5.7B Generalized Factoring II

A. More on Differences of Squares

Some difference of squares problems are trickier. Be careful with minus signs!

Example 1: Factor $(2 x+3)^{2}-16 y^{2}$ completely.

Solution

Two terms: Difference of Squares

$$
\begin{aligned}
& (2 x+3)^{2}-(4 y)^{2} \\
& {[(2 x+3)+4 y][(2 x+3)-4 y]}
\end{aligned}
$$

Ans

$$
(2 x+3+4 y)(2 x+3-4 y)
$$

Example 2: Factor $25 x^{2}-(3 y-2)^{2}$ completely.

Solution

Two terms: Difference of Squares

$$
\begin{aligned}
& (5 x)^{2}-(3 y-2)^{2} \\
& {[5 x+(3 y-2)][5 x-(3 y-2)]}
\end{aligned}
$$

Be careful with parentheses!

Ans $\quad(5 x+3 y-2)(5 x-3 y+2)$

Example 3: Factor $(3 x+5)^{2}-(7 x-1)^{2}$ completely.

Solution

Two terms: Difference of Squares

$$
\begin{aligned}
& (3 x+5)^{2}-(7 x-1)^{2} \\
& {[(3 x+5)+(7 x-1)][(3 x+5)-(7 x-1)]} \\
& {[3 x+5+7 x-1][3 x+5-7 x+1]} \\
& (10 x+4)(-4 x+6)
\end{aligned}
$$

Each factor has a GCF, so we have $[2(5 x+2)][-2(2 x-3)]$

Ans $-4(5 x+2)(2 x-3)$

B. Grouping Triplets and Perfect Squares

Sometimes factoring by grouping for four or more terms does not work with any rearrangement if you group in pairs. However, if you group three terms, you may be able to use perfect square factoring to turn the problem into a "complicated" difference of squares.

Example 1: Factor $4 x^{2}-12 x y+9 y^{2}-m^{2}$ completely.

Solution

Factor by grouping: Group triplet (since m^{2} doesn't belong)

$$
\left(4 x^{2}-12 x y+9 y^{2}\right)-m^{2}
$$

$$
\text { Perfect Square: }(2 x-3 y)^{2}-m^{2}
$$

Difference of Squares!

$$
[(2 x-3 y)+m][(2 x-3 y)-m]
$$

Ans $\quad(2 x-3 y+m)(2 x-3 y-m)$

Example 2: Factor $16 x^{2}-9 m^{2}+42 m-49$ completely.

Solution

$16 x^{2}$ doesn't belong.

Group the last three, but when you group, - distributes!

$$
16 x^{2}-\left(9 m^{2}-42 m+49\right)
$$

Perfect Square: $16 x^{2}-(3 m-7)^{2}$

Difference of Squares:

$$
\begin{aligned}
& (4 x)^{2}-(3 m-7)^{2} \\
& {[4 x+(3 m-7)][4 x-(3 m-7)]}
\end{aligned}
$$

Ans $(4 x+3 m-7)(4 x-3 m+7)$

Example 3: Factor $25 m^{2}-16 x^{2}+40 x y-25 y^{2}$ completely.

Solution

$25 m^{2}$ doesn't belong.

Group the last three, but when you group, - distributes!

$$
25 m^{2}-\left(16 x^{2}-40 x y+25 y^{2}\right)
$$

Perfect Square: $25 m^{2}-(4 x-5 y)^{2}$

Difference of Squares:

$$
\begin{aligned}
& (5 m)^{2}-(4 x-5 y)^{2} \\
& {[5 m+(4 x-5 y)][5 m-(4 x-5 y)]}
\end{aligned}
$$

Ans $\quad(5 m+4 x-5 y)(5 m-4 x+5 y)$

C. More on Factoring By Grouping

When factoring by grouping, see if one term looks "different".

If there is one, try grouping by "triplets"; otherwise pairs.

Remember, you may need to rearrange terms to get it to work.

As always, check for a GCF first!

Example 1: Factor $m^{3}-m n^{2}-n^{3}+n m^{2}$ completely.

Solution

NO GCF!

Everything looks the same, try pairs:

$$
m\left(m^{2}-n^{2}\right)-n\left(n^{2}-m^{2}\right)
$$

Negative factor pairs

$$
\begin{aligned}
& m\left(m^{2}-n^{2}\right)+n\left(m^{2}-n^{2}\right) \\
& \left(m^{2}-n^{2}\right)(m+n)
\end{aligned}
$$

Difference of squares

$$
(m+n)(m-n)(m+n)
$$

Switch the order

$$
(m+n)(m+n)(m-n)
$$

Ans $(m+n)^{2}(m-n)$

Example 2: Factor $4 x^{2}-4 k^{2}+25 y^{2}-20 x y$ completely.

Solution

NO GCF!

Since $-4 k^{2}$ looks "different", we group in triplets.

Since $-4 k^{2}$ is negative, we put it last:

$$
\left(4 x^{2}+25 y^{2}-20 x y\right)-4 k^{2}
$$

Rearrange:

$$
\left(4 x^{2}-20 x y+25 y^{2}\right)-4 k^{2}
$$

Perfect Square:

$$
(2 x-5 y)^{2}-4 k^{2}
$$

Difference of Squares:

$$
\begin{aligned}
& (2 x-5 y)^{2}-(2 k)^{2} \\
& {[(2 x-5 y)+2 k][(2 x-5 y)-2 k]}
\end{aligned}
$$

Ans $(2 x-5 y+2 k)(2 x-5 y-2 k)$

Example 3: Factor $6 a x^{3}-8 a^{2} x^{2}-12 a^{2} x+7 a x^{2}-3 a x$ completely.

Solution

GCF: $\quad a x\left(6 x^{2}-8 a x-12 a+7 x-3\right)$

Rearrange:

$$
a x\left[6 x^{2}+7 x-3-8 a x-12 a\right]
$$

Group first three and last two:

$$
\begin{aligned}
& a x\left[\left(6 x^{2}+7 x-3\right)-4 a(2 x+3)\right] \\
& \text { Need to do AntiFOIL on } 6 x^{2}+7 x-3:
\end{aligned}
$$

$$
\begin{array}{l|ll}
6 x^{2}+7 x-3 & -18 & \text { TSP: }+,- \\
\hline 6 x^{2}+8 x-1 x-3 & -8 \\
6 x^{2}+9 x-2 x-3 & -18 \sqrt{ } \\
\\
3 x(2 x+3)-1(2 x+3) \\
(2 x+3)(3 x-1)
\end{array}
$$

Thus, we have

$$
a x[(2 x+3)(3 x-1)-4 a(2 x+3)]
$$

Inside has a GCF of $(2 x+3) \ldots$ factor it out:

$$
a x[(2 x+3)((3 x-1)-4 a)]
$$

Ans $\quad a x(2 x+3)(3 x-1-4 a)$

