5.7B Generalized Factoring II

A. More on Differences of Squares

Some difference of squares problems are trickier. Be careful with minus signs!

Example 1: Factor $(2x + 3)^2 - 16y^2$ completely.

Solution

Two terms: Difference of Squares

$$(2x+3)^2 - (4y)^2$$

$$[(2x+3)+4y][(2x+3)-4y]$$

Ans (2x+3+4y)(2x+3-4y)

Example 2: Factor $25x^2 - (3y - 2)^2$ completely.

Solution

Two terms: Difference of Squares

$$(5x)^2 - (3y - 2)^2$$

 $[5x + (3y - 2)][5x - (3y - 2)]$

Be careful with parentheses!

Ans
$$(5x+3y-2)(5x-3y+2)$$

Example 3: Factor $(3x + 5)^2 - (7x - 1)^2$ completely.

Solution

Two terms: Difference of Squares

 $(3x+5)^2 - (7x-1)^2$ [(3x+5) + (7x - 1)][(3x+5) - (7x - 1)] [3x+5+7x-1][3x+5-7x+1] (10x+4)(-4x+6)

Each factor has a GCF, so we have [2(5x+2)][-2(2x-3)]

Ans
$$-4(5x+2)(2x-3)$$

B. Grouping Triplets and Perfect Squares

Sometimes factoring by grouping for four or more terms does not work with **any** rearrangement if you group in pairs. However, if you group three terms, you may be able to use perfect square factoring to turn the problem into a "complicated" difference of squares.

Example 1: Factor $4x^2 - 12xy + 9y^2 - m^2$ completely.

Solution

Factor by grouping: Group triplet (since m^2 doesn't belong)

$$(4x^2 - 12xy + 9y^2) - m^2$$

Perfect Square:
$$(2x - 3y)^2 - m^2$$

Difference of Squares!

$$[(2x - 3y) + m][(2x - 3y) - m]$$

Ans (2x - 3y + m)(2x - 3y - m)

Example 2: Factor $16x^2 - 9m^2 + 42m - 49$ completely.

Solution

 $16x^2$ doesn't belong.

Group the last three, but when you group, - distributes!

 $16x^2 - (9m^2 - 42m + 49)$

Perfect Square: $16x^2 - (3m - 7)^2$

Difference of Squares:

 $(4x)^2 - (3m - 7)^2$

[4x + (3m - 7)][4x - (3m - 7)]

Ans (4x+3m-7)(4x-3m+7)

Example 3: Factor $25m^2 - 16x^2 + 40xy - 25y^2$ completely.

Solution

 $25m^2$ doesn't belong.

Group the last three, **but** when you group, – distributes!

 $25m^2 - (16x^2 - 40xy + 25y^2)$

Perfect Square: $25m^2 - (4x - 5y)^2$

Difference of Squares:

$$(5m)^2 - (4x - 5y)^2$$

$$[5m + (4x - 5y)][5m - (4x - 5y)]$$

Ans (5m+4x-5y)(5m-4x+5y)

C. More on Factoring By Grouping

When factoring by grouping, see if one term looks "different".

If there is one, try grouping by "triplets"; otherwise pairs.

Remember, you may need to rearrange terms to get it to work.

As always, check for a GCF first!

Example 1: Factor $m^3 - mn^2 - n^3 + nm^2$ completely.

Solution

NO GCF!

Everything looks the same, try pairs:

$$m(m^2 - n^2) - n(n^2 - m^2)$$

Negative factor pairs

$$m(m^2 - n^2) + n(m^2 - n^2)$$

$$(m^2 - n^2)(m+n)$$

Difference of squares

$$(m+n)(m-n)(m+n)$$

Switch the order

$$(m+n)(m+n)(m-n)$$

Ans

 $(m+n)^2(m-n)$

Example 2: Factor $4x^2 - 4k^2 + 25y^2 - 20xy$ completely.

Solution

NO GCF!

Since $-4k^2$ looks "different", we group in triplets.

Since $-4k^2$ is negative, we put it last:

$$(4x^2 + 25y^2 - 20xy) - 4k^2$$

Rearrange:

$$(4x^2 - 20xy + 25y^2) - 4k^2$$

Perfect Square:

$$(2x - 5y)^2 - 4k^2$$

Difference of Squares:

$$(2x - 5y)^2 - (2k)^2$$

 $[(2x - 5y) + 2k][(2x - 5y) - 2k]$

Ans (2x - 5y + 2k)(2x - 5y - 2k)

Example 3: Factor $6ax^3 - 8a^2x^2 - 12a^2x + 7ax^2 - 3ax$ completely.

Solution

GCF:
$$ax(6x^2 - 8ax - 12a + 7x - 3)$$

Rearrange:

$$ax[6x^2 + 7x - 3 - 8ax - 12a]$$

Group first three and last two:

$$ax[(6x^2 + 7x - 3) - 4a(2x + 3)]$$

Need to do AntiFOIL on $6x^2 + 7x - 3$:

Thus, we have

$$ax[(2x+3)(3x-1) - 4a(2x+3)]$$

Inside has a GCF of (2x + 3)... factor it out:

$$ax[(2x+3)((3x-1)-4a)]$$

Ans ax(2x+3)(3x-1-4a)