
Supplement 5 for Section 3.6

This material should come at the end of page 146.

The Power Rule will now be extended to rational exponents using the Chain Rule. First recall that a rational
number is one that can be written as a quotient of two integers. For example 8

−6 . The representation isn’t

unique. In this case 8
−6 = −4

3 . The representation r = m
n is unique if n is required to be positive and if m

and n have no common divisors except for 1. In that case if n is even, the domain of the function f(x) = x
m
n

is [0,∞) if m ≥ 0 or (0,∞) otherwise. But if n is odd, then the domain of f is (−∞,∞) if m ≥ 0 or
(−∞, 0) ∪ (0,∞) otherwise.

More General Power Rule. Let r be a rational number. Then for any x in the domain of xr
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Proof. Choose a positive integer, n, and an integer, m, so that r = m
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