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MATRIX LIE GROUPS

Definition: A matrix Lie group is a closed subgrou@; of GL(n, C)

Thus if {A,,}5°_, is any sequence of matrices@y,, and4,, — A for somed € M, (C), then
eitherA € G or A is not invertible.

Example of a Group that is Not a Matrix Lie Group
LetGH = {4 € GL(n,C) : A = [a];j~,, Wherea;; € Q, Vi, j}.
Then there exist$A~m}ﬁ:1 C G such thab4~m — w6 ¢ G, butrd isinvertible.
ThusGg is not a matrix Lie group.
Examples of Matrix Lie Groups
O(n),U(n), Sp(n), etc.

Another example is theleisenberg groupH described below:

b
LetA:{[ c:| :a,b,cGR}
1

Note: |If B,C € A,thenBC € A

OO =
O = Q

1 a b 1 —a ac—0»
fB=1|0 1 ¢|,thenB1=|[0 1 — | €A
~ 0 01 ~ 0 O 1

Then(4, -) is a subgroup o&L(3,R) and if { B,,,}>°_, C A with B,,, — B, thenB € A,
so(A,-) is a matrix Lie group, called the Heisenberg grdilip



Facts about the Heisenberg grougd

1 0 b
1. Z(H)=< [0 1 0|:b€eR [Exercise]
0 0 1
0 a g
2. Leth= 0 0 7| :a,8,y€ R,. Thenhisthe Lie algebra ofd. [Exercise]
0 0 O
010 0 01 0 0 O
3. LetA=1]0 0 0|,B=1]0 0 0f,C=1]0 0 1f.
~ 0oo0oo T (000 T 000
Then{A, B,C} is a basis fof.
B 1 0 ¢
4, B*=0soe~=d0+tB=|[0 1 0
~ ~ - 0 01
ThusZ(H) = {'% : t € R}.
5. [4,C]=Band4,B]=[C,B]=0 [Exercise]

II. LIE GROUPS

Definition: Gy is a(C>)— Lie group if G = (X, T, |A|,-) where
1. (X,T,|A])isaC>-manifold
2. (X,-)isagroup

3. -: X x X — X is a smooth function with respect to the smooth product siremnX x X
and the smooth structure df (determined by.4|)

4. Lettingimv : X — X be defined bywu(z) = 71, inv is @ smooth function
(with respect td.A|)



The Lie Group G

LetX =R xR x S = {(z,y,u) : 7,y e Randu € St = {z € C: |z| = 1}}.

Let 7§;é be the subspace topology 6 induced fromC.

Let7x be the standard product topology &ninduced fronT/g, the standard metric topology, aﬂ'gé.
Note: Tx is second countable and Hausdorff

LetU; = {e* : 6, € (0,2n)} andUs = {e?? : 0> € (—7,T)}.

LetVh = (0,2x) andVs = (—7, 7).

Lety; : Uy — Vi be defined by — {uniqued; € (0,2n) such that = eial}.

Let s : Us — V» be defined by — {uniquedy € (—=,7) such thatw = e#2}.

Let Agi = {(U1, V1, ¢1), (U2, V2, 92)}

Then(Sg, Ts1,|Asz]) is aC*°-manifold. [Exercise]

Via the standard product construction, with product atlas we have thatX, 7x, | Ax|) is aC>-manifold.
[Exercise]

Note: If z € X, then in each coordinate chatt= (z,y, e) for an appropriate choice 6t

Define: -: X x X — X locally (i.e. in each coordinate chart) as

(1,91, u1) - (T2, Y2, u2) = (T1 + T2, Y1 + Yo, €7 V2u1us)

This is well-defined onX x X (independent of choice of coordinate chart) [Exercise]
Facts about-

1. -isassociative [Exercise]

2. (0,0,1) is the identity element
1

3. (:U,y,u)* = (_:I‘.) _y,eiwyufl)

Thus(X,-) is a group.



Now - andin, are smooth in each coordinate chart (by inspection), soracet.

HenceG = (X, Tx, |Ax|,-) is a Lie group.

lll. EVERY MATRIX LIE GROUP IS A LIE GROUP

Every matrix Lie groug7,, is a smooth embedded submanifoldidf,(C) and hence a Lie group.
Idea of Proof:

For each pointirG v, take “small enough” neighborhood on whi€h; is defined to map neighbor-
hood to Lie algebra, which is a vector subspace df,,(C) = C"* =~ R2"’,

To do this formally, we need some facts.

n n

Definition: || X||y = <ZZ|X’”|2> for X € M,(C)

k=11=1
Proposition 1:  If X € M,,(C) with || X]|| < r 2, thenfeg(e)f) is defined ancﬂfeg(e)f) =X.

[Exercise: See Theorem 2.7 in “Lie Groups, Lie Algebras, Begresentations”, by Brian Hall]

Definition:  Lete € (0,6r 2). ThenletU, = {X € M,(C) : || X|| < e} andV: = exp(U.)

Note: By Proposition 1}V; is open inM,,(C)

Proposition 2:  SupposeGy C GL(n,C) is a matrix Lie group with Lie algebrg. Then there exists
e € (0,6n2) such that foralld € V., we haved € Gu & fog A € g.

[Exercise: See Theorem 2.27 in “Lie Groups, Lie Algebrasl Bepresentations”, by Brian Hall]

Proposition 3:  Every matrix Lie groug? s is a smooth embedded submanifoldids, (C)
and hence a Lie group

Proof:
Lete € (0,6n 2).

Let 7, be the subspace topology Gh,.

4



Let Ag € G-
LetC = 0.
ThenAg = Agd = Aoeoc,/L(C) S AO@X{L(UE) = AV..

SinceV; is open inM,, (C) and multiplication by4, is a homeomorphism onté, Vz,
ApV; is open inM,(C).

Thus Ay V. is an open neighborhood dff.

Note: X € AoV. <> Ay~'X € V;, and by Proposition 240 ™' X € V. & feg(4o™'X) € g

Then definepa, : AoVe — g by a,(X) = fog(Ao ™' X).

Then, by Proposition 25 is a well-defined homeomorphism. [Exercise]
Now g C M,,(C), andg is a vector space, gpis a vector subspace af,,(C).
Let{vy,...v} be a basis fog.

Extend{vy,... v} to a basiwvy, ... v, } for M, (C).

Letn : M,(C) — R2"" be defined by

n (Zawi) = (Re a1, dm a1,Re az, Im as, .. .,Re an, Im ay)
i=1

Thenn is a linear isomorphism. [Exercise]
Furthermoremg(”) : g = R x {0}2°~2* is a linear isomorphism. [Exercise]

Let®y, = nlg(g) OPAg-
Thend 4, (4oV.) = R x {0}27" =2k C R2"” | so is a smooth embedded submanifold6f(C).

Then(AgVz, R?F 7z, 0 & 4,) is a chart ford,.

~



Let A = {(BV.,R?* w3, 0 ®p): B € Gu}.

Then(Gur, Taw, |Als -), Where- is standard matrix multiplication, is a Lie group.

IV. NOT EVERY LIE GROUP IS A MATRIX LIE GROUP

In fact, we will show even more.

Namely, not every Lie group ialgebraically isomorphicto a matrix Lie group!
Nilpotent Matrix Lemma

Definition: A matrix X € M, (R) is callednilpotent if there existsk € N such thatX* = 0.

Lemma: If X € M,(R) is a nonzero nilpotent matrix, then for all nonzero real nersh X #0.

~

Proof:

Let X # 0 be a nilpotent matrix, and suppose, by way of contradictibaere existg, € R such

thatto # 0 ande™°X = 6.

SinceX is nilpotent, there exists € N such thatX* = 0.

Lett € R
Then
2 k k+1
eX =5 +1X + ) +o ot ) + e +
TR T Ty BT kD!
2X*? th=1xh1
- X ™ g~
I e}

Letc!; be theijth entry of)N(I.

X 2 k-1
Then(e'~)ij = 8y + clyt + FH2 + -+ + iy th.
Hence there exists polynomialg,(t) such tha(et)f)z-j = p;; (). (1)
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Now letm € N.

to X \m mitg X

Then(e"~) = §™, soe =4.

Then(e™°%

Letf‘;j(t) = Fij(t) - (Sij'

Now, if by way of contradiction,;(t) is nonconstant, thexy,(¢) is nonconstant and has roats,,
forallm e N.

Thus,{ij (t) has infinitely many roots, violating the Fundamental-th root” Theorem of Algebra.

Thusp,; (t) is constant, i.e. there exists € R such thah,; (t) = csj.
Thus, by (1), for alt € R, (et)f)ij = ¢jj.

LettingC' = [c;;]1%, ,, we havee'> = C.
Then<(e'¥) = 0, s0¢'> X = 0.
Since this holds for alt € R, it holds fort = 0, SOegX =0.

Thusé X = 0, soX = 0, a contradiction.

Relate the Heisenberg matrix Lie groupH to the Lie group G

1 a b
Define®: H - Gby [0 1 ¢| — (a,c,e®)
0 01
Then® is a surjective homomorphism. [Exercise]
1 0 27mn ornB
Thenex®=¢ |0 1 0 |:n€eZy={e ~:neZ} [Exercise]
0 0 1
Let N = £er @.

By the 1st Isomorphism Theorend = G.



Definition: @ is said to be d&ie group homomorphism from Lie groupGr = (X1, 71, |A1], 1)
to Lie groupH, = (X2, Tz, |Az2], -2) if the following two conditions are met:

1. &: (X1, T, Al = (X2, T2, ] Az]) is smooth
2. ®:(X1,1) — (Xa,-2) is a homomorphism.
Then we write® : G, — Hy.

Definition: Let G be a Lie group. Leg be any (unrelated) Lie algebra. Therfimite-dimensional
complex representationof G, (resp.g) is a Lie group homomorphisid : G — GL(n,C)
(resp. Lie algebra homomorphism g — gf(n,C) = M,,(C)).

If II (resp.x) is injective, then we say that (resp.r) is faithful .
Theorem: LetX be any finite dimensional representationfbf If N C e~ X, thenZ(H) C £en X
Proof:

Let X be any finite dimensional representationtbf

Leto : h — gf(n, R) be defined by (X) = % [E(et)f)] L:O.

Thene is a finite dimensional representation[pfandz(e{) = eg()f). [Exercise]

Sinceo is Lie algebra homomorphism,
[0(4),0(0)] = o(B) and[o(4),7(B)] = [o(C),o(B)] = 0.
LetF = a(lg).
Let{A4,..., A, } be the eigenvalues fdr andF" the associated linear operator.
LetVy, = {2 eCm: (f‘ — )\ié)’“g =0 for somek} (generalized eigenspace).

Letv € V), forsomei € {1,...,n}.

Then(F — X\;§)FFv = F(F = A\;6)fv = F-0 = 0, s0Fv € Vy,.

~ ~~

HenceV), is invariant unde.



LetF)\i = F|V,\z-'

Note: FN,\ — A,-é is nilpotent.

Now let ) be an eigenvalue of = U(§).

Sincea(é) anda(g) commute witha(lj), they also leav&), invariant. [Exercise]
NOWbt(a(g)h/A) = Am([a(ﬁl)h;A , 0(€)|VA]) =0, since the trace of a commutator is zero.
Howevers«(o(B)|v,) = te(Ad|v;) = Abe(8|v,) = Adim(V).

ThusAdim(Vy) = 0.
Now dim(Vy) # 0, sinceX is an eigenvalue, sb = 0.

Hence, for alli, F\, — A\;6 = F),.
ThuskFy, is nilpotent for eacli.

Fact: C"=Vy, ®---® V), [Exercise]
ThusF = o(B) is nilpotent.

2nnB

Now N = {627"”“3‘ :n € Z} C Ben T (hypothesis), so for alh € Z, 3 (e )=24.

7rn¢7(§)

Hencee’ =4 foralln € Z. (1)

If, by way of contradictiong(B) # 0, theno(B) is a nonzero nilpotent matrix, so by the Nilpotent

Matrix Lemma,etg(g) # 6 for all ¢ € R with ¢t # 0, which contradictg1).
Thuso(B) = 0.
Now letX € Z(H).

Then there exists € R such thatX = etlj.

ThenT(X) = £(e'%) = "8 = "2 = 6.

©



ThusX € Een X, S0Z(H) C Ber X.
Proposition:  The Lie groupG has no faithful finite dimensional representations.
Proof
Supposel : G — GL(n,C) is a finite dimensional representation®f
Thenlet = o ®: H - GL(n,C).
ThenX: is a finite dimensional representationf@t

LetX € N =£ex®. Then®(X) =4.

ThenX(X) = ¥(®(X)) = ¥(5) = §,50X € Ler 3.

ThusN C Ber X.

Then, by the above Theoredi(H) C £er 3.

SinceZ(H) is nontrivial,Ee~ ¥ is nontrivial, so¥ is not injective.
ThusG has no faithful finite dimensional representation.

Now we show thatG is not isomorphic to any matrix Lie group:

Assume, by way of contradiction, that there exists an is@miesmy : G — G s for some matrix
Lie groupG ys. Thenine : Gy — GL(n,C) is an injective Lie group homomorphism.

Hencewmc on : G — GL(n,C) is an injective Lie group homomorphism, s& o 7 is a faithful
finite dimensional representation, which is a contradictithe above proposition.

Thusd is not isomorphic to any matrix Lie group.

Note: SinceG = % and sinceH is a matrix Lie group, we see that matrix Lie groups are not
preserved by taking quotients.
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