doholomorphic curve. If πξH ◦ du doesn’t vanish identically, then

(4.16) [ũ] ∗ [ũ]− [windπ(ũ) + d0(ũ)] + #Γ− σ̄(ũ) = 2 sing(ũ).

The results in this section will mostly be concerned with pseudoholomorphic
curves that have no component with image contained in an orbit cylinder. We
collect in the following lemma some conditions that are equivalent to this. This
fact is well-known and can be deduced using Corollaries 3.12 and A.3. For further
discussion and proof see [8].

Lemma 4.10. Consider a pseudoholomorphic curve [Σ, j,Γ, ũ = (a, u)] ∈M(M,H, J).
The following are equivalent.

(1) πξH ◦ du does not vanish identically on any component of Σ \ Γ.
(2) No component of the map has image contained in an orbit cylinder.
(3) No component of the map is fixed by the R-action.
(4) The map [Σ, j,Γ, ũ = (a, u)] has ends which wind, i.e. for each z ∈ Γ and

trivialization Φ of ξH along the asymptotic limit of ũ at z, the asymptotic
winding windΦ

∞(ũ; z) is defined.

4.3.2. Intersections with orbit cylinders. In this section we compute intersection
numbers of an orbit cylinder with an asymptotically cylindrical map with ends
that wind. Throughout this section, we will be dealing with an asymptotically
cylindrical map (Σ, j,Γ, ũ) with ends that wind, and we will use the notation γmzz ,
with mz a nonzero integer and γz ∈ P0(M,H), to indicate that at the puncture
z ∈ Γ, ũ is asymptotic to γmzz .

We first compute the relative intersection number.

Lemma 4.11. Let (Σ, j,Γ, ũ = (a, u)) ∈ C∞(M,H) be an asymptotically cylin-
drical map with ends that wind, and let γ̃k be the orbit cylinder over γk, with γ
a simple periodic orbit and k a positive integer. Then the algebraic intersection
number int(γ, u) is well-defined and

(4.17) iΦ(ũ, γ̃k) = k

int(γ, u)−
∑
z∈Γ
γz=γ

windΦ
∞(u; z)

 .

Proof. Since we assume that the map ũ has ends that wind, there is a neigh-
borhood of each puncture on which ũ doesn’t intersect γ̃ and hence on which
the projected map u doesn’t intersect γ. Applying standard transversality and
homotopy-invariance arguments, u can therefore be perturbed on a compact set to
a map with a finite number of isolated, transverse intersections with γ, and the
total algebraic count of these intersections is independent of the perturbation. The
intersection number int(γ, u) can then be defined to be the algebraic count of these
intersections.

Using the definition of the relative intersection number, and using the same
reasoning that leads to Theorem 4.2 we have

iΦ(ũ, γ̃k) = int(γ̃k, ũ) +
∑
z∈Γ+

γz=γ

iΦ∞([γ̃k;∞], [ũ; z]) +
∑
z∈Γ−
γz=γ

iΦ∞([γ̃k; 0], [ũ; z]).
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where we consider γ̃k as a map from S2 \ {0,∞} with ∞ the positive puncture and
0 the negative puncture. Since γ̃ is fixed by the R-action we have that6

(4.18) int(γ̃k, ũ) = int(γk, u) = k int(γ, u).

Moreover, it follows from Lemma 3.20 and the definitions of windrel and wind∞
that for a puncture z ∈ Γ+ with γz = γ we have

iΦ∞([γ̃k;∞], [ũ; z]) = − 1
kmz

windΦ
rel(mz · [γ̃k;∞], k · [ũ; z])

= − 1
kmz

kmz windΦ
∞(k · [ũ; z])

= −kwindΦ
∞(ũ; z).

Similarly, for z ∈ Γ− with γz = γ we have

iΦ∞([γ̃k; 0], [ũ; z]) = −kwindΦ
∞(ũ; z)

which completes the proof. �

Next we compute the generalized intersection number of an orbit cylinder with
an asymptotically cylindrical map with ends that wind. A variation on this is
used in [19] to study a variation on contact homology in which the curves in the
differential are required to not intersect a prescribed collection of elliptic orbits.

Corollary 4.12. Let (Σ, j,Γ, ũ = (a, u)) ∈ C∞(M,H) be an asymptotically cylin-
drical map with ends that wind and let γ̃ be a cylinder over a simply covered periodic
orbit γ. Then for k > 0 we have

[ũ] ∗ [γ̃k]

= k
(

int (γ, u)

+
∑
z∈Γ+
γz=γ

mz

[
max

{
α(γmz )
mz

, α(γk)
k

}
− α(γmz )

mz

]
+ d0(ũ; z)

+
∑
z∈Γ−
γz=γ

|mz|
[
max

{
α(γmz )
|mz| ,

α(γ−k)
k

}
− α(γmz )

|mz|

]
+ d0(ũ; z)

)
.

Proof. The result follows from adding∑
z∈Γ+
γz=γ

kmz max
{
α(γmz )
mz

, α(γk)
k

}
+
∑
z∈Γ−
γz=γ

k|mz|max
{
α(γmz )
|mz| ,

α(γ−k)
k

}
to (4.17) and using the definition of d0(ũ; z) and [ũ] ∗ [γ̃k]. �

We observe that in the event that the map (Σ, j,Γ, ũ) in this Corollary is pseu-
doholomorphic, then the formula given above expresses the generalized intersection
number [ũ] ∗ [γ̃k] as a sum of nonnegative terms. Indeed, the terms of the form

max
{
γm

|m| ,
γk

|k|

}
− γm

|m| are nonnegative for any map. In the case that ũ is pseudo-

holomorphic, the terms d0(ũ; z) are nonnegative by Lemma 3.13. Moreover, when
ũ is pseudoholomorphic the fact that int(γ, u) is nonnegative follows from the fact

6 Note that the orientation of M matters in the right-most expression since M is 3-dimensional.
We always orient M so that λ ∧ ω is a positive volume form, and R × M is oriented so that

dx ∧ λ ∧ ω > 0 where x is the coordinate along R.
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that int(γ, u) = int(γ̃, ũ) from (4.18) and positivity of intersections for pseudoholo-
morphic curves.

In the case that γ is a hyperbolic orbit, the iteration formulas from Lemma 3.3
simplify the formula from 4.12 somewhat. We state this result here and omit the
straightforward proof.

Corollary 4.13. Let ũ = (a, u) and γ satisfy the assumptions of 4.12, and let
k > 0. If γ is an even orbit, then

[ũ] ∗ [γ̃k] = k

int (γ, u) +
∑
z∈Γ
γz=γ

d0(ũ; z)

 .

If γ is an odd, hyperbolic orbit, and k is even, then

[ũ] ∗ [γ̃k] = k

int (γ, u) +
∑
z∈Γ
γz=γ

[
p(mz)

2 + d0(ũ; z)
]

where p(m) denotes the parity of m. If γ is an odd, hyperbolic orbit, and k is odd,
then

[ũ] ∗ [γ̃k] = k int (γ, u) +
∑
z∈Γ
γz=γ

[
p(mz)

2 (k −min {k, |mz|}) + kd0(ũ; z)
]
.

Finally, we compute the generalized intersection number of an orbit cylinder
with itself.

Proposition 4.14. Let γ be a simple periodic orbit, and let k > 0. Then

[γ̃k] ∗ [γ̃k] = −kp(γk)

where p(γk) is the parity of periodic orbit γk.

Proof. It follows immediately from the definition of the relative intersection num-
ber that iΦ(γ̃k, γ̃k) vanishes for any trivialization Φ of γ∗ξH. Consequently, the
definition (4.3) of the generalized intersection number gives us that

[γ̃k] ∗ [γ̃k] = ΩΦ(γ̃k, γ̃k)

= k
(
αΦ(γk) + αΦ(γ−k)

)
.

If γ is an even orbit, we have from (3.5) that

αΦ(γk) + αΦ(γ−k) = kαΦ(γ)− kαΦ(γ) = 0

so [γ̃k] ∗ [γ̃k] = 0 = −kp(γk) in this case. If γ is an odd hyperbolic orbit, we have
from (3.6) that

αΦ(γk) + αΦ(γ−k) = kαΦ(γ) + k−p(k)
2 − kαΦ(γ) + −k−p(−k)

2

= −p(k) = −p(γk),

so [γ̃k] ∗ [γ̃k] = −kp(γk) in this case as well. Finally, if γ is elliptic, it follows from
(3.7) that there exists an irrational number θ so that

αΦ(γk) + αΦ(γ−k) = bkθc+ b−kθc
= bkθc − dkθe = −1
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so we have [γ̃k] ∗ [γ̃k] = −k = −kp(γk) for elliptic orbits as well. �

This computation has an application to curves in R×M equipped with a non-
R-invariant almost complex structure. We consider a stable Hamiltonian structure
H = (λ, ω) on M , and let c · H denote the stable Hamiltonian structure c · H =
(c · λ, c · ω). Consider R×M equipped with an almost complex structure J̄ which

agrees on [1,+∞) × M with a standard cylindrical J̃1 for c1 · H and agrees on

(−∞,−1]×M with a standard cylindrical J̃2 for c2 ·H. If γk is a periodic orbit for
the structure H, it is also a periodic orbit for the structure ci · H, and the Conley-
Zehnder index of γk is the same relative to all three structures. We can consider the
orbit cylinder γ̃k, which in general will not be J̄-holomorphic, but is still a smooth
asymptotically cylindrical map. The preceding proposition still applies and implies
that γ̃k has a negative (generalized) self-intersection number if γk is an odd orbit.
By the positivity of intersections for the generalized intersection number (Theorem
4.4), and the homotopy invariance of the generalized intersection number, we can
conclude that there is at most one J̄-holomorphic curve in the homotopy class of
the orbit cylinder γ̃k.

4.3.3. Counting intersections. In this section we will compute generalized inter-
section number of two maps in terms of data that is entirely determined by the
M -components of the maps: namely the intersection numbers of each map with
the asymptotic limits of the other, the asymptotic winding invariants, and the
asymptotic data. We then identify necessary and sufficient conditions for the gen-
eralized intersection number of two pseudoholomorphic curves to be zero. Finally,
we examine a set of necessary and sufficient conditions for the projections of two
pseudoholomorphic curves into the three manifold to not intersect.

We recall that there is an R-action on maps in cylindrical cobordisms, defined by
shifting in the R direction of R×M . We will denote this action by c · ũ = (a+ c, u)
or by ũc = (a + c, u) where ũ = (a, u) : Σ \ Γ → R × M is an asymptotically
cylindrical map.

We also recall that [2] defines what it means for a pseudoholomorphic curve
to converge to a pseudoholomorphic building (see CHC1-CHC2 on page 838 of
[2]). The definition of convergence of pseudoholomorphic curves given there can be
generalized in straightforward way to asymptotically cylindrical maps converging
to asymptotically cylindrical buildings.

Lemma 4.15. Let (Σk, jk,Γk, ũk), (Σ′k, j
′
k,Γ
′
k, ṽk) ∈ C∞(M,H) be sequences of

asymptotically cylindrical maps so that the disjoint union ũk + ṽk converges in the
sense of [2] to a 2-level building (ũ∞,1 � ũ∞,2) + (ṽ∞,1 � ṽ∞,2). Then

lim
k→∞

iΦ(ũk, ṽk) = iΦ(ũ∞,1, ṽ∞,1) + iΦ(ũ∞,2, ṽ∞,2).

We remark that the result and proof here easily adapt to the case where the
limit building has more than 2 levels and when the limiting curves are mapped into
a splitting symplectic manifold.

Proof. According to definition of convergence in [2], our assumptions imply that
there exist constants ck and dk and holomorphic reparametrizations φk,i : ΣkqΣ′k →
Σk q Σ′k so that ck · (ũk + ṽk) ◦ φk,1 converges in C∞loc to ũ∞,1 + ṽ∞,1, and so that
dk · (ũk + ṽk) ◦ φk,2 converges in C∞loc to ũ∞,2 + ṽ∞,2. Moreover, we can compactify
(R×M)� (R×M) and identify it with [0, 1]×M (equipped with a C0 structure)
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and can choose a sequence of identifications of the compactification of R×M with
[0, 1] × M and diffeomorphisms ψk : Σk q Σ′k → Σk q Σ′k in such a way that
(ũk + ṽk) ◦ ψk converges uniformly to (ũ∞,1 � ũ∞,2) + (ṽ∞,1 � ṽ∞,2), all viewed as
maps into [0, 1] ×M . It then follows from the properties of intersection numbers,
and the definition of the relative intersection number that for large k we have
iΦ(ũk, ṽk) = iΦ(ũ∞,1, ṽ∞,1) + iΦ(ũ∞,2, ṽ∞,2) as claimed. �

As an immediate application of this, we have the following computation of the
generalized intersection number of two asymptotically cylindrical maps with ends
that wind.

Theorem 4.16. Let (Σ, j,Γ, ũ = (a, u)), (Σ′, j′,Γ′, ṽ = (b, v)) ∈ C∞(M,H) be
asymptotically cylindrical maps with ends that wind. Assume that at z ∈ Γ that
ũ is asymptotic to γmzz and that at w ∈ Γ′ ṽ is asymptotic to γmww with mz, mw

nonzero integers and γz, γw ∈ P0(M,H), simple periodic orbits. Then
(4.19)

[ũ] ∗ [ṽ] =
∑
w∈Γ′+

|mw|

int(γw, u) +
∑
z∈Γ+
γz=γw

|mz|
[
max

{
α(γmzz )
|mz| ,

α(γmww )
|mw|

}
− α(γmzz )

mz

]
+ d0(ũ; z)



+
∑
z∈Γ−

|mz|

int(γz, v) +
∑
w∈Γ′−
γw=γz

|mw|
[
max

{
α(γmzz )
|mz| ,

α(γmww )
|mw|

}
− α(γmww )

|mw|

]
+ d0(ṽ;w)


+

∑
(z,w)∈Γ−×Γ′+

γz=γw

|mw|d0(ũ; z) + |mz|d0(ṽ;w)− |mwmz|
[
α(γmzz )
|mz| +

α(γmww )
|mw|

]
.

Proof. We apply the R-action to ũ, and note that

lim
c→∞

(c · ũ) + ṽ = (ũ� [+z∈Γ− γ̃
−mz
z ]) + ([+w∈Γ′+

γ̃mww ]� ṽ)

where the limit is to be understood in the sense of [2], and “+” denotes the dis-
joint union of the maps. Consequently, the homotopy invariance of the relative
intersection number along with Lemma 4.15 imply that

(4.20) iΦ(ũ, ṽ) = lim
c→∞

iΦ(c · ũ, ṽ) =
∑
w∈Γ′+

iΦ(ũ, γ̃mww ) +
∑
z∈Γ−

iΦ(ṽ, γ̃−mzz ).

Applying Lemma 4.11 and the definition of d0(ũ; z), we have that

iΦ(ũ, γ̃mww ) = mw

int(γw, u)−
∑
z∈Γ
γz=γw

windΦ
∞(u; z)


= mw

int(γw, u) +
∑
z∈Γ
γz=γw

[d0(ũ; z)− αΦ(γmzz )]
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and similarly

iΦ(ṽ, γ̃−mzz ) = |mz|

int(γz, v) +
∑
w∈Γ′
γw=γz

[d0(ṽ;w)− αΦ(γmww )]


Substituting these formulas in (4.20) and adding

ΩΦ(ũ, ṽ) =
∑

(z,w)∈Γ×Γ′

γz=γw
mzmw>0

mzmw max
{
α(γmzz )
|mz| ,

α(γmww )
|mw|

}

to both sides gives

[ũ] ∗ [ṽ] = iΦ(ũ, ṽ) + ΩΦ(ũ, ṽ)

=
∑
w∈Γ′+

|mw|

int(γw, u) +
∑
z∈Γ+
γz=γw

|mz|
[
max

{
α(γmzz )
|mz| ,

α(γmww )
|mw|

}
− α(γmzz )

mz

]
+ d0(ũ; z)



+
∑
z∈Γ−

|mz|

int(γz, v) +
∑
w∈Γ′−
γw=γz

|mw|
[
max

{
α(γmzz )
|mz| ,

α(γmww )
|mw|

}
− α(γmww )

|mw|

]
+ d0(ṽ;w)


+

∑
(z,w)∈Γ−×Γ′+

γz=γw

|mw|d0(ũ; z) + |mz|d0(ṽ;w)− |mwmz|
[
α(γmzz )
|mz| +

α(γmww )
|mw|

]
as claimed. �

We note that in the case that the maps ũ and ṽ from this theorem are pseu-
doholomorphic that (4.19) expresses the generalized intersection number [ũ] ∗ [ṽ]
as a sum of nonnegative terms. Indeed the nonnegativity of each of the terms is
discussed following Corollary 4.12, with the exception of the terms of the form

−|mwmz|
[
α(γmzz )
|mz| +

α(γmww )
|mw|

]
.

The fact that these terms contribute nonnegatively to [ũ] ∗ [ṽ] is addressed in the
proof of Corollary 4.17 below.

The fact that for pseudoholomorphic curves (4.19) expresses [ũ] ∗ [ṽ] as a sum of
nonnegative terms allows us to prove the following result which gives necessary and
sufficient conditions for two curves to have generalized intersection number equal
to zero.

Corollary 4.17. Let [Σ, j,Γ, ũ = (a, u)] and [Σ′, j′,Γ′, ṽ = (b, v)] ∈ M(M,H, J)
be pseudoholomorphic curves, and assume that no component of ũ or ṽ lies in an
orbit cylinder. Then the following are equivalent:

(1) The generalized intersection number [ũ] ∗ [ṽ] = 0.
(2) All of the following hold:

(a) The map u does not intersect any of the positive asymptotic limits of
v.

(b) The map v does not intersect any of the negative asymptotic limits of
u.
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(c) If γ is a periodic orbit so that at z ∈ Γ, ũ is asymptotic to γmz and at
w ∈ Γ′, ṽ is asymptotic to γmw , then:

(i) If mz and mw are both positive then d0(ũ; z) = 0 and

α(γmz )
mz

≥ α(γmw )
mw

.

(ii) If mz and mw are both negative then d0(ṽ;w) = 0 and

α(γmw )
|mw| ≥

α(γmz )
|mz| .

(iii) If mz < 0 and mw > 0 then d0(ũ; z) = d0(ṽ;w) = 0 and γmz

and γmw are both even orbits.
(3) All of the following hold:

(a) The map u does not intersect any of the asymptotic limits of v.
(b) The map v does not intersect any of the asymptotic limits of u.
(c) If γ is a periodic orbit so that at z ∈ Γ, ũ is asymptotic to γmz and

at w ∈ Γ′, ṽ is asymptotic to γmw , then d0(ũ; z) = 0, d0(ṽ;w) = 0.
Further

(i) if γ is elliptic, then mz and mw have the same sign, and

α(γmz )
mz

= α(γmw )
mw

.

(ii) if γ is odd, hyperbolic then either mz and mw are both even, or
mz = mw.

Proof. As discussed preceding the statement of the theorem, this will follow from
Theorem 4.16 and in particular the fact that Theorem 4.16 gives an expression of
[ũ]∗ [ṽ] as a sum of nonnegative quantities. Indeed, as discussed following Corollary
4.12, it follows from (4.18) in the proof of Lemma 4.11 that the terms involving
intersections of the projected maps u and v with periodic orbits are nonnegative.
Moreover, Lemma 3.13 establishes that the d0 terms are nonnegative, while it is
clear that each other grouped term on the right hand side of equation (4.19) is
nonnegative except possibly for the term in the final sum of the form

∆1(γ,m, n) := −|mn|
[
α(γm)
|m| + α(γn)

|n|

]
where here m and n have opposite sign. The nonnegativity of this term will follow
from Lemma 3.3. Without loss of generality, assume that m > 0 and n < 0. So
that the expression takes the form

∆1(γ,m, n) = mn
[
α(γm)
m + α(γn)

−n

]
If γ is an even orbit then (3.5) gives us

∆1(γ,m, n) = mn[α(γ)− α(γ)] = 0.

If γ is odd, hyperbolic, (3.6) gives us

∆1(γ,m, n) = 1
2 [mp(n)− np(m)]

which is nonnegative since m > 0 and n < 0, and equals zero if and only if both m
and n are even. Finally if γ is elliptic, by (3.7) there is an irrational θ so that

∆1(γ,m, n) = nbmθc −mbnθc
≥ dnmθe − bnmθc = 1,
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where the inequality follows from the assumptions that n < 0, m > 0 and that θ
is irrational. To summarize, we have seen that for m and n integers with opposite
sign, we have that

−|mn|
[
α(γm)
|m| + α(γn)

|n|

]
≥ 0

and equality occurs if and only if γm and γn are both even orbits.
Given this it is clear from (4.19) that [ũ] ∗ [ṽ] = 0 if and only if:

• int(γw, u) = 0 for all w ∈ Γ′+,
• int(γz, v) = 0 for all z ∈ Γ−,
• d0(ũ; z) = 0 and

max
{
α(γmzz )
|mz| ,

α(γmww )
|mw|

}
− α(γmzz )

mz
= 0

for all (z, w) ∈ Γ+ × Γ′+ with γz = γw,
• d0(ṽ;w) = 0 and

max
{
α(γmzz )
|mz| ,

α(γmww )
|mw|

}
− α(γmww )

mw
= 0

for all (z, w) ∈ Γ− × Γ′− with γz = γw, and
• d0(ũ; z) = d0(ṽ;w) = 0 and

−|mzmw|
[
α(γmzz )
|mz| +

α(γmww )
|mw|

]
= 0

for all (z, w) ∈ Γ− × Γ′+ with γz = γw.

The discussion of the previous paragraph tells us that this last statement is true if
and only if γmzz and γmww are both even orbits, the fact that (1) ⇐⇒ (2) in the
statement of the theorem follows immediately.

To see that (2) ⇐⇒ (3), we use the symmetry of the generalized intersection
number with the asymmetry of statement (2). Indeed if (2) is true as written,
then (1) is true, and thus (2) will be true with the roles of ũ and ṽ reversed. We
immediately find that (2) holds precisely when

• int(γw, u) = 0 for all w ∈ Γ′,
• int(γz, v) = 0 for all z ∈ Γ,
• d0(ũ; z) = d0(ṽ;w) = 0 and

α(γmzz )
|mz| =

α(γmww )
|mw|

for all (z, w) ∈ Γ× Γ′ with γz = γw and mzmw > 0, and
• d0(ũ; z) = d0(ṽ;w) = 0 and

−|mzmw|
[
α(γmzz )
|mz| +

α(γmww )
|mw|

]
= 0

for all (z, w) ∈ Γ× Γ′ with γz = γw and mzmw < 0.

Using (3.5) we see that
α(γm)
|m| = α(γn)

|n|

for any m and n if γ is even, and that

α(γm)
|m| = α(γn)

|n| ⇐⇒ p(m)
m = p(n)

n

if γ is odd hyperbolic. This last statement is true exactly when m and n are both
even, or m and n are equal. These observations with the discussion of the first
paragraph shows that the conditions listed above are equivalent to those listed in
(3), so we see that (2) ⇐⇒ (3). �
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We note that if [ũ] ∗ [ṽ] = 0 then [ũ] ∗ [c · ṽ] = 0 for all c ∈ R, and in particular,
Theorem 4.4 implies that the actual algebraic intersection number int(ũ, c · ṽ) is
zero for all c ∈ R, provided ũ and ṽ do not have any components with images that
differ by an R-shift. By positivity of intersections, this implies that ũ is disjoint
from every R-translate of ṽ which implies that the projected curves u and v in the
3-manifold M either have identical image or do not intersect. Thus the preceding
corollary gives sufficient conditions for the projected curves u and v to not intersect.
The converse is not true, as is it possible that projected pseudoholomorphic maps u
and v do not intersect, but still have [ũ] ∗ [ṽ] 6= 0 since the asymptotic intersection
number of the two curves could be nonzero. However, since R-shifting a curve
changes the asymptotic description from Theorem 3.7 in a predictable way, it is
possible to use Theorem 4.16 to identify necessary and sufficient conditions for two
projected pseudoholomorphic curves to not intersect.

The key element in understanding this problem is the following lemma concerning
the behavior of the total asymptotic intersection number of two curves under R-
shifting.

Lemma 4.18. Let [Σ, j,Γ, ũ] and [Σ′, j′,Γ′, ṽ] ∈ M(M,H, J) be asymptotically
cylindrical pseudoholomorphic curves, and let ṽc = (b+ c, v) be the curve resulting
from translating ṽ in the R coordinate by c. Assume no component of ũ or ṽ
has image contained in an orbit cylinder. Then the algebraic intersection number
int(ũ, ṽc) and the total asymptotic intersection index δ∞(ũ, ṽc) are defined for all
but a finite number of values of c ∈ R. Moreover

δ∞(ũ, ṽc) ≥
∑

(z,w)∈Γ×Γ′

γz=γw
mzmw>0

mzmw

(
max

{
α(ũ;z)
|mz| ,

α(ṽ;w)
|mw|

}
−max

{
wind∞(ũ;z)
|mz| , wind∞(ṽ;w)

|mw|

})
,

with equality occurring for all but a finite number of the values of c ∈ R for which
it is defined. Furthermore,

int (ũ, ṽc) ≤ [ũ]∗[ṽ]−
∑

(z,w)∈Γ×Γ′

γz=γw
mzmw>0

mzmw

(
max

{
α(ũ;z)
|mz| ,

α(ṽ;w)
|mw|

}
−max

{
wind∞(ũ;z)
|mz| , wind∞(ṽ;w)

|mw|

})

and strict inequality occurs for at most a finite set of values of c ∈ R.

Proof. There will be values of c for which the algebraic intersection number int(ũ, ṽc)
and the total asymptotic intersection index δ∞(ũ, ṽc) will not be defined if there are
components of ũ and ṽ which project to the same image in the three-manifold, but
is clear the lifted maps ũ and ṽc can have components with identical image in R×M
only for finite number of values of c ∈ R, since we assume that no components of
the curves are fixed by the R-action.

We consider a pair of end models (Σ, j, z, ũ) and (Σ′, j′, w, ṽ = (b, v)) and assume
that there is a γ so that ũ is asymptotic to γm and ṽ is asymptotic to γn with m
and n having the same sign. Assume we have the asymptotic representations

ũ(φ(s, t)) = (mτs, expγm(t) e
λ1s[e1(t) + r1(s, t)])

ṽ(ψ(s′, t′)) = (nτs′, expγm(t′) e
λ2s
′
[e2(t′) + r2(s′, t′)]).

with the λi/ei eigenvalues/eigenvectors of the appropriate asymptotic operators,
and the ri converging exponentially to 0 as s → ∞. Then, according to Lemma
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3.20, and Lemma 3.15, we have that

(4.21) iΦ([ũ; z], [ṽ;w]) ≥ −mnmax
{

windΦ
∞(ũ;z)
|m| ,

windΦ
∞(ṽ;w)
|n|

}
with strict inequality occurring only if there is an integer j so that

e1(nt) = e2(mt+ j
mn )

for all t ∈ S1. Considering the shifted end

ṽc = (b+ c, v)

we have, for ψc(s, t) := ψ(s+ c
nτ , t) that

ṽc(ψc(s, t)) = (nτs, expγm(t) e
λ2(s+

c
nτ )[e2(t) + r2(s+ c

nτ , t)]

= (nτs, expγm(t) e
λ2s[ec

λ
nτ e2(t) + r3(s, t)]

with r3(s, t) = ec
λ
nτ r2(s+ c

nτ ) converging exponentially to zero as s→∞. Thus, R-
shifting an end has the effect of scaling the eigenvalue appearing in the asymptotic
formula (once the formula has been rewritten so that the first component does not
contain an R-shift). Consequently, we get either the strict inequality

iΦ([ũ; z], [ṽc;w]) > −mnmax
{

windΦ
∞(ũ;z)
|m| ,

windΦ
∞(ṽc;w)
|n|

}
= −mnmax

{
windΦ

∞(ũ;z)
|m| ,

windΦ
∞(ṽ;w)
|n|

}
or that iΦ([ũ; z], [ṽc;w]) is not defined for at most one value of c ∈ R. For all other
values we will have

iΦ([ũ; z], [ṽc;w]) = −mnmax
{

windΦ
∞(ũ;z)
|m| ,

windΦ
∞(ṽ;w)
|n|

}
.

Adding mnmax
{
α(γm)
|m| ,

α(γn)
|n|

}
to both sides of this, we can conclude that the

asymptotic intersection number of the two ends satisfies

δ∞([ũ; z], [ṽ;w]) ≥ mn
(

max
{
α(γm)
|m| ,

α(γn)
|n|

}
−max

{
windΦ

∞(ũ;z)
|m| ,

windΦ
∞(ṽ;w)
|n|

})
with the strict inequality occurring for at most one value of c ∈ R.

The claim of the Lemma now follows from applying the results of the previous
paragraph pairwise to ends of ũ and ṽc which are asymptotic to coverings of the
same orbit with the same sign. �

As a corollary of Theorem 4.16 and Lemma 4.18 we have the following.

Corollary 4.19. Let [Σ, j,Γ, ũ = (a, u)], [Σ′, j′,Γ′, ṽ = (b, v)] ∈ M(M,H, J) be
pseudoholomorphic curves, and let ṽc = (b+ c, v) be the curve resulting from trans-
lating ṽ in the R coordinate by c. Assume that no component of ũ or ṽ has image
contained in an orbit cylinder, and let γmzz and γmww denote the asymptotic limits
of ũ at z ∈ Γ and ṽ at w ∈ Γ′ as in Theorem 4.16. Then the algebraic intersection
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number int(ũ, ṽc) is defined for all but a finite number of values of c ∈ R. Moreover,
(4.22)

int (ũ, ṽc) ≤
∑
w∈Γ′+

|mw|

int(γw, u) +
∑
z∈Γ+
γz=γw

|mz|
[
max

{
wind∞(ũ;z)
|mz| , wind∞(ṽ;w)

|mw|

}
− wind∞(ũ;z)

|mz|

]

+
∑
z∈Γ−

|mz|

int(γz, v) +
∑
w∈Γ′−
γw=γz

|mw|
[
max

{
wind∞(ũ;z)
|mz| , wind∞(ṽ;w)

|mw|

}
− wind∞(ṽ;w)

|mw|

]
+

∑
(z,w)∈Γ−×Γ′+

γz=γw

|mw|d0(ũ; z) + |mz|d0(ṽ;w)− |mwmz|
[
α(γmzz )
|mz| +

α(γmww )
|mw|

]
.

and strict inequality occurs for at most a finite set of values of c ∈ R for which it
is defined.

Proof. This follows from subtracting∑
(z,w)∈Γ×Γ′

γz=γw
mzmw>0

mzmw

(
max

{
α(ũ;z)
|mz| ,

α(ṽ;w)
|mw|

}
−max

{
wind∞(ũ;z)
|mz| , wind∞(ṽ;w)

|mw|

})

from (4.19) and using Lemma 4.18. �

We can now prove Theorem 2.4, which gives necessary and sufficient conditions
for two projected curves to not intersect. We restate the result here for the conve-
nience of the reader.

Theorem 4.20 (Theorem 2.4). Let [Σ, j,Γ, ũ = (a, u)] and [Σ′, j′,Γ′, ṽ = (b, v)] ∈
M(M,H, J) be pseudoholomorphic curves, and assume that no component of ũ or ṽ
lies in in orbit cylinder, and that the projected curves u and v do not have identical
image on any component of their domains. Then the following are equivalent:

(1) The projected curves u and v do not intersect.
(2) All of the following hold:

(a) The map u does not intersect any of the positive asymptotic limits of
v.

(b) The map v does not intersect any of the negative asymptotic limits of
u.

(c) If γ is a periodic orbit so that at z ∈ Γ, ũ is asymptotic to γmz and at
w ∈ Γ′, ṽ is asymptotic to γmw , then:

(i) If mz and mw have the same sign then

wind∞(ũ;z)
mz

≥ wind∞(ṽ;w)
mw

.

(ii) If mz < 0 and mw > 0 then d0(ũ; z) = d0(ṽ;w) = 0 and γmz

and γmw are both even orbits.
(3) All of the following hold:

(a) The map u does not intersect any of the asymptotic limits of v.
(b) The map v does not intersect any of the asymptotic limits of u.
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(c) If γ is a periodic orbit so that at z ∈ Γ, ũ is asymptotic to γmz and at
w ∈ Γ′, ṽ is asymptotic to γmw , then

wind∞(ũ;z)
mz

= wind∞(ṽ;w)
mw

.

Proof. The fact that (1) ⇐⇒ (2) follows from an argument similar to that in the
proof of Corollary 4.17 using now (4.22) instead of (4.19). Indeed, we have that
the projected curves u and v are disjoint if and only if ũ and ṽc are disjoint for all
c ∈ R, which by positivity of intersections is true precisely when int(ũ, ṽc) = 0 for
all c ∈ R. Again, by positivity of intersections and Corollary 4.19 it is necessary
and sufficient for the right hand side of (4.22) to vanish. Since the right hand side
of (4.22) decomposes into nonnegative terms, we need to require each of these terms
to vanish. The vanishing of each of these terms corresponds to the conditions listed
in (2) above. Therefore (1) ⇐⇒ (2) as claimed.

The fact that (2) ⇐⇒ (3), like in Corollary 4.17, follows from the symmetry of
the intersection number and the asymmetry of statement (2). Indeed, if (2) holds
for ũ and ṽ as stated, then (2) holds with the roles of ũ and ṽ reversed. Thus (2)
holds precisely when:

• int(γw, u) = 0 for all w ∈ Γ′,
• int(γz, v) = 0 for all z ∈ Γ,
• for every (z, w) ∈ Γ× Γ′ with γz = γw and mzmw > 0

wind∞(ũ;z)
mz

= wind∞(ṽ;w)
mw

,

and
• for every (z, w) ∈ Γ×Γ′ with γz = γw and mzmw < 0, d0(ũ; z) = d0(ṽ;w) =

0 and

−|mzmw|
[
α(γmzz )
|mz| +

α(γmww )
|mw|

]
= 0.

Moreover, it follows from the definition of d0 and the assumption that mz and mw

have opposite sign that the last condition listed here is equivalent to

wind∞(ũ;z)
mz

= wind∞(ṽ;w)
mw

,

so these conditions are also equivalent to those in statement (3). Thus (2) ⇐⇒ (3)
as claimed. �

4.3.4. Positive asymptotic intersection indices and direction of approach to even
orbits. In this section we give a sufficient condition for positivity of the general-
ized intersection number of two curves in terms of direction of approach to shared
hyperbolic orbits.

Before stating and proving the result, we will need to establish some terminology.
Let γ be a periodic orbit of XH, and assume that either

• γ is a simple even orbit, or
• γ = γ̂2 where γ̂ is a simple, odd, hyperbolic orbit.

In either of these cases, let λ− = σ−max(γ) ∈ σ(Aγ,J) be the largest negative
eigenvalue of Aγ,J .

Lemma 4.21. With γ, λ− satisfying the assumptions above, mλ− is the largest
negative eigenvalue of Aγm,J for any positive integer m. Moreover, the eigenspace

ker(Aγm,J −mλ−)
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is one dimensional for all positive integers m, and if e− ∈ ker(Aγ,J−λ−) is a basis,
then e−m := e−(m·) is a basis for ker(Aγm,J −mλ−).

Proof. By the assumption that γ is an even orbit and the definition of parity (3.3),
there exists a λ+ > 0 so that eigenvectors with eigenvalue λ− and eigenvectors
with eigenvalue λ+ have the same winding number in any choice of trivialization
of γ∗ξH. Therefore, by Lemma 3.1, we know that

ker(Aγ,J − λ−)

and

ker(Aγ,J − λ+)

are both 1-dimensional.
Let e± be a basis for ker(Aγ,J − λ±). By the discussion following Lemma 3.1,

we know that e±m defined by e±m(t) = e±(mt) are eigenvectors with eigenvalue mλ±.
Moreover, e+

m and e−m will have the same winding in any trivialization, so it follows
from Lemma 3.1 that e±m is a basis for ker(Aγm,J − mλ±), and since winding is
monotonic in eigenvalue, we know that mλ− must be the largest negative eigenvalue
of Aγm,J . �

Now, with γ as above, consider a pseudoholomorphic end [Σ, j, z, ũ] which is
asymptotic to γm for some positive integer m. Let (U, φ) be an asymptotic repre-
sentation of u near z, so that

(4.23) ũ(φ(s, t)) = (mτs, expγm(t) U(s, t)).

Then, it follows from a special case of 3.7 that there exists a (possibly zero) eu ∈
ker(Aγ,J − λ−) satisfying

(4.24) e−mλ
−s[U(s, t)− eu(mt)]→ 0

as s→∞. Considering a second end [Σ′, j′, z′, ṽ] asymptotic to γn with n > 0, we
find an asymptotic representative (V, ψ) and a vector ev ∈ ker(Aγ,J − λ−) so that
we can write

ṽ(ψ(s, t)) = (nτs, expγn(t) V (s, t))

with V satisfying

e−nλ
−s[V (s, t)− ev(nt)]→ 0

as s→∞. If there exists a positive real number c so that

eu = cev

then we say that the ends [Σ, j, z, ũ] and [Σ′, j′, z′, ṽ] approach coverings of γ in the
same direction.

For simplicity in this discussion, we have only considered ends with positive
punctures, but we can analogously define what it means for ends with negative
punctures to approach a covering of γ in the same direction by describing the

direction of approach with elements of ker(Aγ−,J − λ̂−) where γ− = γ(−1) is γ

traversed backwards, and λ̂− is the largest negative eigenvalue of Aγ−,J .7

7 Alternatively, we could use the fact that if [Σ, j, z, (a, u)] is an end with a positive puncture

in R×M where M is equipped with the Hamiltonian structure (λ, ω)), then [Σ, j, z, (−a, u)] is an
end with a negative puncture in R×M where M is now equipped with the Hamiltonian structure

(−λ, ω). This approach is employed in some proofs in [14].
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Theorem 4.22. Let γ be an even periodic orbit satisfying the assumptions above,
let [Σ, j, z, ũ] and [Σ′, j′, z′, ṽ] be distinct (nonintersecting) pseudoholomorphic ends
in R×M satisfying the assumptions above, and let eu, ev ∈ ker(Aγ,J−λ−) be defined
as above. If eu = ev, then the asymptotic intersection index δ∞([ũ; z], [ṽ;w]) of the
two ends is positive.

Proof. For simplicity we assume m and n are both positive, but the proof readily
adapts to the case where m and n are both negative.

Letting eu and ev be as above, we first assume that eu = ev = 0. Then, it
follows that the eigenvalue of the leading eigenvector in the formulas for ũ from
Theorem 3.7 is strictly less than mλ−, and similarly the eigenvalue for the leading
term in the formula for ṽ is strictly less than nλ−. Since γ is an even orbit, (3.3)
and Lemma 3.1 imply that

windΦ
∞(ũ; z) < αΦ(γm) = mαΦ(γ)

and
windΦ

∞(ṽ;w) < αΦ(γn) = nαΦ(γ).

In the case that γ is a simply covered even orbit, we consequently get from (3.30)
that

iΦ∞([ũ; z], [ṽ;w]) ≥ −mnmax
{

windΦ
∞(ũ;z)
m ,

windΦ
∞(ṽ;w)
n

}
> −mnαΦ(γ)

= −mnmax
{
αΦ(γm)
m , α

Φ(γn)
n

}
and so

δ∞([ũ; z], [ṽ;w]) = iΦ∞([ũ; z], [ṽ;w]) +mnmax
{
αΦ(γm)
m , α

Φ(γn)
n

}
> 0

as claimed. If γ = γ̂2 with γ̂ a simple, odd, hyperbolic orbit, we have from (3.6)
that

α(γ) = α(γ̂2) = 2α(γ̂) + 1.

Consequently, we find that

iΦ∞([ũ; z], [ṽ;w]) ≥ −(2m)(2n) max
{

windΦ
∞(ũ;z)
2m ,

windΦ
∞(ṽ;w)
2n

}
> −2mn(2αΦ(γ̂) + 1)

= −(2m)(2n) max
{
αΦ(γ̂2m)

2m , α̂
Φ(γ̂2n)

2n

}
and so again

δ∞([ũ; z], [ṽ;w]) = iΦ∞([ũ; z], [ṽ;w]) + (2m)(2n) max
{
αΦ(γ̂2m)

2m , α
Φ(γ̂2n)

2n

}
> 0

as claimed.
Next we assume that eu = ev 6= 0. With (U, φ) and (V, ψ) satisfying (4.23) and

(4.24) respectively, we can apply Theorem 3.6 to write

U(ns, nt)− V (ms,mt) = eµs[e(t) + r(s, t)]

with µ < 0 and eigenvalue of Aγmn,J , e and eigenvector with eigenvalue µ and r
converging exponentially to zero as s → ∞. The assumption that eu = ev then
implies that µ < mnλ−, which, since γmn is an even orbit, implies that

wind Φ−1e < wind Φ−1eu(mn·) = mnwind Φ−1eu = mnαΦ(γ).
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We can therefore conclude that

windΦ
rel(n · [ũ; z],m · [ṽ;w]) < m2n2αΦ(γ)

which by Lemma 3.20 implies that

iΦ∞([ũ; z], [ṽ;w]) > −mnαΦ(γ).

Since γ is assumed to be either a simple even orbit, or a double covered odd hyper-
bolic orbit, it follows as in the previous paragraph that

δ∞([ũ; z], [ṽ;w]) > 0

in either case. �

We now prove the main result of this section.

Theorem 4.23 (Theorem 2.5). Let γ be a periodic orbit satisfying the above as-
sumptions, and let [Σ, j,Γ, ũ = (a, u)] and [Σ′, j′,Γ′, ṽ = (b, v)] ∈ M(M,H, J) be
connected pseudoholomorphic curves. If there are punctures z ∈ Γ and w ∈ Γ′ so
that the ends [ũ; z] and [ṽ;w] approach a cover of γ in the same direction, and so
that [ũ; z] is distinct from the the R-shifted end [(b+ c, v);w] for all c ∈ R then

[ũ] ∗ [ṽ] > 0.

Proof. For simplicity we assume both punctures z and w are positive, but the
argument readily adapts to the case where they are both negative.

Let (U, φ) and (V, φ) satisfy (4.23) and (4.24) and let eu and ev be as defined
above. We first consider the case that eu = ev = 0. In this case, the lemma above
shows that the asymptotic intersection index δ∞([ũ; z], [ṽ;w]) is positive, and thus
the total asymptotic intersection index δ∞(ũ, ṽ) is positive. Thus, Theorem 4.4
gives us

[ũ] ∗ [ṽ] = int(ũ, ṽ) + δ∞(ũ, ṽ) ≥ δ∞(ũ, ṽ) > 0

as claimed.
In the case that eu = cev 6= 0 for some positive real number c, we apply the

observation from the proof of Lemma 4.18 that R-shifting a curve has the effect
of scaling the eigenvector describing the approach. Indeed, if we let ṽc′ denote the
map

ṽc′ = (b+ c′, v)

and let (Vc′ , ψc′) denote an asymptotic representative of ṽc′ , we can choose a c′ so
that evc′ chosen to satisfy

e−nλ
−s(Vc′(s, t)− evc′ (nt))→ 0 as s→∞

is equal to eu. The previous lemma then applies to show that δ∞([ũ; z], [ṽc′ , w]) > 0,
and hence that

[ũ] ∗ [ṽ] = [ũ] ∗ [ṽc′ ] ≥ δ∞([ũ; z], [ṽc′ , w]) > 0

as claimed. �
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4.3.5. Generalized self-intersection numbers and embeddedness of the projection. In
this section we investigate conditions under which a curve in a cylindrical cobordism
has generalized self-intersection number equal to zero, and we investigate controls
on the embeddedness of the projection of a pseudoholomorphic curve in R×M into
the three manifold M . The key observation for this latter question, originally made
in [8], is that the projected curve is injective if and only if the nonprojected curve
doesn’t intersect any of its R-translates.

We first state Theorem 4.16 in the special case that ũ = ṽ.

Corollary 4.24. Let (Σ, j,Γ, ũ = (a, u)) ∈ C∞(M,H) be an asymptotically cylin-
drical map with ends that wind, and assume that at z ∈ Γ, ũ is asymptotic to γmzz ,
with γz ∈ P0(M,H) a simple periodic orbit and mz a nonzero integer. Then

[ũ] ∗ [ũ] =
∑
z∈Γ

|mz|

int(γz, u) +
∑
w∈Γ
γw=γz
mzmw>0

|mw|
[
max

{
α(γmzz )
|mz| ,

α(γmww )
|mw|

}
− α(γmww )

|mw|

]
+ d0(ũ;w)


+

∑
(z,w)∈Γ+×Γ−

γz=γw

|mw|d0(ũ; z) + |mz|d0(ũ;w)− |mzmw|
[
α(γmzz )
|mz| +

α(γmww )
|mw|

]
.

As a corollary to this and Corollary 4.9 we prove the following result which gives
a set of equivalent conditions to [ũ] ∗ [ũ] = 0 for a simple curve.

Corollary 4.25. Let [Σ, j,Γ, ũ = (a, u)] ∈ M(M,H, J) be a simple pseudoholo-
morphic curve, and assume that no component of ũ lies in an orbit cylinder. Then
the following are equivalent:

(1) The generalized self-intersection number of ũ vanishes, i.e. [ũ] ∗ [ũ] = 0
(2) All of the following hold:

(a) The projected map u does not intersect any of its asymptotic limits.
(b) For all z ∈ Γ, d0(ũ; z) = 0.
(c) If γ is a periodic orbit so that at z ∈ Γ, ũ is asymptotic to γmz and at

w ∈ Γ, ũ is asymptotic to γmw , then

α(γmz )
mz

= α(γmw )
mw

.

(3) All of the following hold:
(a) ind(ũ)− χ(Σ) + #Γeven = 0
(b) σ̄(ũ; z) = 1 for all z ∈ Γ.
(c) sing(ũ) = 0 or equivalently, ũ is embedded and has total asymptotic

self-intersection index, δ∞(ũ), equal to zero.
(4) All of the following hold:

(a) The map u is an immersion that is everywhere transverse to XH.
(b) d0(ũ; z) = 0 for all z ∈ Γ.
(c) σ̄(ũ; z) = 1 for all z ∈ Γ.
(d) sing(ũ) = 0 or equivalently, ũ is embedded and has total asymptotic

self-intersection index, δ∞(ũ), equal to zero.

Proof. The fact that (1) ⇐⇒ (2) follows from Corollary 4.24 and an argument
very similar to that in Corollary 4.17. We omit the details.
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The fact that (1) ⇐⇒ (4) follows from rewriting (4.16) as

[ũ] ∗ [ũ] = 2 sing(ũ) + windπ(ũ) + d0(ũ) + σ̄(ũ)−#Γ

= 2 sing(ũ) + windπ(ũ) +
∑
z∈Γ

(d0(ũ; z) + [σ̄(ũ; z)− 1])

and noting that each term on the right hand side of this is nonnegative.
Finally, the fact that (4) ⇐⇒ (3) follows directly from (4.15). Note that (4.15)

implies that the quantity ind(ũ) − χ(Σ) + #Γeven is nonnegative for curves in a
cylindrical cobordism provided it has no components with image contained in an
orbit cylinder. �

We observe that for a connected curve [Σ, j,Γ, ũ] satisfying the hypotheses of
the previous result, if [ũ] ∗ [ũ] = 0 then the projected curve u is an embedding in
the three-manifold. Indeed, the result shows that u must be an immersion which
doesn’t intersect any of its asymptotic limits. Moreover, since for the R-translates
ũc = (a+ c, u), we have

0 < int(ũ, ũc) ≤ [ũ] ∗ [ũc] = [ũ] ∗ [ũ] = 0,

it follows that ũ doesn’t intersect any of its R-translates, and the projection u
is injective. As observed in [8], the asymptotic behavior of u then allows us to
conclude that u is an embedding. As with the discussion of intersections of curves
with distinct projections to the three-manifold, the converse is not true: it could
well be the case that u is embedding and [ũ] ∗ [ũ] 6= 0 since we could have that
the total asymptotic intersection index δ∞(ũ, ũc) positive for all c ∈ R \ {0} for
which it is defined. Again, in this case, since R-shifting the curve changes the
asymptotic intersection numbers in a predictable way, we can find necessary and
sufficient conditions for a curve to have an embedded projection.

Towards this end, we state the following special case of Corollary 4.19 when
ṽ = ũ.

Corollary 4.26. Let [Σ, j,Γ, ũ = (a, u)] ∈M(M,H, J) be a connected pseudoholo-
morphic curve and assume that no component of ũ is contained in an orbit cylinder.
Then for any c ∈ R \ {0} we have

int(ũ, ũc) ≤
∑
w∈Γ

|mw|

int(γw, u) +
∑
z∈Γ
γz=γw
mzmw>0

|mz|max
{

wind∞(ũ;z)
|mz| , wind∞(ũ;w)

|mw|

}
− wind∞(ũ; z)


+

∑
(z,w)∈Γ−×Γ+

γz=γw

−|mzmw|
(

wind∞(ũ;z)
|mz| + wind∞(ũ;w)

|mw|

)

with strict inequality occurring for at most a finite number of values of c ∈ R \ {0}.

Along similar lines, keeping track of how the asymptotic intersection numbers
change with R-shifts allows the following adjustment to Corollary 4.9

Lemma 4.27. Let [Σ, j,Γ, ũ = (a, u)] ∈ M(M,H, J) be a connected, simple pseu-
doholomorphic curve and assume no component of ũ lies in an orbit cylinder. Then,
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for any c ∈ R \ {0} we have that

(4.25)

int(ũ, ũc) ≤ windπ(ũ) + 2δ(ũ) +
∑
zi∈Γ

[cov(e1(ũ; zi))− 1 + ∆2(ũ; zi)]

+
∑

zi,zj∈Γ
zi 6=zj
γzi=γzj
mzimzj>0

i∞([ũ; zi], [ũ; zj ]) +mzimzj max
`=i,j

{
wind∞(ũ;z`)
|mz` |

}

where e1(ũ; zi) is as defined in (3.15), δ(u) is as defined in (4.10), and ∆2(ũ; zi) is
as defined in (3.22). Moreover equality occurs in (4.25) for all but a finite number
of values of c ∈ R \ {0}.

Proof. By a special case of Corollary 4.19 we have that

int(ũ, ũc) ≤ [ũ] ∗ [ũ]

−
∑

zi,zj∈Γ
γzi=γzj
mzimzj>0

mzimzj

(
max
`=i,j

{
α(ũ;z`)
|mz` |

}
−max
`=i,j

{
wind(ũ;z`)
|mz` |

})

:= I(ũ)

with equality occurring for all but a finite number of values of c 6= 0. Applying
the adjunction formula (4.16) we have that the right hand side of this inequality is
equal to

I(ũ) = windπ(ũ) + d0(ũ) + [σ̄(ũ)−#Γ] + 2 sing(ũ)

−
∑

zi,zj∈Γ
γzi=γzj
mzimzj>0

mzimzj

(
max
`=i,j

{
α(ũ;z`)
|mz` |

}
−max
`=i,j

{
wind(ũ;z`)
|mz` |

})
.
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We rewrite the final sum in this by grouping the the terms with zi = zj , and using
the definition (3.18) of d0(ũ; z) and (3.19) to get

∑
zi,zj∈Γ
γzi=γzj
mzimzj>0

mzimzj

(
max
`=i,j

{
α(ũ;z`)
|mz` |

}
−max
`=i,j

{
wind(ũ;z`)
|mz` |

})

=
∑
zi∈Γ

|mzi |d0(ũ; zi)

+
∑

zi,zj∈Γ
zi 6=zj
γzi=γzj
mzimzj>0

mzimzj

(
max
`=i,j

{
α(ũ;z`)
|mz` |

}
−max
`=i,j

{
wind(ũ;z`)
|mz` |

})

= d0(ũ) +
∑
zi∈Γ

∆1(ũ; zi) + σ̄(ũ; zi)− cov(e1(ũ; zi))

+
∑

zi,zj∈Γ
zi 6=zj
γzi=γzj
mzimzj>0

mzimzj

(
max
`=i,j

{
α(ũ;z`)
|mz` |

}
−max
`=i,j

{
wind(ũ;z`)
|mz` |

})

= d0(ũ) + σ̄(ũ)−#Γ +
∑
zi∈Γ

∆1(ũ; zi) + 1− cov(e1(ũ; zi))

+
∑

zi,zj∈Γ
zi 6=zj
γzi=γzj
mzimzj>0

mzimzj

(
max
`=i,j

{
α(ũ;z`)
|mz` |

}
−max
`=i,j

{
wind(ũ;z`)
|mz` |

})
,

and we therefore have

I(ũ) = windπ(ũ) + 2 sing(ũ) +
∑
zi∈Γ

[cov(e1(ũ; zi))− 1−∆1(ũ; zi)]

−
∑

zi,zj∈Γ
zi 6=zj
γzi=γzj
mzimzj>0

mzimzj

(
max
`=i,j

{
α(ũ;z`)
|mz` |

}
−max
`=i,j

{
wind(ũ;z`)
|mz` |

})
.
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Further, rewriting

2 sing(ũ) = 2δ(ũ) + 2δ∞(ũ)

= 2δ(ũ) +
∑
zi∈Γ

2δ∞(ũ; zi) +
∑

zi,zj∈Γ
zi 6=zj

δ∞([ũ; zi], [ũ; zj ])

= 2δ(ũ) +
∑
zi∈Γ

∆1(ũ; zi) + ∆2(ũ; zi)

+
∑

zi,zj∈Γ
zi 6=zj
γzi=γzj
mzimzj>0

i∞([ũ; zi], [ũ; zj ]) +mzimzj max
`=i,j

{
α(ũ;z`)
|mz` |

}

= 2δ(ũ) +
∑
zi∈Γ

∆1(ũ; zi) + ∆2(ũ; zi)

+
∑

zi,zj∈Γ
zi 6=zj
γzi=γzj
mzimzj>0

i∞([ũ; zi], [ũ; zj ]) +mzimzj max
`=i,j

{
wind∞(ũ;z`)
|mz` |

}

+
∑

zi,zj∈Γ
zi 6=zj
γzi=γzj
mzimzj>0

mzimzj

(
max
`=i,j

{
α(ũ;z`)
|mz` |

}
−max
`=i,j

{
wind∞(ũ;z`)
|mz` |

})

allows us to write

I(ũ) = windπ(ũ) + 2δ(ũ) +
∑
zi∈Γ

[cov(e1(ũ; zi))− 1 + ∆2(ũ; zi)]

+
∑

zi,zj∈Γ
zi 6=zj
γzi=γzj
mzimzj>0

i∞([ũ; zi], [ũ; zj ]) +mzimzj max
`=i,j

{
wind∞(ũ;z`)
|mz` |

}
.

We therefore conclude that

int(ũ, ũc) ≤ windπ(ũ) + 2δ(ũ) +
∑
zi∈Γ

[cov(e1(ũ; zi))− 1 + ∆2(ũ; zi)]

+
∑

zi,zj∈Γ
zi 6=zj
γzi=γzj
mzimzj>0

i∞([ũ; zi], [ũ; zj ]) +mzimzj max
`=i,j

{
wind∞(ũ;z`)
|mz` |

}
.

with equality occurring for all but a finite number of values of c ∈ R \ {0}. �

We now prove Theorem 2.6 which gives necessary and sufficient conditions for
the projection of a curve to the 3-manifold to be embedded.

Theorem 4.28 (Theorem 2.6). Let [Σ, j,Γ, ũ = (a, u)] ∈ M(M,H, J) be a con-
nected, simple pseudoholomorphic curve, and assume that ũ does not have image
contained in an orbit cylinder. Then the following are equivalent:
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(1) The projected map u : Σ \ Γ→M is an embedding.
(2) The intersection number int(ũ, ũc) between ũ and an R-translate ũc = (a+

c, u) is zero for all c ∈ R \ {0}.
(3) All of the following hold:

(a) u does not intersect any of its asymptotic limits.
(b) If γ is a periodic orbit so that u is asymptotic at z ∈ Γ to γmz and u

is asymptotic at w ∈ Γ to γmw , then

wind∞(ũ;z)
mz

= wind∞(ũ;w)
mw

.

(4) All of the following hold:
(a) The map ũ is an embedding.
(b) The projected map u is an immersion which is everywhere transverse

to XH (equivalently windπ(u) = 0).
(c) For each z ∈ Γ, we have

gcd(mz,wind∞(ũ;mz)) = 1

(equivalently cov(e1(ũ; z)) = 1).
(d) If γ is a periodic orbit so that u is asymptotic at z to γmz and u is

asymptotic at w 6= z to γmw with mzmw > 0, then the asymptotic
intersection number of the ends [ũ; z] and [ũ;w] achieves the bound
from (3.30), i.e.

iΦ∞([ũ; z], [ũ;w]) = −mzmw max
{

windΦ
∞(ũ;z)
mz

,
windΦ

∞(ũ;w)
mw

}
.

Proof. We first address (2) ⇐⇒ (3). This follows from Corollary 4.26 and positiv-
ity of intersections by an argument analogous to that in Corollary 4.25. We omit
the details.

Next we prove (2) ⇐⇒ (4). This is also similar to a part of Corollary 4.25. It
follows from positivity of intersections and Lemma 4.27, particularly the nonneg-
ativity of the each of the terms on the right hand side of (4.25) . Indeed, from
positivity of intersections and (4.25) that int(ũ, ũc) = 0 for all c ∈ R \ {0} if and
only if:

• windπ(u) = 0,
• δ(u) = 0 (i.e. ũ is an embedding),
• cov(e1(ũ; z)) = 1 for all z ∈ Γ,
• ∆2(ũ; z) = 0 for all z ∈ Γ, and
• the asymptotic intersection numbers satisfies

iΦ∞([ũ; z], [ũ;w]) = −mzmw max
{

windΦ
∞(ũ;z)
mz

,
windΦ

∞(ũ;w)
mw

}
for each pair of distinct punctures (z, w) ∈ Γ× Γ at which u is asymptotic
to coverings of a the same underlying orbit with the same sign.

Recalling from Lemma 3.14 that cov(e1(ũ; z)) = 1 implies that ∆2(ũ; z) = 0, and
from Lemma 3.2 and (3.16) that

cov(e1(ũ; z)) = gcd(wind(Φ−1e1(ũ; z)),mz) = gcd(windΦ
∞(ũ; z),mz)

we see that these conditions are equivalent to those listed in (4) above.
Next we observe that (1) ⇒ (2). This has been previously observed in [8], but

we include the argument here for completeness, since it is short and illustrative.
Indeed if there exists a c ∈ R \ {0} so that ũ = (a, u) intersects ũc = (a + c, u),
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then there is a pair of points distinct points z, w ∈ Σ\Γ so that ũ(z) = ũ(w) which
in turn implies that u(z) = u(w). Thus (2) implies that the projected map has a
double point and, thus, can’t be an embedding.

Finally we show that (2), (3), (4) ⇒ (1). Indeed if (2), (3) and (4) are all true,
then the projected curve u is an injective (by (2) and the argument of the previous
paragraph) immersion (by (3)), which doesn’t intersect any of its asymptotic limits
(by (4)). As observed in [12], this with the asymptotic behavior implies that the
map u is an embedding. �

4.3.6. Holomorphic open book decompositions. In this section we examine an ap-
plication of results from the previous sections to properties of holomorphic curves
in manifolds admitting a holomorphic open book decomposition. Recall from the
introduction (M,H, J) is said to admit a stable, holomorphic open book decompo-
sition if we there is a link L ⊂M made up of elliptic periodic orbits of XH, and a
fibration π : M \ L → S1 so that for any θ ∈ S1, π−1(θ) is an embedded surface
bounded by L, for which we can write

π−1(θ) = u(S2 \ Γ)

for some punctured J̃-holomorphic sphere [S2, i,Γ, (a, u)] ∈ M(M,H, J) having
only positive punctures asymptotic to simply covered orbits.

Theorem 4.29 (Theorem 2.7). Let (M,H, J) be a contact manifold admitting a
stable, holomorphic open book decomposition. Let [Σ, j,Γ, ũ = (a, u)] ∈M(M,H, J)
be a connected pseudoholomorphic curve, and assume that the image of u is not a
page of the open book decomposition, and that ũ does not have image contained in
an orbit cylinder. Then at least one of the following is true:

(1) At least one of the positive punctures of ũ limits to an orbit that is not a
binding of the open book decomposition.

(2) At least one of the positive punctures of ũ limits to a multiple cover of a
binding orbit of the open book.

Proof. Let ṽ = (b, v) : S2 \ Γ′ → R ×M be any simple pseudoholomorphic curve
which projects to a page v(S2 \ Γ′) of the open book decomposition. We apply
(4.19) with the roles of ũ and ṽ reversed to find that

[ũ]∗[ṽ] =
∑
z∈Γ+

mz

int(γz, v) +
∑
w∈Γ′
γw=γz

[
max

{
α(γmzz )
mz

, α(γw)
}
− α(γw)

]
+ d0(ṽ;w)


where we’ve used the assumption that ṽ only has positive, simply-covered punc-
tures. Moreover, by the assumption that ind(ṽ) = 2, we have from (4.15), we have
that

0 ≤ windπ(v) + d0(ṽ) ≤ ind(ṽ)− χ(S2) + #Γeven(ṽ) = 2− 2 + 0 = 0

so we have that d0(ṽ) = 0 (and that windπ(v) = 0, but this already follows from
Theorem 4.28 since v parametrizes a page of the open book decomposition and
is thus an embedding). Consequently, our formula for the generalized intersection
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number of ũ and ṽ simplifies to

(4.26) [ũ] ∗ [ṽ] =
∑
z∈Γ+

mz

int(γz, v) +
∑
w∈Γ′
γw=γz

[
max

{
α(γmzz )
mz

, α(γw)
}
− α(γw)

] .

Now, the assumption that u does not have image lying in a page of the open book
decomposition, implies that u intersects some page of the open book decomposition,
which in turn, by Theorem 4.4, implies that ũ has positive generalized intersection
number with a pseudoholomorphic curve which projects to that page of the open
book decomposition. Moreover, by homotopy invariance of the generalized inter-
section number, ũ has positive generalized intersection number with every page of
the open book decomposition. Using this observation with the the formula (4.26)
for the generalized intersection number of ũ with a page of the open book, we see
that [ũ] ∗ [ṽ] > 0 implies that either:

(1) there exists a z ∈ Γ so that int(γz, v) > 0, or
(2) there exists a z ∈ Γ and w ∈ Γ′ so that γz = γw and

max
{
α(γmzz )
mz

, α(γw)
}
− α(γw) > 0,

which in turn implies that mz > 1.

These two conditions are equivalent to the two listed in the statement of the theo-
rem, so this completes the proof. �

Remark 4.30. We remark that in the event that the first alternative of the pre-
ceding theorem does not hold, i.e. when all the positive punctures of the curve ũ
limit to coverings of binding orbits of the open book decomposition, the proof can
be refined to give a bound on the covering numbers of the punctures guaranteed
by the second alternative in terms of the iteration formula for the Conley-Zehnder
index of the orbit in question. Indeed, given an elliptic periodic orbit γ ∈ P(M,H)
and a trivialization Φ of ξH|γ , Lemma 3.3 guarantees that there is an irrational θ
so that

αΦ(γk) = bkθc.
While the number θ here depends on the choice of trivialization, the change of
trivialization formula from Lemma 3.4 allows us to conclude that the fractional
part

{θ} := θ − bθc ∈ (0, 1)

of θ is independent of the choice of trivialization. We will refer to the number {θ}
as the rotation index of γ and denote it by rot (γ).

Now, assume that [S2, i,Γ′, ṽ = (b, v)] is a page of the open book decomposition,
and [Σ, j,Γ, ũ] is a pseudoholomorphic curve with every positive puncture limiting
to a covering of a binding orbit of the open book decomposition. Then the terms
of the form int(γz, v) in formula (4.26) all vanish. Writing the remaining terms of
the formula using rotation indices we find that

[ũ] ∗ [ṽ] =
∑

(z,w)∈Γ+×Γ′

γz=γw

bmz rot(γz)c

which the reasoning the proof allows us to conclude must be positive. We can thus
conclude that for at least one z ∈ Γ, mz > 1/ rot(γz).
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4.3.7. Generalized holomorphic curves. In this section we prove the that the gen-
eralized intersection number of two generalized pseudoholomorphic curves with no
common components in nonnegative.

Recall from the introduction that a generalized pseudoholomorphic map in R×M
is a quintuple (Σ, j,Γ, (a, u), ν) satisfying

πξH ◦ du ◦ j = J ◦ πξH ◦ du
u∗λ ◦ j = da+ ν

dν = d(ν ◦ j) = 0,

and a generalized pseudoholomorphic curve [Σ, j,Γ, (a, u), ν] is an equivalence class
of generalized pseudoholomorphic maps, where two maps are considered equivalent
if they differ by holomorphic reparametrization of the domain.

A key observation from [7] is that if [Σ, j,Γ, (a, u), ν] is a generalized pseudo-
holomorphic curve, then on any simply connected subset U of Σ, the M -part u of
the map has a pseudoholomorphic lift. Indeed, if h : U → R satisfies dh = ν|U
then (a+h, u) : U → R×M is J̃-holomorphic. A consequence of this is the follow-
ing, again first observed in [7], which states that for generalized pseudoholomorphic
curves, one still obtains the first term of the asymptotic formula from Theorem 3.7.

Lemma 4.31. Let (Σ, j,Γ, ũ = (a, u), ν) be a generalized pseudoholomorphic map
in R × M with no component having image contained in an orbit cylinder, and
assume at z ∈ Γ, u is asymptotic to γm. Then there is an embedding

ψ : [R,∞)× S1 → Σ \ {z}

satisfying lims→∞ ψ(s, t) = z so that

ũ(ψ(s, t)) =
(
mτs, expγm(t) e

λs[e(t) + r(s, t)]
)

where λ < 0 is an eigenvalue of Aγm,J , e is an eigenvector of Aγm,J with eigenvalue
λ, and r(s, t)→ 0 exponentially as s→∞.

As a consequence of this Lemma, we observe that the quantities windΦ
∞ and

d0 = windΦ
∞−αΦ, defined in (3.16) and (3.18) respectively are well-defined for ends

of generalized pseudoholomorphic curves, provided the images of the maps are not
orbit cylinders.

We can now prove Theorem 2.9 which we restate here.

Theorem 4.32 (Global positivity of intersections for generalized holomorphic
curves). Let [Σ, j,Γ, ũ = (a, u), ν], [Σ′, j′,Γ′, ṽ = (b, v), ν′] ∈ M∆(M,H, J) be gen-
eralized pseudoholomorphic curves, and assume that no component of ũ or ṽ is
contained in an orbit cylinder. Then

[ũ] ∗ [ṽ] ≥ 0.

Proof. As a consequence of Lemma 4.31, we know that ũ and ṽ have ends that
wind, so Theorem 4.16 tells us that the generalized intersection number of ũ and ṽ
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is given by

[ũ] ∗ [ṽ] =
∑
w∈Γ′+

|mw|

int(γw, u) +
∑
z∈Γ+
γz=γw

|mz|
[
max

{
α(γmzz )
|mz| ,

α(γmww )
|mw|

}
− α(γmzz )

mz

]
+ d0(ũ; z)



+
∑
z∈Γ−

|mz|

int(γz, v) +
∑
w∈Γ′−
γw=γz

|mw|
[
max

{
α(γmzz )
|mz| ,

α(γmww )
|mw|

}
− α(γmww )

|mw|

]
+ d0(ṽ;w)


+

∑
(z,w)∈Γ−×Γ′+

γz=γw

|mw|d0(ũ; z) + |mz|d0(ṽ;w)− |mwmz|
[
α(γmzz )
|mz| +

α(γmww )
|mw|

]
,

The theorem would follow immediately if we knew that each term appearing in this
formula were nonnegative. The nonnegativity of the d0 terms is an immediate con-
sequence of the asymptotic description from Lemma 4.31 and reasoning identical
to that in Lemma 3.13. Every other term has previously been shown to be nonneg-
ative in the proof of Corollary 4.17 except for the terms int(γw, u) and int(γz, v)
since in Corollary 4.17 we were assuming that ũ and ṽ were pseudoholomorphic,
while here we only assume generalized pseudoholomorphic. It remains true in this
case that intersections of a projected generalized pseudoholomorphic curves with a
periodic orbit of XH always occur with positive local intersection index. Indeed,
assume at z∗ ∈ Σ that u(z∗) = γ(t) where γ is a periodic orbit or XH. Then let
ū = (a+ h, u) : U → R×M be a local pseudoholomorphic lift of u on a neighbor-
hood U of z∗. Then ū(z∗) intersects the orbit cylinder γ̃. By the assumption that
ũ does have any components with image contained in an orbit cylinder, it follows
that the intersection of ū with γ̃ is isolated and has positive local index, and it
follows as in (4.18) that the intersection of γ with u is isolated and has positive
local index. �

Appendix A. Zeroes of πξH ◦ du

Here we will prove that for a connected pseudoholomorphic curve [Σ, j,Γ, (a, u)] ∈
M(M,H, J), the projection of the derivative of u onto the hyperplane distribution
ξH either vanishes identically or has a finite number of isolated zeroes of finite pos-
itive order. This is proved in [8] in the case that the Hamiltonian structure comes
from a contact form, and the proof is an adaptation of the argument given there.

We start with a local coordinate lemma which is a straightforward modification
of the well known version of Darboux’s theorem for presymplectic manifolds. Be-
cause it may be of independent interest, we prove the result for stable Hamiltonian
structures on manifolds of arbitrary odd dimension. In the definition of stable
Hamiltonian structure for a 2n + 1-dimensional manifold M , the condition (H1)
needs to be changed to

λ ∧ ωn > 0

but otherwise remains the same. The definition of XH and ξH are identical, and
it remains true that λ and ω are preserved by the flow of XH. For more details
see e.g. [2, 22]. For the following we equip R2n+1 with the coordinates {(z, x, y)} =
{(z, xi, yi)} ∈ R× Rn × Rn.
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Lemma A.1 (Darboux’s theorem for stable Hamiltonian structures). Let (M,H)
be a closed, 2n+ 1-dimensional manifold equipped with a stable Hamiltonian struc-
ture (λ, ω). For any p0 ∈M , there exists an ε > 0 and an embedding

φ : (−ε, ε)2n+1 →M

with φ(0) = p0 and

φ∗λ = dz −
n∑
i=1

(gi(x, y)dxi + hi(x, y)dyi)

φ∗ω = ω0 =

n∑
i=1

dxi ∧ dyi

where the gi, hi : (−ε, ε)2n → R are smooth real-valued functions satisfying gi(0) =
hi(0) = 0.

Proof. Let ψ : R×M → M denote the flow of XH, i.e. ψ̇t(p) = XH ◦ ψt(p) for all
(t, p) ∈ R×M . Let {ei, fi} be a symplectic basis for (ξHp0

, ω), that is, assume that

ω(ei, ej) = ω(fi, fj) = 0

for any i, j, and that

ω(ei, fj) = δij .

Define a map φ0 : R2n+1 →M by

φ0(z, xi, yi) = ψz(expp0
(

n∑
i=1

xiei + yifi))

where exp is the exponential map of any Riemannian metric on M . It follows from
the definition that φ0 satisfies:

• dφ0(z, x, y)∂z = XH for all (z, x, y) ∈ R2n+1,
• dφ0(0)∂xi = ei and dφ0(0)∂yi = fi, and thus
• φ0 is an embedding on some neighborhood of the origin,
• φ∗0(0)ω = ω0, and φ∗0(0)λ = dz.

Since the flow of XH preserves λ and ω, we can conclude that φ∗0λ and φ∗0ω are
independent of the z-variable. Since φ∗0λ(∂z) = λ(XH) = 1, we thus have

φ∗0λ = dz −
n∑
i=1

(
g̃i(x, y)dxi + h̃i(x, y)dyi

)
φ∗0ω = ω0 + r(x,y)

where g̃i, h̃i are smooth, real-values functions on some neighborhood of the origin in
R2n satisfying g̃i(0) = h̃i(0) = 0, and where r(x,y) is a two-form on R2n satisfying
r(0,0) = 0. The result then follows from applying a Moser trick in the x and y
variables (see e.g Theorem 1, page 10 in [13]). �

Next we show that for [Σ, j,Γ, (a, u)] ∈ M(M,H, J), πξH ◦ du can only have
isolated zeroes of positive order. It suffices to prove this in “Darboux coordinates”
provided by the preceding lemma. In the following Dε will denote the disk of
radius ε in C = {s+ it}. We observe this argument readily generalizes to higher
dimensions, but is of most use in dimension 3 in which case the algebraic count of
zeroes of πξH ◦ du is topologically controlled.
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Lemma A.2. Let g, h : R2 → R be smooth functions, and let J ∈ J (R3,H0) where
H0 = (λ0, ω0) is the Hamiltonian structure defined by

λ0 = dz − g(x, y) dx− h(x, y) dy

ω0 = dx ∧ dy.

Moreover, let π : RXH0
⊕ ξH0 → ξH0 be the projection onto ξH0 = kerλ0 along

XH0
. If ũ = (a, u) : (Dε, i)→ (R×R3, J̃) is a pseudoholomorphic map, then π ◦ du

either vanishes identically, or has isolated zeroes of finite positive order.

Proof. We will show that in an appropriate basis for ξH0 the section (π ◦ du)(∂s)
satisfies a perturbed Cauchy-Riemann equation. The result will then follow from
the similarity principle (see e.g. Appendix A.6 in [13]).

We first note that the vector fields e = ∂x + g ∂z and f = ∂y + h ∂z form a basis
for ξH0 and that XH0

= ∂z. Moreover, for any vector field v = vx ∂x+vy ∂y +vz ∂z
on R3 we have that

πv = v − λ0(v)XH0

= vx ∂x + vy ∂y + (vxg + vyh) ∂z

= vxe+ vyf

so the coordinates of πv in the basis {e, f} are given by the x and y components of
v in the standard basis for R3.

Now, writing u = (uz, ux, uy) ∈ R3 and v = (ux, uy), the equation π ◦ du ◦ i =
J ◦ π ◦ du applied to ∂s and expressed in the basis {e, f} becomes

vs + J̄(s, t)vt = 0.

Here J̄(s, t) is J(u(s, t)) represented in the basis {e, f}, and hence satisfies J̄2 = −I.
Letting w = vs and differentiating the above equation with respect to s leads to

ws + J̄(s, t)wt +A(s, t)w = 0

with

A(s, t) = J̄s(s, t)J̄(s, t).

As explained in the first paragraph, the result is now an easy consequence of the
similarity principle. �

Corollary A.3. Let [Σ, j,Γ, ũ = (a, u)] ∈ M(M,H, J) be a connected pseudo-

holomorphic curve for some cylindrical J̃ associated to a J ∈ J (M,H), and let
πξH : TM = RXH ⊕ ξH → ξH be the projection onto ξH along XH. Then πξH ◦ du
either vanishes identically or has a finite number of isolated zeroes each of finite
positive order.

Proof. Assume that πξH ◦ du does not vanish identically. By the previous two lem-
mas, the zeroes of πξH ◦ du must be isolated and of finite positive order. Moreover,
according to Corollary 3.12, πξH ◦du is nonvanishing in some neighborhood of each
puncture since we assume it doesn’t vanish identically on Σ \ Γ. �



82 R. SIEFRING

Appendix B. Local intersections of generalized pseudoholomorphic
curves

In this appendix, we construct local examples of generalized pseudoholomorphic
curves exhibiting intersection behavior that can’t occur for (genuine) pseudoholo-
morphic curves. The author first learned that such examples should exist from C.
Abbas.

We consider R3 = {(z, x, y)} equipped with the stable Hamiltonian structure
H = (λ, ω) = (dz, dx ∧ dy). Then XH = ∂z and ξH = span {∂x, ∂y}. Define J on
ξH by J∂x = ∂y. The projection πξH : TR3 = RXH ⊕ ξH → ξH is given by

(z, x, y) 7→ (x, y).

Letting D denote the unit disk in C = {s+ it}, the generalized holomorphic curve
equations (2.8) for a map ũ = (a, u1, u2) : D→ R× R× R2 reduce to

(B.1)


d(du1 ◦ i− da) = 0

d(du1 + da ◦ i) = 0

∂su2 + J∂tu2 = 0

Consider maps ũ, ṽ : D→ R× R3 defined by

ũ(s, t) = (0, 0, s, t)

and
ṽ(s, t) = (cs, t, s, t)

where c ∈ R is constant. Then it is straightforward to check that ũ and ṽ satisfy
(B.1), and we moreover observe that ũ is genuinely holomorphic. If c = 0 then
ũ and ṽ intersect along the line ũ(s, 0) = ṽ(s, 0) = (0, 0, s, 0), which can’t happen
for two genuinely pseudoholomorphic maps. If c = −1, then ũ and ṽ have an
isolated transverse intersection at ũ(0, 0) = ṽ(0, 0) = (0, 0, 0, 0), and the sign of the
intersection is given by

det
[
∂sũ ∂tũ ∂sṽ ∂tṽ

]
(0, 0) = det


0 0 −1 0
0 0 0 1
1 0 1 0
0 1 0 1

 = −1

so the local intersection number is −1.
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MR1395676.
[11] H. Hofer, K. Wysocki, and E. Zehnder. Properties of pseudoholomorphic curves in symplecti-

zations. III. Fredholm theory. In Topics in nonlinear analysis, volume 35 of Progr. Nonlinear
Differential Equations Appl., pages 381–475. Birkhäuser, Basel, 1999, MR1725579.
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books]. Birkhäuser Verlag, Basel, 1994, MR1306732.
[14] Michael Hutchings. An index inequality for embedded pseudoholomorphic curves in symplec-

tizations. J. Eur. Math. Soc. (JEMS), 4(4):313–361, 2002, MR1941088.

[15] Michael Hutchings. The embedded contact homology index revisited. In New perspectives and
challenges in symplectic field theory, volume 49 of CRM Proc. Lecture Notes, pages 263–297.

Amer. Math. Soc., Providence, RI, 2009, MR2555941.

[16] Markus Kriener. An Intersection Formula for Finite Energy Half Cylinders. PhD thesis, ETH
Zurich, 1998.

[17] Dusa McDuff. Singularities and positivity of intersections of J-holomorphic curves. In
Holomorphic curves in symplectic geometry, volume 117 of Progr. Math., pages 191–215.
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