Supplement 5 for Section 3.6

This material should come at the end of page 146.

The Power Rule will now be extended to rational exponents using the Chain Rule. First recall that a rational number is one that can be written as a quotient of two integers. For example $\frac{8}{-6}$. The representation isn't unique. In this case $\frac{8}{-6}=\frac{-4}{3}$. The representation $r=\frac{m}{n}$ is unique if n is required to be positive and if m and n have no common divisors except for 1 . In that case if n is even, the domain of the function $f(x)=x^{\frac{m}{n}}$ is $[0, \infty)$ if $m \geq 0$ or $(0, \infty)$ otherwise. But if n is odd, then the domain of f is $(-\infty, \infty)$ if $m \geq 0$ or $(-\infty, 0) \cup(0, \infty)$ otherwise.
More General Power Rule. Let r be a rational number. Then for any x in the domain of x^{r}

$$
\frac{d}{d x} x^{r}=r x^{r-1}
$$

Proof. Choose a positive integer, n, and an integer, m, so that $r=\frac{m}{n}$. Then

$$
\begin{aligned}
\frac{d}{d x} x^{r} & =\frac{d}{d x} x^{\frac{m}{n}}=\frac{d}{d x}\left(x^{\frac{1}{n}}\right)^{m} \\
& =m\left(x^{\frac{1}{n}}\right)^{m-1} \frac{d}{d x} x^{\frac{1}{n}} \quad(\text { by the Chain Rule }) \\
& =m\left(x^{\frac{m-1}{n}}\right) \frac{1}{n} x^{\frac{1}{n}-1} \\
& =\frac{m}{n} x^{\frac{m}{n}-\frac{1}{n}+\frac{1}{n}-1}=r x^{r-1}
\end{aligned}
$$

