Review 2

MTH132-040, Calculus I
(1) Find the derivative of each of the following functions.
(a) $\sec \left(x^{2}+3\right) \sin (5 x-1)$
(b) $\frac{\cos (\sin (x))}{x^{5}-3 x+1}$
(c) $\tan \left(\cos \left(\left(x^{6}-3 x+8\right)^{7}\right)\right)$
(2) Assume $f^{\prime}(x)=h(x) \cdot g(x)$. Find $\frac{d}{d x} f(p(x))$ at $x=1$, given that

x	$g(x)$	$h(x)$	$p(x)$	$g^{\prime}(x)$	$h^{\prime}(x)$	$p^{\prime}(x)$
1	5	-3	7	2	-9	3
3	2	6	-1	3	0	5
7	4	-5	2	3	-1	-2

(3) Find an equation of the tangent line to the curve $x^{2} y^{2}=9$ at the point $(-1,3)$.
(4) When a circular plate of metal is heated in an oven, its radius increases at the rate of 0.01 $\mathrm{cm} / \mathrm{min}$. At what rate is the plate's area increasing when the radius is 50 cm ?
(5) Show that the linearization of $f(x)=(1+x)^{k}$ at $x=0$ is $L(x)=1+k x$. Use this to find the linear approximation to $(1.02)^{8}$.
(6) State the Extreme Value Theorem. Give examples of functions which violate the theorem's assumptions and conclusion.
(7) For a continuous function f, defined on a closed interval $[a, b]$, where can the absolute extrema of the function occur?
(8) Find the absolute minimum and absolute maximum values of the following functions. Identify the intervals of increase and decrease.
(a) $f(x)=\sqrt{4-x^{2}}, \quad-2 \leq x \leq 1$
(b) $g(t)=t^{3}-3 t^{2}, \quad x \in[-5,0]$
(9) State Rolle's Theorem. Provide a graph to explain the theorem.
(10) State the Mean Value Theorem. Provide a graph to explain the theorem.
(11) Assume f is defined on the whole real line and let $f^{\prime}(x)=\frac{(x-3)^{2}(x+1)}{\sqrt[3]{x+2}}, x \neq-2$. What are the critical points of f ? On what intervals is f increasing or decreasing? At what points, if any, does f assume local minimum or local maximum values?
(12) Assume f is defined on the whole real line and let $f^{\prime}(x)=\left(8 x-5 x^{2}\right)(4-x)^{2}$. What are the critical points of f ? On what intervals is f increasing or decreasing? At what points, if any, does f assume local minimum or local maximum values? Where is the function concave up/ concave down? Sketch the graph of the function.
(13) Let $y=\frac{2 x^{2}+x-1}{x^{2}-1}$.
(a) Find any vertical and horizontal asymptotes, as well as removable singularities, if any.
(b) Find the intervals of increase/decrease.
(c) Find the local extrema, if any.
(d) Find the intervals where the function is concave up/down.
(e) Find the inflection points, if any.
(f) Find the y-intercept.
(g) Sketch a possible graph of the function.
(14) Sketch the graph of a function f which satisfies the following conditions.
(a) f is twice differentiable for all x, except $x=3$
(b) $f^{\prime}(3)$ is not defined
(c) $f^{\prime}(x)>0$ on $(3, \infty)$
(d) $f^{\prime}(x)<0$ on $(-\infty, 3)$
(e) $f^{\prime \prime}(x)<0$ for all x, except $x=3$

