Supplement 4 for Section 3.3

This material should come after the Quotient Rule on page 121.

The Quotient Rule can be used to establish the Power Rule for negative integers; that is, for $n=-1,-2,-3, \ldots$.
Further Extended Power Rule. Let n be a negative integer. Then for any x

$$
\frac{d}{d x} x^{n}=n x^{n-1}
$$

Proof. Let n be a negative integer. Then $-n$ is a positive integer. Consequently by the Power Rule for Positive Integers, $\frac{d}{d x} x^{-n}=-n x^{-n-1}$. Thus

$$
\begin{aligned}
\frac{d}{d x} x^{n} & =\frac{d}{d x} \frac{1}{x^{-n}}\left(\text { Recall that } \frac{1}{x^{n}}=x^{-n} .\right) \\
& =\frac{x^{-n} \frac{d}{d x} 1-1 \frac{d}{d x} x^{-n}}{\left(x^{-n}\right)^{2}}(\text { By the Quotient Rule. }) \\
& =\frac{0-\left(-n x^{-n-1}\right)}{\left(x^{-2 n}\right)}=n x^{-n-n+2 n}=n x^{n-1}
\end{aligned}
$$

