7.2C Absolute Value and Roots

A. Absolute Value Discussion

Recall that absolute value $|\cdot|$ means **distance from the origin**.

We think of absolute value of numbers as "make it positive", but of course that doesn't work for variables. (See Sections 2.3 and 2.7)

Recall that |-3| = 3 and |4| = 4 etc.

We know consider a third interpretation.

Notice the following:

$$|6| = 6$$

 $|3| = 3$
 $|0| = 0$

If the number inside is positive or zero, the absolute value does nothing.

Thus |x| = x; if $x \ge 0$.

Notice the following:

$$|-3| = 3$$

 $|-4| = 4$

In this case, the sign changes.

Question: How can we change from -3 to 3 or -4 to 4 **without** using absolute value signs?

Answer: Multiply by -1

Thus notice that:

|-3| is the same as -(-3)

|-4| is the same as -(-4)

Thus, |x| = -x; if x < 0.

B. Definition of Absolute Value: Three Forms

- 1. For numbers only, "make it positive"
- 2. True Definition: distance from the origin

This is the correct definition, and works for numbers or variables. This is needed for **equations** or **inequalities**

3. Piecewise Definition:

$$|x| = egin{cases} x; ext{ if } x \geq 0 \ -x; ext{ if } x < 0 \end{cases}$$

C. Comments on the Piecewise Definition

1. The piecewise definition is the "formal definition" in terms of an algebraic formula.

2. The piecewise definition does **not** mean that $|x| = \pm x$ or some such nonsense. There is only **one** answer to |x|; however, the answer we choose **depends** on what's inside. 3. When an object has more than one "formula", and the expression you choose depends on some conditions, we say that the object is **piecewise defined**.

4. See MTH103 for more on piecewise definitions.

D. Use of the Piecewise Definition of |x| in Examples

Example 1: Find $|7 - \sqrt{3}|$ exactly

Solution

 $7 - \sqrt{3} \ge 0$; so we use |x| = x in **this** case

Thus
$$|7 - \sqrt{3}| = 7 - \sqrt{3}$$

Ans $7 - \sqrt{3}$

Example 2: Find $|1 - \sqrt{17}|$ exactly

Solution

$$1 - \sqrt{17} < 0$$
; so we use $|x| = -x$ in **this** case

Thus $|1 - \sqrt{17}| = -(1 - \sqrt{17})$

Ans $-1 + \sqrt{17}$

Example 3: Find $|\sqrt{3} - \sqrt{10}|$ exactly

Solution

$$\sqrt{3} - \sqrt{10} < 0$$
; so we use $|x| = -x$ in this case
Thus $|\sqrt{3} - \sqrt{10}| = -(\sqrt{3} - \sqrt{10})$
Ans $-\sqrt{3} + \sqrt{10}$

E. Roots and Powers

$$1. \quad (\sqrt[n]{x})^n = x$$

This is by definition of the nth root!

Thus "Root First, Then Power" \implies Cancel!

$$(\sqrt{x})^2 = x$$
$$(\sqrt[3]{x})^3 = x, \text{ etc.}$$

2. The problem with $\sqrt[n]{x^n}$

We know that this is **not** the same situation.

Recall that we are only allowed to move powers inside if x is not simultaneously negative with n even.

Consider $\sqrt{x^2}$:

$$\sqrt{4^2} = \sqrt{16} = 4$$

 $\sqrt{0^2} = \sqrt{0} = 0$
 $\sqrt{(-3)^2} = \sqrt{9} = 3$ not $-3!$

We see that, in fact, $\sqrt{x^2} = |x|$, since the answer is always positive (or zero)

We have a similar situation for all **even** roots:

$$\sqrt{x^2} = |x|$$

$$\sqrt[4]{x^4} = |x|$$

$$\sqrt[6]{x^6} = |x|$$

Since we don't have any problem with **odd** roots, they just cancel:

$$\sqrt[3]{x^3} = x$$
$$\sqrt[5]{x^5} = x$$

Hence, we get another piecewise definition, depending on whether the index is even or odd:

$$\sqrt[n]{x^n} = \begin{cases} x; \text{ if } n \text{ is odd} \\ |x|; \text{ if } n \text{ is even} \end{cases}$$

Thus "Power First, Then Root" \implies cancel only if the index is odd; otherwise absolute value!

F. Examples

Example 1: Find
$$\sqrt[3]{(7-\sqrt{3})^3}$$
 exactly

Solution

Since the index is **odd**, we use $\sqrt[n]{x^n} = x$ in **this** case

Thus
$$\sqrt[3]{(7-\sqrt{3})^3} = 7-\sqrt{3}$$

Ans $7 - \sqrt{3}$

Example 2: Find
$$\sqrt[4]{(10-\sqrt{5})^4}$$
 exactly

Solution

Since the index is **even**, we use $\sqrt[n]{x^n} = |x|$ in **this** case

Thus
$$\sqrt[4]{(10-\sqrt{5})^4} = |10-\sqrt{5}|$$

Now $10 - \sqrt{5} \ge 0$; so we use |x| = x in **this** case

Thus $|10 - \sqrt{5}| = 10 - \sqrt{5}$

Ans $10 - \sqrt{5}$

Here's where it gets interesting!

Example 3: Find
$$\sqrt[6]{(1-\sqrt{7})^6}$$
 exactly

Solution

Since the index is **even**, we use $\sqrt[n]{x^n} = |x|$ in **this** case

Thus
$$\sqrt[6]{(1-\sqrt{7})^6} = |1-\sqrt{7}|$$

Now $1 - \sqrt{7} < 0$; so we use |x| = -x in this case

Thus
$$|1 - \sqrt{7}| = -(1 - \sqrt{7})$$

Ans $-1+\sqrt{7}$

Example 4: Find
$$\sqrt{(\sqrt[3]{6} - \sqrt[3]{13})^2}$$
 exactly

Solution

Since the index is **even**, we use $\sqrt[n]{x^n} = |x|$ in **this** case

Thus
$$\sqrt{(\sqrt[3]{6} - \sqrt[3]{13})^2} = |\sqrt[3]{6} - \sqrt[3]{13}|$$

Now $\sqrt[3]{6} - \sqrt[3]{13} < 0$; so we use |x| = -x in **this** case

Thus $|\sqrt[3]{6} - \sqrt[3]{13}| = -(\sqrt[3]{6} - \sqrt[3]{13})$

Ans $-\sqrt[3]{6} + \sqrt[3]{13}$

G. Summary of Formulas

4. Piecewise Definition of |x|:

$$|x| = \begin{cases} x; \text{ if } x \ge 0\\ -x; \text{ if } x < 0 \end{cases}$$

- 5. $(\sqrt[n]{x})^n = x$ "Root First, Then Power" \implies CANCEL
- 6. Piecewise Definition of $\sqrt[n]{x^n}$:

$$\sqrt[n]{x^n} = \begin{cases} x; \text{ if } n \text{ is odd} \\ |x|; \text{ if } n \text{ is even} \end{cases}$$