5.7A Generalized Factoring I

A. General Factoring Strategy

1. First try to factor out the GCF.
2. Decide how many terms you have, and do the following:
a. Two terms: look for
I. Difference of Squares: $\quad a^{2}-b^{2}=(a+b)(a-b)$
II. Difference of Cubes: $a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$
III. Sum of Cubes: $a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)$
b. Three terms: look for
I. Perfect Squares: $\quad a^{2}+2 a b+b^{2}=(a+b)^{2}$ and $a^{2}-2 a b+b^{2}=(a-b)^{2}$
II. AntiFOIL
c. Four terms or more: try factoring by grouping; rearrange if necessary
3. After successively applying the techniques repeatedly, you reach the completely factored answer.

Remember:

a. Some trinomials are not factorable
b. Sum of squares $a^{2}+b^{2}$ is not factorable

B. Examples

Example 1: Factor $3 x^{5}-81 x^{2}$ completely.

Solution

1. First factor out the GCF:

$$
3 x^{2}\left(x^{3}-27\right)
$$

2. Inside: two terms; it is a difference of cubes

$$
3 x^{2}\left((x)^{3}-(3)^{3}\right)
$$

Ans $\quad 3 x^{2}(x-3)\left(x^{2}+3 x+9\right)$

Example 2: Factor $80 x^{3}+36 m x y^{2}-30 m x^{2}-96 x^{2} y^{2}$ completely.

Solution

1. First factor out the GCF:

$$
2 x\left(40 x^{2}+18 m y^{2}-15 m x-48 x y^{2}\right)
$$

2. Inside: four terms; factor by grouping

$$
\begin{aligned}
& 2 x\left[40 x^{2}+18 m y^{2}-15 m x-48 x y^{2}\right] \\
& 2 x\left[2\left(20 x^{2}+9 m y^{2}\right)-3 x\left(5 m+16 y^{2}\right)\right] \quad \mathrm{X}
\end{aligned}
$$

Rearrange: Try $1 \& 3$ and $2 \& 4$

$$
2 x\left[40 x^{2}-15 m x+18 m y^{2}-48 x y^{2}\right]
$$

$$
2 x\left[5 x(8 x-3 m)+6 y^{2}(3 m-8 x)\right]
$$

Negative factor pairs!

$$
\begin{aligned}
& 2 x\left[5 x(8 x-3 m)-6 y^{2}(8 x-3 m)\right] \\
& 2 x\left[(8 x-3 m)\left(5 x-6 y^{2}\right)\right]
\end{aligned}
$$

By associativity, we get
Ans $2 x(8 x-3 m)\left(5 x-6 y^{2}\right)$

Example 3: Factor $16 x^{3} y-24 x^{2} y^{2}+9 x y^{3}$ completely.

Solution

1. First factor out the GCF:

$$
x y\left(16 x^{2}-24 x y+9 y^{2}\right)
$$

2. Inside: three terms; try perfect square factoring

First term: $(4 x)^{2}$

Last term: $(3 y)^{2}$

Test: $(4 x-3 y)^{2}:(4 x-3 y)^{2}=16 x^{2}-24 x y+9 y^{2} \sqrt{ }$

Thus we have

Ans $\quad x y(4 x-3 y)^{2}$

Example 4: Factor $12 x^{2} y^{2}+27 y^{2}-45 x y^{2}$ completely.

Solution

1. First factor out the GCF:

$$
3 y^{2}\left(4 x^{2}+9-15 x\right)
$$

2. Inside: three terms

Rearrange $3 y^{2}\left(4 x^{2}-15 x+9\right)$ and try perfect square factoring

First term: $(2 x)^{2}$

Last term: $(3)^{2}$

$$
\text { Test: }(2 x-3)^{2}:(2 x-3)^{2}=4 x^{2}-12 x+9 \quad \mathrm{X}
$$

This shortcut fails, so we must do AntiFOIL!

$$
\begin{array}{c|ll}
4 x^{2}-15 x+9 & 36 & \text { TSP: }-,- \\
\hline 4 x^{2}-x-14 x+9 & 14 \\
4 x^{2}-2 x-13 x+9 & 26 \\
4 x^{2}-3 x-12 x+9 & 36 \sqrt{ } \\
& \\
x(4 x-3)-3(4 x-3) \\
(4 x-3)(x-3)
\end{array}
$$

Thus we have

Ans $3 y^{2}(4 x-3)(x-3)$

Example 5: Factor $128 x^{6}-2$ completely.

Solution

1. First factor out the GCF:

$$
2\left(64 x^{6}-1\right)
$$

2. Inside: two terms; it is a difference of squares

$$
\begin{aligned}
& 2\left(\left(8 x^{3}\right)^{2}-(1)^{2}\right) \\
& 2\left(8 x^{3}+1\right)\left(8 x^{3}-1\right)
\end{aligned}
$$

Each of these can be factored: sum and difference of cubes

$$
\begin{aligned}
& 2\left[(2 x)^{3}+1^{3}\right]\left[(2 x)^{3}-1^{3}\right] \\
& 2\left[(2 x+1)\left(4 x^{2}-2 x+1\right)\right]\left[(2 x-1)\left(4 x^{2}+2 x+1\right)\right]
\end{aligned}
$$

Keeping in mind that the trinomials are prime, by associativity and commutativity, we get

Ans $\quad 2(2 x+1)(2 x-1)\left(4 x^{2}-2 x+1\right)\left(4 x^{2}+2 x+1\right)$

